Table 4.
Different parameter values evaluated for CNN optimization.
| Parameter | Values/Types |
|---|---|
| Number of convolution layers | 1–4 |
| Number of pooling layers | 1–3 |
| Number of fully connected layers | 1–3 |
| Number of convolution filters | 4, 8, 16, 32, 64 |
| Dimension of convolution filters | 1 × 3, 1 × 4, 1 × 5, 1 × 6, 1 × 7, 1 × 8 |
| Number of hidden layer neurons | 100, 500, 1000 |
| Activation functions | ReLu, tanh, sigmoid |
| Dropout probability | 0.5 |
| Size of the batch processing | 2ns, ns, , |
| Maximum number of iterations | 20,000 |
| Optimizer | Adam |
| Learning rate | 10−4 |
| Measure | Cross-entropy |
Note: ns: Number of IEDs.