Skip to main content
. Author manuscript; available in PMC: 2021 May 1.
Published in final edited form as: Int J Neural Syst. 2020 Aug 19;30(11):2050030. doi: 10.1142/S0129065720500306

Table 4.

Different parameter values evaluated for CNN optimization.

Parameter Values/Types
Number of convolution layers 1–4
Number of pooling layers 1–3
Number of fully connected layers 1–3
Number of convolution filters 4, 8, 16, 32, 64
Dimension of convolution filters 1 × 3, 1 × 4, 1 × 5, 1 × 6, 1 × 7, 1 × 8
Number of hidden layer neurons 100, 500, 1000
Activation functions ReLu, tanh, sigmoid
Dropout probability 0.5
Size of the batch processing 2ns, ns, ns2, ns4
Maximum number of iterations 20,000
Optimizer Adam
Learning rate 10−4
Measure Cross-entropy

Note: ns: Number of IEDs.