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Abstract

Liver fibrosis is a common pathway shared by all progressive chronic liver disease (CLD) 

regardless of the underlying etiologies. With liver biopsy being the gold standard in assessing 

fibrosis degree, there is a large unmet clinical need to develop noninvasive imaging tools that can 

directly and repeatedly quantify fibrosis throughout the liver for a more accurate assessment of 

disease burden, progression, and treatment response. Type I collagen is a particularly attractive 

target for molecular imaging as its excessive deposition is specific to fibrosis, and it is present in 

concentrations suitable for many imaging modalities. Novel molecular MRI contrast agents 

designed to bind with collagen provide direct quantification of collagen deposition, which have 

been validated across animal species and liver injury models. Collagen targeted molecular imaging 

probes hold great promise not only as a tool for initial staging and surveillance of fibrosis 

progression, but also as a marker of fibrosis regression in drug trials.
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Chronic liver disease (CLD) is a common and serious public health burden. The major 

causes of CLD include nonalcoholic fatty liver disease (NAFLD)/nonalcoholic 

steatohepatitis (NASH), hepatic viral infections, alcohol abuse, chronic alteration of 

metabolism, or persistent autoimmune reaction [1]. NAFLD and NASH are the leading 

forms of CLD, and their worldwide prevalence continues to grow due to increasing 

incidence of diabetes and obesity in the USA and other regions [2,3]. Liver fibrosis is a 
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hallmark shared by almost all causes of progressive CLD. Without removal of exposure to 

the specific etiology, fibrosis tends to progress, leading to hepatic dysfunction, portal 

hypertension, and ultimately culminating in liver cirrhosis. Moreover, the presence and 

severity of fibrosis are the main prognostic factors for clinical outcomes in patients with 

CLD. Therefore, it is crucial to be able to differentiate liver fibrosis stages since treatment 

decision and monitoring algorithms are related to the degree of fibrosis [4–6].

Liver biopsy is still considered the gold standard for detecting and staging liver fibrosis, 

however, biopsy is invasive with risk of complications such as bleeding, can be limited due 

to sampling error from the heterogenous distribution of pathology, and demonstrates inter-

observer variation on pathology interpretation [7,8]. Serum markers of liver disease are 

potential non-invasive alternative to liver biopsy as they are easily obtained, are less affected 

by sampling error, and can be repeated serially. However, most of these markers lack 

sensitivity and/or specificity, may detect false negative in end-stage CLD, and can be 

confounded by a wide variety of extrahepatic disorders [9,10]. Ultrasound and MR-based 

elastography are two widely used modalities for clinical detection and staging of liver 

fibrosis by measuring tissue stiffness [11–13]. Both methods reliably distinguish patients 

with moderate/advanced fibrosis from those with lesser degrees or no fibrosis [14], however, 

their diagnostic performance is limited in distinction between adjacent stages of fibrosis 

[15]. Other limitations include the technical difficulties of performing ultrasound 

elastography in patients with ascites/morbid obesity [16–18] or failures of performing MR 

elastography in patients with high iron overload due to low signal-to-noise ratio [19–21]. 

Thus, development of a noninvasive, accurate, and reproducible test to quantify liver fibrosis 

would be of great importance for early diagnosis, serial monitoring of disease progression in 

CLD, and therapy response assessment.

Repetitive or persistent hepatic injury triggers a cascade of wound healing responses, leading 

to a progressive substitution of liver parenchyma by scar tissue, or fibrosis. A characteristic 

feature of the fibrotic microenvironment associated with CLD is excessive deposition of 

extracellular matrix (ECM) proteins [22]. Type I collagen is the most abundant ECM protein 

in mammals and the main component of fibrotic tissue [23]. In cirrhotic liver, collagen was 

upregulated four- to seven-fold with type I collagen being the predominant type [24]. 

Therefore, type I collagen has been pursued as a molecular target for a direct assessment of 

liver fibrosis. Our group has led the efforts to develop biochemically targeted imaging 

contrast agents to adhere with high affinity to type I collagen for the detection and staging of 

liver fibrosis and to monitor treatment response.

Detecting and staging fibrosis

EP-3533 is a molecular probe that contains a 16-amino acid disulfide-bridged cyclic peptide 

that provides specific affinity to type I collagen and three Gd-DTPA moieties to boost MRI 

signal enhancement [25,26]. The feasibility of EP-3533–enhanced MRI for detection of liver 

fibrosis was first evaluated using rat and mouse models [27]. Liver fibrosis was induced in 

rats with diethylnitrosamine (DEN) and in mice with carbon tetrachloride (CCl4) and 

confirmed histologically. Animals were imaged prior to and immediately following i.v. 

administration of either collagen-targeted probe EP-3533 or non-targeted control probe Gd-
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DTPA for 60 min post-injection. Significantly slower signal washout and delayed peak 

enhancements in EP-3533-enhanced MRI of the injured livers indicates that EP-3533 was 

retained longer in fibrotic tissue than in the livers of healthy control animals (Figure 1). Gd-

DTPA-enhanced MR could not distinguish fibrotic from control animals. The EP-3533 

gadolinium concentration in the liver showed strong positive correlations with total collagen 

determined biochemically by hydroxyproline analysis and also with histopathological 

scoring of fibrosis using the Ishak system. In this initial study, we demonstrated that MRI 

with a type I collagen-targeted probe can distinguish liver fibrosis in two animal models of 

disease. However, the study was not powered to address the question of whether EP-3533 

enhanced MRI could stage fibrosis because the animals were only imaged at a single time 

point during disease progression.

To study the staging ability of EP-3533-enhanced MRI as compared to other MRI 

techniques, we followed with a second study in CCl4-injured mice where the duration of 

chemical toxin administration was varied [28]. We found greater enhancement post-EP-3533 

in the liver of the fibrotic animal than the controls (Figure 2A). The readouts from EP-3533-

enhanced MRI were compared with T1, T2, and T1rho relaxation times, apparent diffusion 

coefficient (ADC), and magnetization transfer ratio (MTR) measurements obtained prior to 

contrast agent injection. The most sensitive MRI biomarker was the change in liver-to-

muscle contrast to noise ratio (ΔCNR) after EP-3533 injection (Figure 2B). We observed a 

strong positive linear correlation between ΔCNR and liver hydroxyproline levels as well as 

ΔCNR and histopathological Ishak fibrosis scoring (Figure 2C–D). In addition, the area 

under the receiver operating curve (AUROC) for distinguishing early (Ishak ≤ 3) from 

advanced (Ishak ≥ 4) fibrosis was 0.94. Despite literature reports of relaxation times (T1, T2 

or T1rho), ADC and MTR as sensitive markers of liver fibrosis, we only observed weak 

correlations of these parameters with liver hydroxyproline levels in this animal model. Only 

T1rho measurement could distinguish fibrotic from healthy livers, but it could not 

differentiate moderate (Ishak 2–3) from severe (Ishak 4–5) fibrosis. In contrast, the other 

MR measurements (T1, T2, ADC, MTR) could not classify animals into groups based on 

Ishak scoring.

These first two studies were performed on a high field (4.7T) dedicated animal scanner and 

disease was quantified in a few axial slices using 2D imaging methods. We next extended 

the utility of this work by imaging on a standard 1.5T clinical MRI scanner and using a 

three-dimensional (3D) imaging method that could quantify fibrosis over the entire liver. 

The ability of MRI to stage severity of fibrosis with EP-3533 was further tested in a rat 

model of biliary stasis using bile duct ligation (BDL) [29]. Fibrosis quantification was 

further enhanced by using a respiratory-gated 3D inversion recovery imaging sequence that 

allows us to measure the change in longitudinal relaxation rate (ΔR1) induced by EP-3533 

on a pixel-wise basis throughout the entire liver. Since ΔR1 is linearly proportional to 

gadolinium concentration, it has the potential to provide a more quantitative and robust 

metric than ΔCNR for the assessment of fibrosis, and to measure disease heterogeneity 

within the liver. ΔR1 increased significantly and progressively as a function of time after 

BDL compared to control rats who underwent a sham procedure. The MRI quantitative 

readout correlated closely with ex vivo quantification of fibrosis measured by the collagen 

proportional area (CPA) of Sirius Red stained sections and hydroxyproline content. Receiver 
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operating characteristic curve analysis demonstrated that ΔR1 detects fibrosis (CPA ≤ 3% vs. 

CPA > 3%) with an AUROC of 0.84, distinguishes early fibrosis from significant fibrosis 

(CPA ≤ 6% vs. CPA > 6%) with an AUROC of 0.94, and distinguishes significant fibrosis 

from severe fibrosis (CPA ≤ 9% vs. CPA >9%) with an AUROC of 0.94, p <0.0001.

Evaluating treatment responses

There are a large number of drug candidates targeting different signaling pathways under 

evaluation in preclinical and clinical trials [30–32], but a major obstacle has been the slow 

rate of progression or regression of CLD in humans, coupled with a lack of sensitive and 

non-invasive means to assess fibrosis or active fibrogenesis [33]. Together, these factors 

create an enormous cost risk for anti-fibrotic drug development, since clinical trials require 

large patient populations treated for long periods of time to reach a clinically significant 

endpoint. Thus, a biomarker of liver fibrosis that could accurately assess fibrogenesis early 

in treatment would not only be extraordinarily useful in enabling the evaluation of much 

larger pools of candidate therapies in clinical trials, but also might provide the early 

evidence of efficacy needed to incentivize investigators and pharmaceutical sponsors to 

support long-term trials.

Historically, assessment of treatment response has relied on histologic analysis [34,35]. 

Elastography-based liver stiffness measurements have been explored for monitoring 

regression of fibrosis in patients with chronic viral hepatitis after antiviral treatment [36–39] 

and detecting treatment associated risk of liver fibrosis [40]. However, the evaluation of liver 

fibrosis with stiffness measurement can be confounded by many coexistent conditions 

including necroinflammation, edema, venous congestion, biliary obstruction, and any diffuse 

infiltrative disease such as amyloidosis [41,42]. Having shown the feasibility of EP-3533 in 

detecting and staging liver fibrosis, we further investigated its ability in assessing treatment 

response. We first used a common approach of toxin withdrawal as a model of fibrosis 

regression. Mice injured with CCl4 for 18 weeks were compared to mice injured with CCl4 

for 9 weeks followed by 9 weeks of withdrawal. Withdrawal of CCl4 improved liver disease 

as assessed by Sirius Red staining with the Ishak score improving by 2 stages on average. 

However, MRI with EP-3533 could not detect a difference in fibrosis stage between these 

two groups of mice. It has been reported that even with histological improvement after CCl4 

withdrawal, total collagen as assessed by hydroxyproline analysis did not decrease for at 

least 12 weeks [43]. Consistently, we found the hydroxyproline levels did not differ 

significantly between the animals that had CCl4 withdrawal and those that continued to 

receive CCl4. These results therefore further highlight the specificity of EP-3533 to collagen.

To further determine the ability of collagen imaging with EP-3533 to detect treatment 

response, we measured fibrosis content in rapamycin treated BDL rats [29]. While there are 

no FDA-approved drugs for treating liver fibrosis, previous studies have shown that 

rapamycin is effective in reducing fibrosis in the rat BDL model but with significant 

variability in response [44]. Four days after bile duct ligation, rats were treated daily with 

rapamycin and imaged on day 18. Rapamycin treatment resulted in a significant reduction in 

ΔR1 compared to vehicle treated animals and this was supported by significantly lower 

levels of hydroxyproline and CPA in the rapamycin treated rats compared to vehicle treated 
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controls. However, the range of reduction in hydroxyproline and CPA was broad indicating 

that some animals responded well to rapamycin treatment while others did not. Using the 

receiver operating characteristic (ROC) analysis described above, cutoff values for ΔR1 

could be assigned to prospectively and objectively distinguish animals with severe disease 

(non-responders) from those who responded well to treatment (Figure 3A). Using this 

criterion, we found that the ΔR1 value correctly predicted rapamycin response in 11 out of 

12 rats compared to the CPA truth standard. In addition, 3D molecular MRI enabled 

characterization of intrahepatic heterogeneity throughout the whole liver in a rapamycin 

non-responder rat (Figure 3B). Molecular MRI showed severe fibrosis in the right lobe but 

mild-to-moderate fibrosis in the left lobe of the liver which was subsequently confirmed by 

histology (Figure 3C–D).

In another study, EP-3533 enhanced MRI was used to noninvasively monitor the treatment 

effect of a novel farnesoid X receptor agonist, EDP-305, in the rat BDL model [45]. BDL 

rats were treated with either low or high doses of EDP-305 starting on day 4 after BDL and 

were imaged on day 18. A significant reduction in liver ΔR1 was found in BDL rats 

receiving high-dose EDP-305 treatment than BDL control, consistent with the CPA, 

hydroxyproline analysis, and fibrogenic gene expression findings of marked reduction of 

hepatic fibrosis in response to EDP-305.

Improved collagen imaging MR probes

EP-3533 utilizes the linear chelate Gd-DTPA as the signal generating moiety. However these 

linear chelates are associated with a higher incidence of nephrogenic systemic fibrosis (NSF) 

and appear to also result in greater retention of Gd [46]. On the other hand, macrocyclic 

chelators like Gd-DOTA have a much lower incidence of NSF and appear to give lower 

amounts of Gd retention [46,47]. To improve the clinical translational potential of EP-3533, 

we developed a new version, CM-101, which has the linear Gd-DTPA chelate replaced by 

the highly stable macrocyclic Gd-DOTA chelate [48]. Pharmacokinetic analysis 

demonstrated that CM-101 exhibited faster rapid blood clearance than EP-3533 which 

results in the ability to shorten the time period between injection and delayed liver imaging. 

At two independent imaging labs, CM-101 detected fibrosis in mouse CCl4 and rat BDL 

models of liver fibrosis (Figure 4). Biodistribution analysis demonstrated that incorporation 

of the macrocyclic Gd-DOTA chelate resulted in minimal accumulation of gadolinium in 

bone or other tissue compared to EP-3533.

In a recent study by another group led by Yang, the same type I collagen targeting peptide 

used in EP-3533 and CM-101 was used in a protein-based contrast agent 

(ProCA32.collagen1). ProCA32 is a small protein that was engineered to bind tightly to 

gadolinium and to have a very high relaxivity. Grafting the collagen specific peptide to 

ProCA32 created ProCA32.collagen1 and this reagent was used for the early diagnosis and 

noninvasive detection of liver fibrosis in alcohol/chemical-induced mouse models of liver 

fibrosis and a diet-induced mouse model of NASH [49]. ProCA32.collagen1 was 

demonstrated to detect early-stage alcohol-induced liver fibrosis (Ishak stage 3 of 6) and 

early-stage NASH (Mild-1A, zone 3, perisinusoidal or Ishak stage 1 of 6) using both 

longitudinal and transverse relaxation (R1 and R2) maps at 24 h post-injection. ΔR1 
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quantification of ProCA32.collagen1 can distinguish early-stage (Ishak stage 3) from late-

stage fibrosis (Ishak stage 5), which correlated with histologic quantification of fibrosis. 

Because of its much larger size, ProCA32.collagen1 has a longer blood residency time than 

either EP-3533 or CM-101, and so the delayed imaging took place hours after injection or 

the next day compared to within 10 – 40 minutes with EP-3533 or CM-101.

Targeting oxidized collagen as a marker of active fibrogenesis

Fibrogenesis, or the active deposition of ECM, is characterized by high levels of allysine, a 

reactive aldehyde generated as part of a lysyl oxidase (LOX)-mediated collagen cross-

linking process. In fibrogenesis, LOX oxidation of collagen results in the buildup of an 

allysine rich oxidized collagen epitope. These allysine residues undergo cross-linking 

reactions with other collagen monomers resulting in a stable matrix. During active disease, 

the pool of oxidized collagen is constantly replenished but in chronic, stable scar tissue the 

oxidized collagen has all been consumed into crosslinks. Allysine aldehyde-targeting 

imaging probes that measure oxidized collagen thus can be used to monitor fibrogenesis 

[50,51]. The hydrazide containing, aldehyde targeting agent Gd-Hyd detected and staged 

disease progression caused by CCl4 injury in mice and reported on reduced fibrogenesis in 

mice after withdrawal of CCl4 (Figure 5) [52]. The imaging data mirrored disease 

progression and resolution as assessed by histology and lysyl oxidase gene expression. In 

mice fed with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) as a 

model of nonalcoholic steatohepatitis (NASH), Gd-Hyd detected reduced fibrogenesis after 

treatment with the farnesoid X receptor agonist EDP-305, corroborated by multiple 

methodologies, including picrosirius red collagen staining, hydroxyproline biochemical 

quantification, and lysyl oxidase gene expression analyses [45]. These data suggest that Gd-

Hyd could be used to monitor disease progression and regression.

Multiparametric capability of MRI

In addition to molecular MRI in liver, state-of-the-art MRI techniques in current practice and 

in development for noninvasive assessment of CLD include MR elastography, diffusion-

weighted imaging, MRI quantification of liver fat or iron content and functional MRI using 

hepatobiliary contrast agents that are taken up specifically by hepatocytes. Molecular 

imaging can be readily performed in conjunction with these advanced MRI techniques to 

provide a more comprehensive assessment of CLD. For instance, Gd-Hyd–enhanced MRI of 

oxidized collagen and Dixon MRI-based quantitative fat imaging were used in a mouse 

model for multi-parametric MRI assessment of NASH [45]. In a DEN-induced rat model of 

fibrosis, collagen imaging with EP-3533 was shown to be most sensitive to early fibrosis, 

while tissue stiffness assessed by MR elastography was more sensitive to advanced fibrosis 

[53]. Combining these two measurements in a single exam to give a composite score 

resulted in increased diagnostic accuracy for all stages of fibrosis [53].

Recently, EP-3533 imaging of collagen in the presence and absence of inflammation was 

investigated in DEN-injured rats where hepatic inflammation was assessed by a fibrin-

targeted EP-2104R MRI probe [54]. Tissue injury triggers extravascular coagulation that 

leads to fibrin deposition in the ECM [55]. EP-2104R is a fibrin-specific molecular probe 
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that has been used for molecular imaging of extravascular fibrin in mouse models of cancer 

and pulmonary fibrosis [56,57]. Collagen imaging with EP-3533 showed equivalent T1 

change when imaging rats 1 day or 7 days post-DEN, consistent with equivalent fibrosis 

assessed by Ishak score. Signal enhancement with EP-2104R was significantly higher in 

animals imaged at 1 day post-DEN compared with 7 days post-DEN or control rats, 

consistent with a significantly higher histological activity index score for inflammation in 

the livers of animals imaged within one day of their last DEN administration. The specificity 

of the targeted probes for either inflammation of fibrosis allows us to determine the status of 

each feature, which have important diagnostic and prognostic implications of CLD.

In a most recent multi-parametric MRI study, advanced MRI methods including molecular 

MRI with the type-1-collagen-specific probe EP-3533 and the allysine-targeted fibrogenesis 

probe Gd-Hyd, MR elastography, and native T1, were used to characterize fibrosis and to 

assess treatment response in rats fed with CDAHFD as a model of NASH [58]. Liver ΔR1 is 

higher following EP-3533 administration to the CDAHFD rats as compared to the control or 

treated animals, indicative of greater probe uptake as a result of collagen binding (Figure 

6A). Similar to EP-3533, larger ΔR1 changes after the injection of fibrogenesis probe Gd-

Hyd were seen in animals receiving CDAHFD (Figure 6B). Using MR elastography, we 

observed much larger changes in tissue stiffness in the CDAHFD rats showing advanced 

fibrosis, but MRE could not distinguish rats with early onset of fibrosis from those with no 

fibrosis. While liver fibrosis is consistently associated with increased hepatic parenchymal 

stiffness, the opposite is not always true. Acute inflammation, severe steatosis, or increased 

postprandial portal blood flow have been found to independently elevate hepatic stiffness 

[59,12,60]. Among the imaging methods investigated, the collagen-targeted molecular MRI 

probe most accurately detected early onset of liver fibrosis with an area under the receiver 

operating characteristic curve (AUC) of 0.95, followed by native T1, Gd-Hyd and MR 

elastography with AUCs of 0.90, 0.84, 0.65, respectively. Native T1 measurement with iron 

content correction was used to stage liver fibrosis [61,62] and we found a relatively large 

AUC for native T1 to detect early stage fibrosis in the CDAHFD rats. However, upon closer 

analysis this T1 change appeared to be driven by increased steatosis rather than fibrosis, as 

shown by a strong correlation between the native T1 measurement and fat fraction measured 

by histology or by Dixon MRI. The fibrogenesis imaging probe Gd-Hyd can stage fibrosis 

and had the highest accuracy (92%) in detecting responder and non-responders in treatment 

of NASH, compared to MR elastography (88%), EP-3533 (77%), and native T1 (54%). The 

advanced MRI techniques applied there are complementary in their capture of the fibrotic 

process. All techniques were performed in a single protocol, highlighting the strength of 

MRI for characterizing liver disease in the context of NASH. The rich information provided 

by such imaging protocol raises new possibilities for clinical imaging and for assessing 

treatment response for new therapies in development.

Challenges and Outlook

Liver fibrosis is a common result of progressive chronic liver disease regardless of the 

underlying etiologies. Here we describe different molecular MR approaches to detecting and 

staging fibrosis. Although fibrosis is common to CLD, other aspects of pathology, e.g. 

presence of inflammation, steatosis, necrosis, ascites, different metabolic derangements, are 
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unique to the individual liver diseases. It is important to bear in mind that no animal model 

completely replicates all aspects of human disease. That being said, the transdifferentiation 

of stellate cells into myofibroblasts is thought to be fairly similar across all CLD. In other 

words, type I collagen and lysyl oxidase modified collagen are generic for liver fibrosis 

regardless of disease etiology. However the etiology itself could impact the imaging, e.g. 

does fat associated with NAFLD/NASH interfere with probe binding? So far, it appears that 

these molecular probes are very specific to liver fibrosis. By using different animal models 

(toxin, diet, biliary stasis) with different extents of liver injury, it has been possible to 

demonstrate the ability to quantify fibrosis in the absence and presence of steatosis, 

inflammation, and hepatocellular carcinoma. Similarly, it was repeatedly shown that 

molecular MRI could detect and monitor response to treatment whether this was dietary or 

pharmacological. Ultimately this same type of validation will be required in human clinical 

trials.

Among the emerging fibrosis imaging methods, elastography-based techniques are the most 

widely used. Despite evidence showing their utility as diagnostic and prognostic tools, 

confounding factors such as obesity, inflammation, and iron overload have been noted. 

Direct targeting of the fibrotic components using molecular MRI offers an innovative 

approach with potential high specificity, and is complementary to elastography. Molecular 

MRI can be performed in conjunction with other types of high-resolution imaging that can 

provide details on liver anatomy and function. However, several challenges exist in 

developing and translating molecular MRI probes, which are regulated as drugs. Like most 

drugs, extensive safety evaluations in rodents and non-rodents are required and 

manufacturing processes and controls must be established before first-in-human evaluation. 

The manufacturing and nonclinical safety studies represent a major economic barrier to 

translation. For regulatory approval, the molecular probe must show demonstrated efficacy 

(sensitivity and specificity) to detect and/or stage fibrosis in prospective clinical trials. 

Ultimately outcome data will be required to establish the clinical utility of the molecular 

probes in order to drive reimbursement. However with the likely approvals of new, expensive 

anti-inflammatory/anti-viral/antifibrotic therapeutics, there will be a need to identify patients 

who would best benefit from these treatments and/or to monitor whether the treatment is 

likely to be effective. Molecular MRI is uniquely poised to fulfill this need.

Conclusion

The studies described here serve to validate collagen-specific molecular MRI as a means to 

accurately stage liver fibrosis across animal species (rat and mouse) and liver injury models 

(CCl4, DEN, BDL, and CDAHFD). EP-3533 and its derivatives have also been used to 

detect and stage disease in models of cardiac [26,25,63], pulmonary [64], and muscle 

fibrosis [65], as well as in cancer models with a strong desmoplastic reaction [66] which 

further support collagen molecular MR as a tool to noninvasively assess fibrosis. Positron 

emission tomography probes utilizing the same collagen-binding peptide or targeting 

allysine have also been reported [67–69], and the use of the collagen-targeted PET probe to 

image pulmonary fibrosis in patients with idiopathic pulmonary fibrosis has been reported 

which further supports the clinical translational potential of this technology [70].
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Advances in molecular imaging, particularly with the development of molecularly targeted 

probes, have the potential to revolutionize how we evaluate various liver pathologic 

conditions. The ability to quantify liver fibrosis stages noninvasively is highly desired as it 

allows noninvasive assessment of disease burden, progression, and treatment response. The 

molecular imaging probes described here represent the first steps towards these goals. While 

the work was performed in preclinical models, the next steps will hinge upon improved and 

standardized imaging protocols and post-processing methods and further optimization of the 

molecular probes, for successful translation into clinical application.
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Figure 1. 
Molecular MRI of liver fibrosis using the type I collagen-targeted probe EP-3533 in the rat 

diethylnitrosamine (DEN) model. Inversion recovery MRI of the rat liver before and 40 min 

after injection of 20 μmol/kg EP-3533; S, stomach; L, liver. The inversion time was chosen 

to minimize liver signal prior to probe injection. Post-injection, there is a higher signal in the 

liver of the DEN-treated animal compared to control.
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Figure 2. 
Staging of liver fibrosis in a mouse CCl4 model using collagen-enhanced MRI. (A) 

Representative axial MR images of a control (Ishak 0) and fibrotic (Ishak 5) mouse showing 

the liver, stomach, and dorsal muscle. False color overlay is the difference image between 

post- and pre-injection images of EP-3533. Both images rendered at the same scale. (B) 

ΔCNR (liver:muscle) was calculated as disease progressed as determined by Ishak scoring. 

(C) Correlation between DCNR (liver:muscle) and total collagen (hydroxyproline). (D) 

Correlation between DCNR (liver:muscle) and Sirius Red quantification. #p <0.05, *p <0.01 

and ***p <0.0001.

Zhou et al. Page 15

Abdom Radiol (NY). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Collagen imaging captures the variability in treatment response in rapamycin treated bile 

duct ligated (BDL) rats. (A) Representative longitudinal relaxation rate (R1) maps from a 

rapamycin responder rat and a rapamycin non-responder acquired pre and post EP-3533. (B) 

Pre- and post-EP-3533 R1 maps of BDL rat treated with rapamycin. Striking heterogeneity 

in liver fibrosis with greater R1 in the right liver lobe compared to the left liver lobe. (C) 

While the pre-EP-3533 histogram (blue) of liver R1 values was homogeneous the post 

EP-3533 R1 histogram (red) demonstrated a bimodal R1 distribution. (D) Corresponding 

Sirius Red images from the left and right liver lobes confirmed the fibrosis heterogeneity.
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Figure 4. 
Type I collagen–targeting macrocycle Gd-DOTA chelate based MRI probe, CM-101, for 

detection of liver fibrosis in mouse and rat models of liver fibrosis. (A) Representative T1-

weighted images acquired pre CM-101 (baseline) and 10 min post CM-101 injection 

injection for vehicle- and CCl4-treated mice. (B) Representative T1-weighted images 

acquired pre CM-101 and 15 min post CM-101 injection in BDL rats and sham-operated 

rats. Note that the fibrotic liver is markedly enhanced with CM-101 but healthy liver is not.
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Figure 5. 
Fibrogenesis-sensing MRI contrast agent, Gd-Hyd, for detecting hepatic fibrosis progression 

and regression in CCl4 mouse model. Representative T1-weighted images before and after 

Gd-Hyd injection show liver signal enhancement increases with disease severity. In the 

CCl4-withdrawal (WD) group, the signal enhancement was not higher than the vehicle-

treated controls. L, liver; S, stomach; M, muscle.
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Figure 6. 
Multi-parametric MRI with collagen targeted EP-3533 probe in controls, rats fed with 

choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or 9 weeks, 

and rats had that received 6 weeks of CDAHFD subsequently either switched back to 

standard chow for 3 weeks (CDAHFD/SD) or underwent 3 weeks of daily oral gavage of 

Elafibranor while continuing on CDAHFD (CDAHFD+ELA). (A) Representative axial R1 

maps of the liver for each group at baseline and after injection of EP-3533. (B) 

Representative ΔR1 maps from each group showing the uptake of Gd-Hyd.

Zhou et al. Page 19

Abdom Radiol (NY). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Detecting and staging fibrosis
	Evaluating treatment responses
	Improved collagen imaging MR probes
	Targeting oxidized collagen as a marker of active fibrogenesis
	Multiparametric capability of MRI
	Challenges and Outlook
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

