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Introduction

The mammalian somatosensory system responds to mechanical, thermal and chemical 

stimuli to provide valuable sensory information about both the environment and the internal 

physiological state [19;47;53]. The sensory neurons of the trigeminal and dorsal root ganglia 

(DRG) are the primary somatosensory receptors, innervating the periphery and transmitting 

signals to the central nervous system. Recently single cell (sc) and single nuclear (sn) 

sequencing have defined an array of somatosensory neuronal classes and confirmed 

extensive similarity between these ganglia [7;13;24;31;32;42;48]. Some of these classes 

correspond to cells that have been previously targeted genetically as they are defined by 

individual functional markers [3;11;27]. Such experiments support the idea that genetically 

defined neural classes have distinct and specific roles [17;37]. However, other transcriptomic 

classes are only distinguished by complex patterns of gene expression 

[7;13;24;31;32;42;48]. Moreover, these diagnostic genes tend to have less clear function in 

sensory detection raising questions as to the significance of transcriptomic class and their 

selectivity in somatosensation. A problem with sc-sequencing is that cell isolation destroys 

information about the in vivo system. Consequently, it has been difficult to explore how 

neural class is related to anatomical features of the cells including their projection patterns.

Single cell sequencing of other neuronal populations has also vastly expanded the view of 

their diversity by exposing a complex array of new transcriptomic classes [46;51]. Just as in 

the somatosensory system, mapping the anatomical organization of these molecularly 

defined neural classes is a fundamental challenge. To address these inherent challenges, 
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several groups have developed related in situ hybridization (ISH) based methods 

[6;30;41;49] that are effective at determining the cellular expression of many genes. These 

methods appear very powerful but require investment in probes and equipment as well as 

high resolution imaging, precise alignment and processing of massive datasets, limiting their 

widespread use. On the other hand, similar methods can be applied to a much smaller 

number of transcripts simplifying both methodology and analysis. For example, Spatial 

Genomic Analysis was developed to map cells in developing neural crest [25] by localizing 

just 35 genes. Similarly, a single cell qPCR method has been used to classify somatosensory 

neurons using 28 genes [1]. Therefore, we reasoned that an even smaller number of highly 

expressed transcripts selectively marking partially overlapping sets of scRNA-defined cell-

classes might mean that multicolor ISH, low resolution imaging and just a few repeat cycles 

could be used to economically project transcriptomic classification of cells to anatomical 

sections as a means to test and extend predictions from scRNA-sequencing.

Here, we developed and refined this ISH-based approach to probe how neural diversity in 

the somatosensory system might orchestrate sensory discrimination and elicit select 

behavioral responses. To simplify analysis of the data and to make this type of strategy 

applicable to similar problems in other systems [46;51], we developed a powerful U-Net 

machine learning algorithm that automatically segments cells and assigns their classes. We 

then used this platform to characterize critical features of trigeminal sensory neurons 

including determining ion-channel expression profiles and examining peripheral targeting.

Material and Methods

Probe selection and validation

Single cell RNA sequence data [32] analyzed using the Seurat package developed in the 

Satija lab [40] was used to identify probes of multiplexed ISH. Potential probes were 

selected from genes that were prominent in the principle components used for clustering and 

were tested for their power at distinguishing trigeminal neural classes by analyzing their 

expression profiles in the sc-data. Criteria for probe selection included sharp boundaries in 

expression between classes, high level of expression in positive cells and expression in a 

large proportion of cells that made up a positive class. The fifteen probes chosen, provided 

redundancy for identification of most neural classes (Fig. 1a) but only a small number of 

markers with potential to segregate some groups e.g. C1 from C2 or C9 from C10 could be 

identified.

Mice and retrograde tracing

Animal experiments were carried out in strict accordance with the US National Institutes of 

Health (NIH) guidelines for the care and use of laboratory animals and were approved by the 

NIDCR or NINDS ACUCs. C57BL/6N and FVB/N mice were purchased from Harlan. Mas-

related G-protein coupled receptor member A3 (Mrgpra3)-Cre mice [17] were crossed to 

Ai14 tdTomato reporter mice (Jackson Labs). Both male and female mice were used for 

experiments.
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Wheat germ agglutinin (WGA) coupled to Alexa594 (Invitrogen) was injected into various 

target fields to retrogradely label trigeminal neurons from their terminal processes. All 

labeling procedures used WGA-Alexa594 at 1 mg/ml; mice were anesthetized with 

isoflurane. To label the eye, the cornea was first abraded with a beveled 30 g syringe needle; 

0.5 – 1 μl WGA-Alexa594 was applied. To label the meninges, a midline incision into the 

skin allowed exposure of the skull, six 1 mm holes were drilled into the dorsal skull without 

perforating the meninges. Wells were built around each craniotomy with dental cement; 2 × 

0.5 μl WGA-Alexa594 was applied to each well. Craniotomies were sealed with coverslips 

and dental cement and the skin incision was closed and sutured. In all cases, animals were 

euthanized 16–20 hours after WGA-Alexa594 application and trigeminal ganglia dissected.

WGA-Alexa594 fluorescence was imaged in ISH-imaging buffer using 594 nm laser 

stimulation and a 9 nm wavelength scan, which helped separate signal from broader 

autofluorescence of the tissue. Slides were washed 3 times in 2x SSC and processed further 

for ISH.

In situ hybridization

Hybridization chain reaction (HCR) version 3.0 [8] was used for all ISH. Buffers and probes 

against the mouse genes Cd34, Sstr2, Trpv1, Etv1, Tmem233, S100b, Synpr, Tmem45b, 
Calca, Trpa1, Mrgprd, Trpm8, Nppb, Fxyd2, Nefh, Piezo2, Tubb3, sodium channel protein 

type 1 subunit alpha (Scn1a), sodium channel protein type 8 subunit alpha (Scn8a), sodium 

channel protein type 10 subunit alpha (Scn10a), sodium channel protein type 11 subunit 

alpha (Scn11a) and against Cre recombinase and tdTomato (tdT) were purchased from 

Molecular Instruments as a mix of 10 or more oligonucleotide pairs per probe.

Trigeminal ganglia dissected from 2 – 6 months old C57BL/6N or FVB/N mice were 

embedded in optimal cutting temperature medium and frozen at −80 °C. 20 μm sections 

were cut along a horizontal axis through the ganglion and mounted on microscope slides. 

Sections were dried (1 h on a 37 °C hotplate), were fixed in on ice for 15 minutes 4% 

paraformaldehyde (Electron Microscopy Sciences) in phosphate buffered saline (PBS) and 

then were washed 6 times in PBS. Slides were dehydrated in an ethanol series (50%, 70%, 

100%, 100% for 5 minutes each) and stored for up to one week. This preparation resulted in 

excellent retention of sections through multiple rounds of hybridization and detection of 

probes but was not specifically optimized for preservation of signal.

Slides were dried completely, washed 3 times in PBS, and pre-hybridized for 30 minutes at 

37 °C in HCR hybridization solution (Molecular Instruments). Hybridization and 

amplification were performed as described previously [8] with minor modifications. 

Hybridization typically used 5 probes with adapters B1 - B5 at a concentration of 4 nM per 

probe in Coverwell incubation chambers (Grace Biolabs) and was carried out for 48 – 72 h 

at 37 °C. Washing and preparation of amplifier hairpins for adapters B1 - B5 conjugated to 

Alexa488, Alexa514, Alexa561, Alexa594 and Alexa647 was as described by the 

manufacturer. Amplification was carried out in a Coverwell chamber for 12 – 16 h at room 

temperature in the dark. Slides were washed 2 times for 15 minutes in 5 × saline sodium 

citrate (SSC) containing 0.1% Tween 20 and cover-slipped in Imaging Buffer (3 U / ml 

pyranose oxidase, 0.8 % D-glucose, 2 × SSC, 10 mM Tris HCl pH 7.4).
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After imaging, sections were rinsed in 2 × SSC, and DNA probes and amplifiers were 

removed by incubation in 250 U / ml RNase-free DNase (Roche Diagnostics) for 90 minutes 

at room temperature. Sections were washed 6 times (5 min in 2 × SSC) and pre-hybridized 

for the next round of hybridization with the next 5 probes. This procedure was repeated for 

up to 4 rounds of hybridization.

Confocal imaging and signal unmixing

Imaging was carried out using a Zeiss LSM 880 confocal microscope with spectral detector 

using a 10x/0.45NA air objective with the pinhole opened to 132.9 μm to allow capture of 

the whole section and provide enough signal intensity at this comparatively low 

magnification. Alexa647 was stimulated with a 633 laser and emission was collected from 

644–752 nm. Alexa546 and Alexa594 were stimulated with 561 and 594 lasers respectively 

and wavelength scans with 9nm windows were collected to allow unmixing signals from 

different fluorophores. To resolve Alexa488 from Alexa514, sequential wavelength scans 

with 3 nm windows were performed while stimulating with a 488 nm laser. Spectral 

unmixing was performed using Zeiss ZEN software.

Image series from consecutive hybridizations were combined by manually aligning 

transmitted light images from each imaging session using the TurboReg plugin in ImageJ/

Fiji.

Unsupervised clustering of manually outlined cells

Data processing including the supervised versus unsupervised steps is schematically 

described in Fig. S1. As a starting-point, cell regions of interest (ROIs) in 4 complete 

ganglion sections were manually outlined in ImageJ (based on the individual ISH images) 

and mean fluorescence for each cell and probe was extracted using custom ImageJ macro 

scripts. Further processing was done using Python scripts: for subsequent clustering, local 

background in a ring around the cell was subtracted and the resulting values were 

standardized to mean 0 and variance 1 for each probe within a whole tissue section typically 

containing 1500 – 2000 cells.

The dimensionality of the data was then reduced from the 13 relevant probes (Cd34, Trpv1, 
Etv1, Tmem233, S100b, Synpr, Tmem45b, Calca, Trpa1, Mrgprd, Trpm8, Nppb, Fxyd2) to 

a 2- dimensional representation by t-stochastic neighbor embedding (tSNE). Cells clusters 

were identified using a density-based algorithm (https://github.com/alexandreday/

fast_density_clustering) and mapped to the clusters derived from single cell sequencing 

based on their average expression of marker genes (see Fig. S1 for details).

Automatic detection of cell classes using supervised Deep Learning

To automatically detect cell classes in tissue section images, we performed semantic 

segmentation by designing a custom Fully Convolutional Neural Network that follows the 

popular U-Net architecture [38]. Several network designs and hyperparameters such as 

numbers of layers, learning rate, dropout rate, final activation function and loss function 

were evaluated before settling on the final model.
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The multichannel ISH input image data was first tiled into 256 × 256 images, standardized 

to mean 0 and variance 1 for each probe channel and divided into training (96 images) and 

validation data (48 images). The desired output masks were generated as multi-hot encoded 

images (11 channels for 10 classes and background) from the hand-annotated ROIs and the 

cell class assignment from unsupervised clustering. To improve training performance, the 

available input data and their corresponding cell class masks were augmented by rotation 

and flipping. The final model closely mirrors the original U-Net architecture and contains 5 

downward convolutional blocks with 2 layers each and 4 corresponding symmetric blocks 

for up-convolution. Image resolution was reduced to half in each consecutive block and 

number of channels was doubled starting from 16 in the first block. The output was a 256 × 

256 × 11 matrix calculated by a softmax activation layer. The categorical cross-entropy loss 

function was optimized with an Adam optimizer at a learning rate of 0.0005 to convergence 

on the validation loss (~120 epochs).

In order to achieve good class separation with the minimal number of hybridizations, we 

trained a model that takes 8 channels (Tmem233, S100b, Calca, Trpa1, Mrgprd, Trpm8, 
Nppb, Fxyd2) as an input. This model was validated and used to predict cells and their 

classes in WGA tracing experiments. To determine cell class identity of manually outlined 

WGA-labeled cells, the mean probability for each cell class was calculated for the ROI and 

the most probable cell class was assigned to the cell. Cells with a maximum class probability 

of less than 0.1 were kept unassigned. Rare retrogradely labeled cell classes (< 5 % from any 

target site) were manually inspected and corrected on a cell by cell basis.

To automatically segment cells, probability predictions for each class were first blurred with 

a Gaussian filter (3×3 kernel) and discretized by choosing the most probable class for each 

pixel. After morphological opening of the foreground classes with a 6×6 circular kernel, 

cells were segmented by a distance transform watershed algorithm.

Expression level of sodium channels was determined automatically by measuring signal 

intensity in segmented and classified cells. For comparison purposes, violin plots of channel 

expression in sc- and sn-data [31;32] were generated. This representation is particularly 

useful for analyzing sparse transcriptomic data because it eliminates extremes (primarily 

from the zero values) thereby providing a valuable representation of gene expression across 

classes. The ISH data is not of this form, with no true zero value; we therefore calculated the 

relative standardized expression levels (mean = 0, variance =1) and used a histogram 

representation to approximate the violin plot of the transcriptomic data.

All computations were done either in Python using Keras/Tensorflow, sklearn, Numpy, 

Pandas, skimage, opencv and scipy libraries or in custom ImageJ macro scripts. All code is 

available in Github (https://github.com/lars-von-buchholtz/InSituClassification).

Results

Development of an ISH approach for classifying trigeminal neurons

scRNA sequencing of trigeminal neurons defined about a dozen neuronal classes that closely 

matched classes identified by transcriptomic analysis of DRG neurons [32]. More recent sn-
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analysis [31] distinguished most of the same cell populations but further subdivided classes 

of putative large diameter neurons, which were much more prominently represented in this 

study. However, some of the diversity amongst nociceptors was not observed in the nuclei-

based sequencing. Thus only 10 of the 13 classes directly corresponded between studies. 

Here, we developed a simple, robust approach for mapping trigeminal neural classes to cells 

in tissue sections to expose their anatomical features including their distribution and 

projection targets as well as test predictions from these transcriptomic studies.

As a starting point, we carried out quantitative ISH using an array of 15 genes that we 

predicted should, in combination, identify all the sc-sequence defined classes. The chosen 

marker genes featured prominently in the dimensional reduction (principal components) 

used in the scRNA-sequence cluster analysis. In the single cell data, each of these genes is 

present in a distinct subset of trigeminal neural classes. Importantly, the chosen transcripts 

were generally very good markers of the clusters where they were present, i.e. because they 

were highly expressed genes, we were confident of their presence in the vast majority of 

cells whereas they were essentially absent from other types of neuron (Fig. 1a). Thus, the 

combinatorial expression pattern of these transcripts would be expected to allow trigeminal 

neural classes to be reliably distinguished, providing a framework for classifying cells in situ 
and a straightforward approach for testing predictions from the transcriptomic analyses.

Using the well characterized HCR protocol [8], we performed three rounds of 5 probe in situ 
hybridization and used spectral unmixing to resolve specific signals from the 15 diagnostic 

probes (Fig.1b). The HCR approach has the sensitivity and resolution to detect single 

transcripts when sections are imaged at high resolution [8;41]. Importantly, however, for 

studying genes that are highly expressed in subsets of neurons, we could use lower 

magnification imaging, saving time and reducing the complexity of data processing as well 

as maximizing the number of cells analyzed. Such integrated HCR signals have been shown 

to accurately quantify the relative expression level of a transcript between cells [8] and thus 

served to quantitate the diagnostic genes at a cellular level. It should be noted, however, that 

higher resolution imaging is also possible and may be useful for genes with lower expression 

level.

Fourteen of the fifteen probes clearly differentiated positive from negative cells but the probe 

to Sstr2 was not diagnostic at this magnification (Fig. 1b), thus clusters C9 and C10 cannot 

be resolved. These clusters also failed to segregate in sn-analysis [31] and few other 

distinguishing markers could be identified from the sc-data. Therefore, it is likely that C9 

and C10 are broadly similar types of cells. In the future, higher resolution imaging and use 

of additional marker genes as well as increasing the gene coverage of the Sstr2-probe set 

may help resolve these two classes of neurons, which can be distinguished in transcriptomic 

analysis of DRG-neurons [24;42;48].

ISH images from the fourteen diagnostic probes could be aligned by simple translation and 

rotation (Fig. S2a). After alignment, the ISH data (Fig. 1b) are equivalent to 91 different 

double-label experiments (Movie S1) or 364 combinations of three markers applied to a 

single section. At the most basic analytical level, almost all the pairwise expression patterns 

that were predicted (Fig. 1a) were detected by ISH (Movie S1). However, the expected 
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division of Trpm8-expressing cells into groups expressing or not expressing Nefh (Fig. 1a), 

was graded rather than binary (positive versus negative, see Fig. S3a). Although we might be 

able to divide two classes of Trpm8-neurons by thresholding Nefh-expression, this seemed 

arbitrary and subject to error. Thus, the Nefh-based ISH approach does not reliably 

distinguish classes C1 and C2. Interestingly, although this split was predicted by the cell-

based analysis [32], it was not seen in nuclei-based sequencing [31]. A second 

distinguishing marker that was predicted to divide the C1 and C2 clusters in the sc-analysis 

[32], encodes the neuropeptide galanin (Gal). We therefore tested whether Gal expression 

subdivides the Trpm8-positive neurons into two groups using ISH (Fig. S3b). Our results 

indicated that Gal is not co-expressed with Trpm8 (Fig. S3b), again matching sn-data. 

Therefore, the ISH data indicate that variation amongst Trpm8-cells is more continuous that 

we had originally predicted [32] supporting more recent results [31], which indicate that 

these neurons although not homogeneous, in fact comprise a single transcriptomic class with 

graded expression differences between the cells.

Classifying trigeminal neurons in manually segmented sections defines transcriptomic 
class

Trigeminal sections from 4 mice were analyzed by multiplexed ISH and neurons were 

manually segmented to measure the cellular expression of marker genes. For three of these 

animals, the non-diagnostic probes for Nefh and Sstr2 were replaced with probes for other 

genes including neuronal β-tubulin (Tubb3, a pan-neuronal marker), providing a means to 

identify all somatosensory neurons in the sections. After alignment of images, all neurons in 

the sections were manually segmented using the signal in the 15 different ISH channels as a 

guide. The cellular expression levels of the thirteen diagnostic markers in these manually 

segmented cells were determined based on signal intensity (see methods for details). The 

resulting 13-dimensional expression data were subjected to t-distributed stochastic neighbor 

embedding (tSNE) followed by density-based cluster identification to classify neurons (Fig. 

2a). The relative expression of each marker gene at a cellular level in the classified neurons 

is shown (Fig. 2b) highlighting a close match with predictions (Fig 1b) for ten trigeminal 

neuronal classes. Importantly, these classes of neurons match those that were detected in 

both the cell and nuclear-based analyses [31]. Nonetheless, cells with an expression profile 

corresponding to an eleventh class C7 that was only identified in the sc-study [32], 

expressing Trpv1 and Tmem233 but not Tmem45a, (Fig.1b) were also found using ISH (Fig. 

S3c). However, these neurons were rare and did not separate from C9/10 cells in the cluster 

analysis (Fig. 2).

Quantitative analysis of ISH based clustering revealed a high degree of consistency in 

representation of neural classes between sections from different mice (Fig. S4). Therefore, 

we are confident that distribution of neural classes (Fig. 2c) is representative of the ganglion 

as a whole. Notably, the combined ISH patterns of the thirteen diagnostic probes and the 

expression of the pan-neuronal marker Tubb3 were almost identical (Fig. S5a), confirming 

that the vast majority of trigeminal neurons were included in our classification. Thus, the 

multigene hybridization approach demonstrates the existence of at least eleven of the 

thirteen types of trigeminal neuron predicted by scRNA sequencing [32] and reveals their 

true representation in the ganglion.
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Although primarily designed to identify the transcriptomic class of neurons in anatomical 

sections, the redundancy inherent in the probing strategy (Fig. 1a) meant that it could also be 

used to search for rare unexpected patterns of co-expression. In contrast, to single cell 

transcriptomic data where dropout and contamination generates ambiguity, the ISH approach 

allows an explicit check by visual examination. For instance, a small proportion of C6 

neurons expressed the heat and capsaicin activated ion-channel Trpv1 (Fig. S5c). This 

expression profile likely identifies this group of neurons as the Aδ-thermal nociceptors that 

have been reported to trigger rapid, Trpv1-dependent, withdrawal from noxious heat [28]. 

Importantly, these Trpv1, Calca, S100b-positive cells that were not directly identified in 

single cell analyses [7;13;24;31;32;42;48] are predicted to play a distinct functional role 

from other C6 neurons.

A machine-learning based approach for segmenting neurons and assigning cell class

Although the manual segmentation approach (Fig. 2) allows classification of cells in tissue 

sections, it is slow and defining the cell boundaries is often somewhat subjective. Therefore, 

we reasoned that automation would greatly increase throughput, decrease bias and thus 

provide a versatile platform for answering questions about gene-expression and neuronal 

connectivity in the trigeminal ganglion.

Ideally, we wanted to develop a procedure that could take unprocessed aligned ISH images, 

define cell boundaries and assign transcriptomic class without relying on additional input 

about cell shape. Unfortunately, traditional methods used in automated segmentation [35] 

were not suitable for the ISH images where signal had variable intensity across positive cells 

and was often overlapping between neighboring cells as well as regionally localized with 

perinuclear versus cytoplasmic staining for different probes (Fig. 1b). However, since each 

ISH image contains both information about cell structure as well as gene expression, we 

predicted that the combined images might define both cell boundaries and neuronal 

transcriptomic class. Therefore, instead of segmenting individual cells, we set out to develop 

a custom semi-supervised Deep Learning algorithm using a fully convolutional Neural Net 

based on the U-Net architecture [38]. This approach uses the aligned individual ISH images 

as input and calculates the probability of each pixel being one of the ten major classes (or 

non-neuronal, i.e. not one of these classes; see Fig. S1 for a schematic description of all 

data-processing). The Neural Net was trained on the manually outlined (supervised) cells 

that were assigned a class based on the unsupervised clustering described above (see 

Methods for details). Although we began by using the full dataset, we realized that just a 

subset of the 13 genes (Trpm8, S100b, Fxyd2, Calca, Trpa1, Nppb, Tmem233 and Mrgprd, 

see Fig. 1a, Fig. S1) should be sufficient to define the 10 neural classes that were 

distinguished in the manually segmented cells (Fig. 2) and here report results based on this 

8-gene panel.

Just as we had hoped, the Neural Net transformed the ISH data of this 8-gene probe-set into 

images where cells and their classes were immediately recognizable (Fig 3a). Indeed, cells 

were now easily segmented (Fig. 3b) using a standard watershed approach. Some of the ISH 

data, including the images shown (Fig. 3) had been manually segmented (revealing the 

“ground truth”) but had not been used to train the U-Net algorithm. The reliable 
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segmentation and classification of neurons these test sections of the trigeminal ganglion 

(Fig. 3b, Table 1) validate the automated Deep-Learning approach; at a pixel level the 

prediction displayed an accuracy of approx. 95 %. One minor concern is that the neural net 

approach led to some distortion of cell size and shape that was most pronounced in areas 

where neurons were densely packed and ISH signals partially overlapped. This makes it 

difficult to assess how cell diameter varies across the various classes but does not alter 

conclusions about cellular identity (Table 1). Importantly, as demonstrated by comparing the 

combined predictions with Tubb3 expression (Fig. S5b), we found that almost all neurons 

were classified by the U-Net algorithm. Equally importantly, non-neuronal regions were also 

accurately reported. Notably, minor modifications to the code would make this U-Net based 

strategy generally applicable for analyzing other types of complex image-based datasets. 

Thus, we envision that analogous multiplexed ISH or antibody-based approaches coupled 

with automatic classification of cells could be easily adapted to other sc-datasets and serve 

as a simple platform for mapping cell class to anatomical sections.

Expression of voltage-gated sodium channels in trigeminal neurons classes

Sc-transcriptomic analyses make use of many variable genes in clustering data and thus can 

tolerate the sparse nature of the underlying datasets, the consequent dropout of specific 

transcripts as well as occasional capture of false positives. However, the expression of any 

individual gene will be distorted by these artefacts. By contrast, ISH more accurately reflects 

the cellular level of mRNAs and thus, the multiplexed approach should provide a platform 

for measuring cellular expression of genes across cell classes. Here we illustrate the power 

of this approach by testing the expression profile of several voltage gated sodium channels 

that are known to be differentially expressed in somatosensory neurons [52] and play distinct 

roles in sensory detection [10;34;54]}.

The patterns of expression of Scn10a (Nav1.8, a tetrodotoxin [Ttx] insensitive channel) and 

Scn1a (a Ttx sensitive channel Nav1.1) were very similar across the major neural classes in 

the sc- and sn-analyses (Fig. 4a). Expression of Scn10a in U-Net classified trigeminal 

neurons very closely matched the overall predictions from the single cell data (Fig. 4b). 

Notably using the ISH approach, each class of sensory neurons appeared quite homogeneous 

in its expression pattern closely following a unimodal distribution but there were major 

differences in the mean expression level of the classes (Fig. 4b). By contrast, the sequence 

data were more ambiguous. This was particularly apparent for C3 or C7–10 cells where 

discontinuous violin plots (Fig. 4a) could be interpreted as only a subset of cells expressing 

this gene, or alternately as drop-out of a moderately expressed transcript because of the 

sparse nature of the sequence information. The ISH indicates that the majority of neurons in 

these classes express Scn10a but that the average level of expression is low (Fig. 4b). 

Importantly, this sodium channel, which plays a crucial role in detecting painful input, is 

absent from the C1/2 cooling sensing neurons as well as the large diameter C4 and C5 

putative mechanosensors but is present albeit at very different levels in all other classes.

The classes of neurons expressing Scn1a in the three datasets (sc- and sn-transcriptomic and 

ISH based) were also highly concordant (Fig. 4), emphasizing the effectiveness of the 

minimal U-Net approach at projecting the transcriptomic trigeminal neuronal class onto 
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anatomical sections. Again, just as for Scn10a, the expression of Scn1a appeared 

homogeneous in most (eight of the ten) neuronal classes (Fig. 4b). This contrasted starkly 

with transcriptomic data where even the classes with the highest overall expression showed 

major dropout presumably because of the low to moderate expression of this gene resulted in 

false negatives in the transcriptomic data. Thus, these ISH gene expression data (Fig. 4b) not 

only validate sc-predictions but also extend them. C1/2, C4 and C5 neurons all express this 

sodium channel at a relatively high level with less expression detected in C3 neurons. 

C7/9/10, C11, C12 and C13 neurons were negative for this channel, while expression in C6 

and C8 cells appeared heterogeneous with some neurons in these classes being negative and 

others strongly positive.

Interestingly, other voltage gated sodium channels (Scn11a and Scn8a) were less consistent 

between the two transcriptomic datasets (Fig. 4a), probably reflecting their expression level, 

the depth of sequencing in the respective studies, instability of larger diameter neurons for 

the cell based analysis and perhaps differences in how these mRNAs are distributed in 

trigeminal neurons or regulated during cell isolation. By contrast, ISH analysis of Scn11a 
was diagnostic with each class exhibiting quite a homogeneous pattern of expression (Fig. 

4b). The classes of neurons expressing this gene closely matched the expression profile of 

Scn10a except that Scn11a (a second Ttx-resistant channel that is selectively expressed in 

sensory neurons and involved in pain sensation) was not detected in the majority of C6 

neurons that are predicted to represent Aδ-nociceptors [2;14;42]. Our ISH analysis revealed 

that Scn8a is primarily expressed in large diameter neurons with highest levels in C4, C5 

and C6 cells (Fig. 4b), is also detectable in C1/2, C3 and C12 neurons and is essentially 

absent from other trigeminal neuronal classes. Taken together, these data further validate the 

minimal ISH approach for classifying trigeminal neurons in anatomical sections and reveal 

its power for quantitative expression analysis by exposing the stereotyped, strongly class-

related, differential expression of Ttx-sensitive and insensitive sodium channels in the 

trigeminal neuronal classes.

Classifying trigeminal neurons innervating specialized sensory targets

The trigeminal nerves innervate diverse tissues and structures in the head and neck. 

Multiplex ISH based neural classification provides an opportunity to probe the 

transcriptomic identity of neurons innervating quite different types of specialized sensory 

environments. Here, we illustrate this using a retrograde tracer (fluorescently labeled WGA) 

to mark neurons projecting to the surface of the eye or the meninges (Fig. 5a). Following 

one round of imaging to identify the labeled neurons, the cells projecting to these targets 

were classified using the 8-probe U-Net approach (Fig. 5b). Our data, using a 

comprehensive and unbiased approach extend previous studies that have used candidate 

transgenes to label subsets of neurons innervating tissues [5;18;36].

An immediate surprise was that tracer applied to the surface of the eye labeled most classes 

of sensory neurons (Fig. 5c). However, the representation of these classes was dramatically 

different from the ganglion as a whole (Fig. 5c). The proportion of C8 cells (Trpv1/Trpa1 
expressing nociceptors) innervating the eye was increased more than 10-fold. Based on their 

expression profile, including prominent expression of Trpa1, we expect C8 neurons to 
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respond to irritants including the lachrymatory agent from onions, a volatile electrophile that 

activates Trpa1 [26]. C8-neurons also express Calca, consistent with previous studies 

demonstrating that CGRP-neurons innervate the cornea [5]. Other peptidergic c-fibers 

C7/9/10 (Trpv1-positive, Trpa1-negative nociceptors) were not significantly different from 

their distribution in the whole ganglion whereas C6 (CGRP-expressing Aδ-nociceptors) 

were slightly under-represented. A second class of cells that were particularly prominent and 

over-represented in neurons targeting the eye were the C1/2 (cool responsive) cells (Fig. 5c), 

supporting previous studies showing the cornea to be strongly innervated by Trpm8-

expressing cells [18;36]. By contrast other types of sensory neurons rarely innervated the 

eye including C3 (putative c-fiber LTMRs) and the itch related class (C11). Since we did not 

exclusively target the cornea with our injections, some of the labeled neurons may innervate 

regions around the eye including the conjunctiva, which, unlike the cornea is known to be 

rich in Mrgpra3 (C12) fibers [18]. Major mechanosensory classes C4 (A-type LTMRs) and 

C13 (Mrgprd-expressing mechanonociceptors) were labeled at about 50% the expected 

frequency based on their distribution in the ganglion. Given the overall prominence of C4 

and C13 neurons in the ganglion, this modest reduction still means that many putative 

mechanosensors target the eye. Since fast conducting mechanosensory neurons often make 

specialized connections in hairy and glabrous skin and exhibit select functions in gentle 

touch it will be interesting to determine the terminal structure of these neurons and to assess 

what contribution they provide in corneal sensation.

Our results revealed that the meninges are also targeted by a broad mix of neurons but with a 

very different representation of classes (Fig. 5c). Specifically, C1/2 neurons, which 

prominently innervate the eye, rarely targeted the meninges and C8 neurons were completely 

absent. Remarkably the two classes of itch neurons (C11 and C12) prominently targeted this 

internal sensory environment (Fig. 5c). Initially, we were concerned that problems with the 

model and class assignment might be responsible for suggesting itch neurons project to a 

sensory environment that cannot be scratched. However, manual examination of positive 

neurons revealed that they were not misassigned by the model, with prominent expression of 

Nppb, a very selective marker for C11 [32;48] in WGA labeled cells of this class (Fig. 6a). 

Since the classification of C12 cells in the eight-probe model relies on overlapping 

expression and absence of certain markers, we carried out additional retrograde labeling 

experiments to specifically confirm that C12 (Mrgpra3-positive) neurons also project to the 

meninges. To do this, we used a well characterized Mrgpra3-Cre transgenic mouse line [17] 

to drive reporter gene expression and demonstrated that Cre and the reporter gene were co-

expressed in neurons retrogradely labeled from the meninges (Fig. 6b). Thus, both classes of 

sensory neurons that selectively trigger itch responses when stimulated via the skin also 

target the meninges.

The biggest differences in the innervation of the eye versus the meninges were the over-

representation of C1/2 and C8 cells targeting the eye versus C11 and C12 cells projecting to 

the meninges. Intriguingly, the cell bodies of these four neuronal classes were differentially 

distributed within the trigeminal ganglion with this spatial segregation of classes conserved 

between animals (Fig. S6a). Similar segregation of these classes extended to areas that do 

not target the eye and meninges (Fig. S6b), perhaps hinting that other target-tissues share the 

same differential innervation patterns. However, although it is attractive to speculate that 

von Buchholtz et al. Page 11

Pain. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these differences in spatial representation reflect differences in peripheral targeting, the eye 

and meninges were represented by broad and partially overlapping fields. Thus, it is also 

possible that developmental processes (rather than projection per se) result in this 

topographic segregation of neuronal classes in the ganglion.

C3 and C4 neurons (c- and A-type LTMRs) were under-represented in meningeal 

projections as were C13 neurons (Mrgprd-expressing, non-peptidergic nociceptors) but still 

account for about a third of all neurons targeting this tissue. It will be interesting to 

determine the types of stimuli these putative mechanosensors respond to, examine their 

sensory termini in the meninges and assess if they play a specific role in types of migraine. 

Notably, the Calca-positive C6 and C7/9/10 (A- and c-type) peptidergic nociceptors were 

more than 2-fold enriched amongst the meningeal-labeled cells. Interestingly, we also 

discovered that all the meningeal C12 neurons (Fig. 6) expressed Calca even though this 

gene is normally present in just a fraction of the C12 cells in the whole ganglion (Fig. S7). 

Thus, almost half of the trigeminal neurons innervating the meninges are positive for Calca 
and consequently express the neuropeptide CGRP, which is well known to play an important 

role in certain types of migraine headache [15;43].

Discussion

Here, we set out to develop a simple but robust platform for assigning transcriptomic class to 

trigeminal ganglion neurons in anatomical sections. Just 8 probes were required to identify 

all the major classes of neurons that are consistently defined by cell and nuclear based 

scRNA sequence analyses [31;32]. Moreover, the hybridization images from these 8-probes 

were all that was needed for automated and rapid segmentation of cells and class assignment 

using a novel U-Net based approach that we developed. We demonstrate the power of this 

simple platform by determining the expression of functionally relevant sodium channels in 

the different classes of neuron and analyzing the neural classes innervating the eye and 

meninges. This approach provides a much more consistent view of gene expression, at a 

cellular level, than single cell transcriptomic analysis (Fig. 4) and is particularly valuable for 

moderately expressed genes where dropout in single cell sequencing is a major drawback. It 

also provides a rapid and unbiased means for linking anatomy to gene expression (Fig. 5).

A surprise from our study of tissue innervation was that transcriptomic class did not appear 

to be the sole predictor of a neuron’s sensory role. For example, in the skin, C11 and C12 

neurons selectively respond to pruritogens and trigger itch [4;23]. We found that these cells 

also innervate the meninges where they must drive different perceptual and behavioral 

responses. One possibility is that these types of neurons have common sentinel-type roles 

e.g. as detectors of immune cell activity [44] or irritants in the different tissues. In this 

scenario, their differential central connectivity would then govern the consequences of their 

activation. Interestingly, it was recently shown that the lung is also innervated by C12 

neurons [16], thus the meninges may not be unique in “repurposing” itch related cells. 

Analogously, the innervation of the surface of the eye by C1/2 cool sensing neurons [37] is 

most likely not related to the cornea being an important structure for sensing environmental 

temperature. Instead, the cooling effect of evaporation is probably the main sensory cue, 

acting as a selective driver for lacrimal-gland stimulation [36]. Analogously, corneal C8-
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neurons (Trpv1 / Trpa1 positive) probably play a specialized protective role by driving tear 

production in response to irritants, something familiar to most people as a rather painless but 

nonetheless dramatic side effect of chopping onions. Thus, a sensory neuron’s gene-

expression profile provides just one dimension of its identity rather than a direct indication 

of its sensory role. Our results strongly suggest that the significantly divergent patterns of 

connectivity amongst transcriptomically-related neurons influence both their sensitivity and 

output. These conclusions about the functional flexibility of well-defined transcriptomic cell 

types are likely to be more widely applicable and not specific to peripheral sensory neurons.

Innervation of the meninges is particularly relevant in the context of headache and migraine. 

Thus, it was interesting that half the neurons targeting the meninges were from Calca 
(CGRP) positive classes in keeping with the role of this neuropeptide in certain types of 

migraine [15;43]. Perhaps surprisingly, other cell types expressing trigeminal genes with 

reported roles in driving headache e.g. Trpm8 [12] (in C1/2 neurons) and Trpa1 [21] (in C8 

cells) minimally targeted the meninges (Fig. 5). For C1/2 neurons this is in line with 

previous reports of only very sparse innervation of the dura but does suggest that this gene 

that has been genetically linked to migraine in humans [12] may exert its effects at other 

target sites. Similarly, recent results suggest Trpa1-agonists act at non-meningeal sites to 

induce migraine [22;45]. For example, selective ablation of Trpv1-expressing trigeminal 

neurons projecting to the nasal cavity blocked Trpa1-agonist induced changes in meningeal 

blood flow [22] that are believed important in migraine induction. Moreover, Trpa1 was 

recently reported to be expressed in cerebral artery endothelial cells and to drive changes in 

blood flow to the brain in response to Trpa1 activation completely independent of the 

trigeminal system [45]. Since our data demonstrate that C8-neurons do not innervate the 

meninges, these mechanisms [22;45] likely dominate the migraine inducing effects of 

compounds like mustard oil that potently activate Trpa1.

The concept of neural class has been completely altered by recent large-scale scRNA 

sequencing efforts that have exposed new levels of transcriptomic diversity [46;51]. Whereas 

there is evidence that at least some of these groupings delineate differences between cells, it 

is unclear how homogeneous each of these classes is [33]. Just as importantly, many of these 

new transcriptomic classes share extensive similarity with each other and subdivide known 

types of neurons without obvious functional implication. Mapping class to cells in tissues 

will likely help address these issues and will provide important insight into neural diversity. 

Several groups have reported powerful approaches to identify many different genetic targets 

in anatomical sections that could greatly extend the power of scRNA sequencing 

[6;30;41;49]. However, these methods are generally complex, generate extremely large 

amounts of data and consequently represent a major undertaking that may limit their use. 

The basic approach that we describe here for classification of trigeminal neurons represents 

a compromise between these technically challenging methods and more standard ISH that is 

often anecdotal and limited to just identifying predicted co-expression patterns. Even if full 

characterization of the myriad new transcriptomic classes in tissues as complex as the cortex 

would require localization of more genes than the trigeminal ganglion, the approach we have 

taken is easily scalable. Moreover, careful selection of probes should make it possible to 

specifically focus on the most relevant cell types and to simplify the experimental platform. 

We envision that combining this type of ISH approach with viral tracing [50] will be 

von Buchholtz et al. Page 13

Pain. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particularly useful for exposing rules guiding long-range connectivity. Similarly, 

determining the transcriptomic class of functionally labeled neurons [9;29;39] could be 

highly informative.

Here we demonstrate how defining transcriptomic class of trigeminal neurons in situ reveals 

important aspects of their role in sensation. This approach should be easy to extend to DRG 

neurons simply by adding one additional gene (e.g. parvalbumin, Pvalb) to classify 

proprioceptors. In the future, this type of neuronal classification will be especially useful for 

examining changes in gene expression induced by pathological conditions that trigger 

chronic pain [20]. Fully annotated code is available in Github (https://github.com/lars-von-

buchholtz/InSituClassification).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Approach for projecting transcriptomic class onto anatomical tissue sections
(a) Left, average expression levels of diagnostic markers in scRNA sequence analysis [32]; 

genes are: Transient receptor potential cation channel subfamily M (melastatin) member 8 

(Trpm8), Neurofilament heavy (Nefh), the transmembrane phosphoglycoprotein Cd34, S100 

calcium-binding protein B (S100b), FXYD Domain Containing Ion Transport Regulator 2 

(Fxyd2), Calcitonin related polypeptide alpha (Calca), Transient receptor potential cation 

channel subfamily V member 1 (Trpv1), Transient receptor potential cation channel, 

subfamily A, member 1 (Trpa1), Somatostatin receptor 2 (Sstr2), Natriuretic polypeptide B 

(Nppb), ETS translocation variant 1 (Etv1), Transmembrane protein 233 (Tmem233), 

Transmembrane protein 45B (Tmem45b), Synaptoporin (Synpr) and Mas-related G-protein 

coupled receptor member D (Mrgprd). Right, a simplified binary analysis of their expression 

(red, positive; grey, negative) highlights their potential to combinatorially define trigeminal 

neural classes. (b) Images from three rounds of multiplexed ISH for a single section of a 

trigeminal ganglion from an FVB/N mouse are shown; the 5 probes used in each round of 

hybridization are displayed vertically. Note that for 14 probes clear positive and negative 

cells were identified; scale bar: 250 μm.
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Figure 2. Multiplexed ISH based classification of trigeminal neurons
Sections through trigeminal ganglia from four mice were subjected to multiplex ISH. 

Neurons from a single section for each mouse were manually segmented to measure ISH 

signal intensity at a cellular level. (a) tSNE-representation and cluster analysis of ISH data 

for 13 probes showing that this approach segregated neurons into 10 groups. The 

correspondence of these groups with scRNA sequence defined transcriptomic classes (C1-

C13) is indicated. (b) ISH signal intensity at a cellular level in the 7735 neurons; cells were 

ordered according to their cluster assignment with each vertical bar representing a different 

cell. (c) Pie charts comparing the proportions of trigeminal neurons assigned by class for 

multiplex ISH data, sc- and snRNA sequencing; note that cell sequencing under-represents 

large diameter neuronal classes C4-C6 relative to other cells.
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Figure 3. Classification of neurons from ISH images using machine learning
A U-Net Deep Learning algorithm was developed and trained to classify neurons directly 

from multiplexed ISH images. (a) Example of ISH image input to the U-Net (left panel, 6 

non-overlapping probes shown) and the corresponding output (right panel, colored as in Fig. 

3). The full ganglion prediction (lower panel) corresponds with the ISH images shown in 

Fig. 2. (b) Example predictions for 3 classes of trigeminal neurons. Key input ISH images 

(left three panels) overlaid with outlines of predicted cells (red) highlighting the expected 

patterns of gene expression: C6 cells express S100b and Calca but not Fxyd2; C8 cells 

express Trpa1, Trpv1 and Calca; C11 cells express Nppb and Etv1 but not Synpr. The right 

two panels compare the U-Net prediction probability (red) and the manually segmented and 
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tSNE assigned class (green). Grey represents prediction of other neural classes; scale bars 50 

μm.
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Figure 4. Analysis of voltage gated sodium channel expression in classified neurons
(a) Violin plots of the expression of four voltage gated ion channels across trigeminal 

neuronal classes in the (upper panels) cell based- [32] and (lower panels) nuclei based [31] 

analyses. The y axes indicate expression levels that were normalized as described previously 

[31;32] and the x axes approximate the relative abundance of these expression levels. (b) 

Histograms of expression data for these ion-channels across trigeminal neuronal classes 

identified using multigene ISH and the U-Net classification of neurons. Grey histograms 

depict the relative standardized expression levels (mean = 0, variance = 1) of the channel in 

all trigeminal neurons along the x-axis and relative abundance of expression levels along the 

y-axis; colored bars, its relative expression in cells of a particular class; colored curves are 
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gamma distributions fitted to the expression data in a class; to help highlight the expression 

pattern of a channel in a defined class of cells, the class histograms and fitted curves have 

been reflected around the x-axis which was scaled to result in a total area under the curve of 

1.
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Figure 5. The eye and meninges are both innervated by a broad array of sensory neuron types
Fluorescently labeled WGA was used to retrogradely label neurons innervating peripheral 

sites. (a) Typical images of WGA tracing from the eye (primarily cornea) and meninges; 

yellow dotted lines highlight WGA-positive cells. (b) Cell classes assigned using the 8-probe 

U-Net approach with WGA-positive cells circled (black dotted lines; colors indicate cell 

class as defined in Fig. 3). (c) Left: pie charts representing innervation profiles of these two 

peripheral targets and right: bar graphs depicting the fold difference in the proportion of 

neurons labeled by tracer injection in a target site relative to the prevalence of those neurons 

in the ganglion assessed by the 8-probe U-Net method (see Table S1 for statistical analysis). 

Data are from a single section through the trigeminal ganglion of 4 mice for each peripheral 

target; scale bar = 100 μm.
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Figure 6. Itch-related neural classes target the meninges
(a) Selected images of fluorescent-WGA tracing from the meninges (green) superimposed 

on ISH signal for Nppb (red) confirm that C11 neurons innervate the meninges. (b) Selected 

images from WGA-tracing in Mrgpra3-Cre transgenic mice crossed into an Ai14 TdTomato 
Cre-dependent reporter background showing co-expression of Cre (blue, upper panels) and 

TdTomato (red) in neurons labeled by fluorescent WGA tracing from the meninges (green, 

lower panels). Data are from single sections through the trigeminal ganglion of 4 mice for 

(a) and 3 mice for (b); scale bar, 40 μm.
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Table 1

Accuracy of U-Net based class predictions

Prediction accuracy and errors for all classes of trigeminal neuron in the validation set. Columns are predicted classes (ND, not determined); rows 
are the manually segmented, clustering based classification. Shades of blue highlight the proportion of predicted neurons that fall into a cell. 
Overall prediction accuracy was 94.8 % at a pixel level and 84.9 % at the cellular level. It should be noted that when a subset of predicted neurons 
that did not match the manually segmented cells were examined, many turned out to have the gene expression profile of the predicted class rather 
than that of the manual segmentation approach. This is not surprising since manual segmentation relies on subjective assessment of cell boundaries 
and inaccuracies in this process are likely to affect classification for a subset of cells.
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