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Abstract

NMR relaxometry can provide information about the relaxation of the magnetization in different 

tissues, increasing our understanding of molecular dynamics and biochemical composition in 

biological systems. In general, tissues have complex and heterogeneous structures composed of 

multiple pools. As a result, bulk magnetization returns to its original state with different relaxation 

times, in a multicomponent relaxation. Recovering the distribution of relaxation times in each 

voxel is a difficult inverse problem; it is usually unstable and requires long acquisition time, 

especially on clinical scanners. MRI can also be viewed as an inverse problem, especially when 

compressed sensing (CS) is used. The solution of these two inverse problems, CS and relaxometry, 

can be obtained very efficiently in a synergistically combined manner, leading to a more stable 

multicomponent relaxometry obtained with short scan times. In this paper, we will discuss the 

details of this technique from the viewpoint of inverse problems.
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1 | INTRODUCTION

Several MRI applications require quantitative measurements to investigate the structural and 

biochemical composition of the extracellular matrix.1 Measurements of the relaxation 

process of water protons with the spin-lattice relaxation time (T1), spin-spin relaxation time 

(T2), or spin-lattice relaxation time in the rotating frame (T1ρ) are among the most used in 

MRI.

A single exponential function is the most common model to describe the relaxation process. 

However, in complex tissues, especially with heterogeneous structure2 composed of multiple 

pools, the bulk magnetization returns to its original state with different relaxation times, 
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showing a multicomponent relaxation.3 This happens because the relaxation in different 

pools is slightly different inside the observed voxel.

Multicomponent relaxation has been investigated in several biomedical applications, and 

relaxometry is usually the method of choice.2,4 Multiexponential relaxation has been 

observed in different tissues and diseases, for example in prostate cancer,5 where 

multiexponential components can be used to compute the luminal water imaging6 and 

diffusion,7 and in multiple sclerosis, where changes in the short exponential components 

reveal a possible reduction of myelin water.8–10 Multicomponent relaxation studies of 

cartilage degradation are presented in References 11–13. Also, multidimensional 

relaxometry, such as T1-T2 or combined relaxometry-diffusivity,14–19 has been studied for 

the human placenta20 and animal spinal cord.21,22

Relaxometry is very useful in practice, but it is usually an ill-posed problem.3,23 To produce 

meaningful distributions of relaxation times, prior information needs to be assumed. Non-

negativity,2,3 sparsity,3,21,23,24 smoothness,3,11,14,25 and low-rankness26 are usually the most 

common approaches.

Another important practical issue is the usually long acquisition time required for 

quantitative assessment of multicomponent relaxation. To quantify the distribution of 

relaxation times for each voxel, several relaxation-weighted images need to be acquired. 

This long scan time makes this technique impractical for many in vivo biomedical 

applications. Fast, or accelerated, scans are essential to make relaxometry clinically viable.

Rapid imaging is one of the most important research topics in MRI. In the past years, many 

different approaches and tools have been developed to make scan time shorter. Fast MR 

pulse sequences for data acquisition,27–29 parallel imaging using multichannel receive RF 

arrays,30–32 and compressed sensing (CS)33–35 are examples of important advancements 

towards rapid MRI. One important point is that many of these technologies can be combined 

to make MRI faster. Several approaches extended CS and regularized reconstructions to 

solve imaging sequences,36–38 multi-contrast images,39–44 and parameter mapping.45–49

While relaxometry and fast imaging can be treated and discussed independently, one method 

can help the other in a very efficient way. Monoexponential models have been used before 

together with the image reconstruction to reduce scan time and to improve resolution,50–53 

which is also known as model-based reconstruction.54 This kind of quantitative MRI method 

bypasses the reconstruction step, finding the parameters directly. Joint relaxation models, 

such as T1-T2, can be used to achieve higher acceleration factors (AFs), as has been done in 

MR fingerprinting.55–57 Some extensions to multiexponential relaxation using MR 

fingerprinting can be found in Reference 58.

Multicomponent relaxometry and CS imaging have been investigated before in Reference 48 

as a two-step procedure: image reconstruction followed by relaxometry. Accelerating 

relaxometry by undersampling the contrast encoding times has been done in the 

multidimensional case, assuming smoothness,14 sparsity,21,24 low-rankness,26 and 

constraining to marginal distributions.59 CS-like patterns are applied to the contrast 

encoding times, such as inversion time and echo time, for T1-T2 two-dimensional (2D) 
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relaxometry problems. According to Reference 59, encoding time sampling is considered 

important for one-dimensional (1D) relaxometry, making it difficult to exploit encoding time 

undersampling in 1D problems.

In this paper, we investigate the merging of CS imaging and multicomponent 1D 

relaxometry of three-dimensional (3D) volumes, in what we called fast 3D-MR relaxometry. 

The proposed approach bypasses the image reconstruction step and directly finds the 

distribution of relaxation times, similar to model-based approaches. We restrict our 

discussion in this paper to T1ρ relaxation on 3D objects,60 which is our application of 

interest, especially for in vivo human knee cartilage61,62 and liver,63 where 3D 

multicomponent relaxation has shown potential use.

In the next section, we discuss the models and methods typically used in both applications. 

In Section 3, we discuss how the joint approach for solving relaxometry and imaging can be 

formulated and jointly solved. In Section 4, we discuss some experiments using synthetic 

phantoms and bovine liver and cartilage. In Section 5, we discuss the advantages of this 

approach and the remaining difficulties to be solved in the near future.

2 | MODELS AND METHODS

2.1 | Imaging model

The image acquisition can be modeled as

y = Ex + η, (1)

where x ∈ ℂNℎNvNt is a vector that represents the set of relaxation-weighted images. The 

vector x is reshaped from the original image sequence format, with size of N = NhNvNt, Nh 

being the horizontal and Nv the vertical size and Nt the number of relaxation-weighted 

images. The vector y represents the captured k-t-space data (we denote by k-t-space64,65 the 

set of k-space for all relaxation-weighted images in which the relaxation happens over time). 

The matrix E in Equation (1) represents the encoding matrix mapping x to y. The approach 

considered here uses parallel imaging and CS following References 66 and 67, where E = 
SFCP. This composed system matrix includes the phase compensation matrix P, which is a 

diagonal matrix containing low-order phase information on the images.33,68 The coil 

sensitivities transform C, which maps x (from its original image sequence format) into 

multicoil-weighted images of size Nh × Nv × Nt × Nc, with number of coils Nc. The coil 

sensitivities may be obtained using Reference 69. The spatial Fourier transforms (FTs) F are 

Nt × Nc simultaneous 2D-FTs, and the k-t-space undersampling function S preserves the 

sampled k-t-space points according to a CS sampling pattern.35 Considering that only M 
points are sampled from the k-t-space in each coil, and the image sequence has N voxels, the 

CS AF is given by N/M. The vector η represents the noise, which can be assumed to be 

Gaussian.

2.2 | CS reconstruction

CS reconstruction33,70 is usually posed as
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xCS = arg min
x

1
2‖y − Ex‖2

2 + λR(x), (2)

where R(x) is a side penalty used to obtain images that are sparse in some specific domain, 

and λ is the regularization parameter, which controls how much influence the regularizing 

penalty has on the solution. Typically, the l1-norm of some transformed version of x is 

utilized,71 such as R(x) = ‖Wx‖1 = ‖u‖1 = ∑n |un|.

Other side penalties such as the nuclear norm72 can be used, where x is reshaped as a matrix 

of size NhNv × Nt, following References 64 and 73, and R(x) = ‖x‖* = ∑nσn(x), where σn(x) 

is the n-th singular value of x reshaped into a matrix. The use of the nuclear norm leads to 

the so called low-rank reconstruction.64,74 Also, sparsity and low-rankness can be combined 

using both priors simultaneously74,75 or in the low-rank plus sparse decomposition.76,77

Instead of Equation (2), another possible approach is to assume that x is composed of a 

linear combination of only a few columns of a matrix B, as in x = Bu. This matrix is also 

called a dictionary,45,78 and its columns are called atoms.79 Only a few atoms are expected 

to be needed; consequently, u is expected to be sparse. In this case, the cost function

xCS = B ⋅ arg min
u

1
2‖y − EBu‖2

2 + λ‖u‖1, (3)

is used, which is also known as the synthesis formulation,80 commonly used for CS.

Solving equations (2) or (3) requires a numerical optimization method. Approaches such as 

nonlinear conjugate gradient (CG),33,81 fast iterative shrinkage-thresholding algorithm 

(FISTA),82,83 and monotone FISTA with variable acceleration (MFISTA-VA)84 can be 

effectively used.

2.3 | Multicomponent relaxometry model

Multicomponent relaxometry consists of estimating the coefficients of multiple exponential 

functions with different relaxation times τp,2,3 which is also a kind of inverse Laplace 

transform,85 given by

x r, ti = ∑
p = 1

Np
cp(r)exp − ti

τp
. (4)

In Equation (4), the coefficient cp(r) represents the weight of the exponential function with 

relaxation time τp at spatial position r. The weighted sum of these exponentials describes the 

signal observed at voxel x(r, ti). The system can also be written as

xr=Acr + e (5)

where [A]i, p = exp −
ti
τp

 and the vector xr, of size Nt × 1, contains the measured signal of the 

relaxation-weighted voxel at time points ti, 1 ≤ i ≤ Nt. The vector cr, of size Np × 1, contains 
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the coefficients. Equation (5) describes the multicomponent relaxation model. If the system 

A and signal xr are assumed to be known, then the inverse problem is finding cr. The vector 

e accommodates the error in the model.

Equation (4) describes a 1D relaxometry problem. However, 2D relaxometry, for example 

T1-T2 relaxometry, is possible14,15,18,21,24 and even more informative. In this paper, we will 

only present 1D relaxometry of T1ρ relaxation as an incremental step towards clinical 

applications, superseding simpler mono- and bi-exponential T1ρ mapping applied to 3D 

regions of interest (ROIs) in humans. Multidimensional relaxometry will be discussed 

further in Section 5.

2.4 | Recovering relaxation components

Typically, relaxometry is solved with non-negative least squares (NNLS),2,3,11 given by

Cr,NNLS = arg min
cr ≥ 0

1
2 xr − Acr 2

2 . (6)

In Equation (6), non-negativity, described by constraining cr ∈ ℝ+
Np, helps to stabilize the 

estimation. Also, xr ∈ ℝNt is, in general, the magnitude of xr. If the phase is corrected by the 

image reconstruction, then xr = Re xr , which is the real part of the vector Xr ∈ ͷNt. These 

considerations provide reasonably meaningful results, ie the sum of exponential functions 

must be in phase, with no relevant imaginary components, so the resulting relaxation will be 

real valued and monotonically decreasing.

Side penalties, such as the ones used in imaging problems, can be used to improve stability 

or promote sparsity.23,24,59,85 In Reference 86, a locally averaged distribution is used as bias 

in the second round of NNLS, while in Reference 87 a non-locally averaged distribution is 

used, avoiding the need to apply relaxometry simultaneously to all voxels. In References 25 

and 88–91, relaxometry is done simultaneously for all voxels, instead of independently at 

each spatial position r. The aforementioned spatial regularizations25,88–91 use quadratic 

smoothness penalties. However, spatially sparsifying regularization functions can be used, 

similar to those used in CS imaging problems, if simultaneous recovery of all voxels is being 

done. This regularized NNLS (R-NNLS) can be written as

CR−NNLS = arg min
c ≥ 0

1
2‖x − Dc‖2

2 + λR(c), (7)

where the vector C ∈ ℝ+
NhNvNp, with an original size of Nh × Nv × Np, contains the 

coefficients cr related to all NhNv image voxels. The system matrix A is repeated in a larger 

matrix D, representing the mapping on all voxels. The regularization penalty R(c) can 

accommodate spatial regularization functions.
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2.5 | 3D-T1ρ data acquisition methods

For 3D-T1ρ relaxometry, several 3D-T1ρ-weighted datasets are acquired with many different 

spin-lock times (TSL) using a modified 3D-Cartesian turbo-Flash sequence.62 The TSL 

corresponds to the sampled time ti in Equation (4). In the experiments in this paper, the MRI 

scans were performed on a 3 T clinical MRI scanner (Prisma, Siemens Healthcare, Erlangen, 

Germany) with multichannel coils. A 15-channel Tx/Rx knee coil (QED, Cleveland, OH) 

was used. The 3D-T1ρ acquisition parameters are TR/TE = 7.5 ms/4 ms, flip angle = 12°, 

matrix size 256 × 256 × 80, longitudinal magnetization restoration delay = 1000 ms, 80 k-

space lines captured per preparation pulse, spin-lock frequency = 500 Hz, slice thickness = 2 

mm, field of view = 150 mm × 150 mm, and receiver bandwidth = 415 Hz/pixel.

The T1ρ-weighted scans of bovine liver and cartilage were acquired using 30 TSL values log-

space distributed between 0.5 ms and 100 ms, and a total acquisition time of 210 min. In 

order to be clinically viable, the acceleration should reduce scan time considerably, to about 

20 min or less.

The first dimension of each Cartesian 3D k-space dataset, with 256 samples, is always fully 

sampled (FS) since it is the frequency encoding direction. FT is used in this direction and the 

3D k-space data are separated into multiple 2D k-space slices, of 256 × 80, that are further 

grouped with the k-space of the other TSL values, composing the k-t-space, of size 256 × 80 

× 30 for each coil. The other two phase-encoding directions are undersampled using a 

variable density sampling pattern.92,93 The central area of the k-space, of size 42 × 14, is FS. 

This area is used for coil sensitivity estimation, using ESPIRiT,69 and for low-order phase 

correction.33,68 For comparison with CS approaches, FS reconstruction, given by

xFS = arg min
x

1
2‖y − FCPx‖2

2, (8)

is obtained. Note that no undersampling is used in the FS reconstruction. The least-squares 

problem of Equation (8) is solved with the CG algorithm.94

2.6 | Bovine liver and cartilage specimens

In order to observe the change in the multicomponent relaxometry with real data, we used 

fresh bovine liver and cartilage obtained from a local slaughterhouse. Microwave based 

denaturing and enzymatic degradation were induced in the bovine liver and cartilage 

respectively. The bovine liver specimens were cut into small approximately 30 × 30 mm2 

cubes. To mimic different levels of diffuse damage, each liver cube was microwaved for 15, 

30, 45, and 60 s, denoted as L15, L30, L45, and L60, respectively (shown later in Figures 4, 

5, and 6). Two bovine patella specimens were scanned for cartilage evaluation. One of the 

patellae was equilibrated in 100 mM phosphate-buffered saline (PBS), and the other was 

submerged for 5 h in fresh degradation medium containing 0.2 mg/ml trypsin in 100 mM 

PBS. All bovine liver and cartilage specimens were scanned together.
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3 | JOINTLY SOLVING IMAGING AND RELAXATION

Accelerated image reconstruction and multicomponent relaxation are two different 

problems, usually solved independently of each other. However, efficiently combining these 

two problems into one provides a mutual advantage. The multicomponent exponential model 

from Equation (5) can be used to compose a dictionary for CS image reconstruction, as 

shown in Reference 3. Dictionaries like this have been used before,45,70 but as an 

intermediate representation, where the final objective was to recover the images, through x = 

Bu. Here we will define a special dictionary representation x = Dc, where the relaxometry 

coefficients c are exactly what we want to obtain, not only an intermediate abstract result to 

obtain good images, as in Reference 3.

This new approach can be written as

c = arg min
c ∈ Ω

1
2‖y − EDc‖2

2 + λR(c), (9)

where the vector c, constrained to the domain Ω and with an original size of Nh × Nv × Np, 

contains the coefficients related to the relaxation times for all image voxels. The transform, 

or dictionary, in D, repeats the mapping provided by matrix A for all NhNv voxels. The 

matrix E is the same as in equations (1)–(3). Figure 1 illustrates the joint framework of the 

two models.

This joint inverse problem opens up some new possibilities for R(c). All prior knowledge 

useful for image reconstruction and relaxometry can be combined in this new joint prior. In 

this paper, we discuss two approaches: the sparsity of the coefficients, by using R(c) = ∥c∥1, 

and a more elaborate CS version using R(c) = ∥Wc∥1, where

W =
I

Wℎ
Wv

(10)

is a combination of the identity I with spatial finite differences (Wh horizontal and Wv 

vertical). This second version provides some sparsity and spatial correlation when combined 

with the l1-norm. Considering that phase compensation is used in E, as discussed in 

Equation (1), then Ω = ℝ+
NhNvNp, which represents the non-negativity of the coefficients.

3.1 | Minimization algorithm

Due to the extreme ill-conditioning of matrix A, which is inherited by D, first-order 

methods, such as the ones used in CS, are slow. To recover the relaxation coefficients 

effectively, a different approach has to be used here. In this study, we utilized the fast 

alternating direction method of multipliers (FADMM),95 detailed in Table 1 for this 

application. This algorithm incorporates the flexibility of the ADMM96 with Nesterov’s 

acceleration, such as FISTA.82 ADMM is a very flexible algorithm; it has been used before 

in References 57 and 97 for fingerprinting and in References 43 and 44 for multi-contrast 

imaging. To use the ADMM for multicomponent relaxometry, the problem,
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c = arg min
c ∈ Ω

1
2‖y − EDc‖2

2 + λ‖Wc‖1, (11)

has to be rewritten as the following constrained problem:

c = arg min
c ∈ Ω

1
2‖y − EDc‖2

2 + λ‖s‖1,  s.t. s = Wc (12)

using the auxiliary form s = Wc. The new problem in Equation 12 can be solved using the 

augmented Lagrangian96:

Lρ(c, s, f) = 1
2‖y − EDc‖2

2 + λ‖s‖1, Ω + ρ
2‖s − Wc‖2

2 + Re f⊤(s − Wc) , (13)

where the new vector f is the Lagrange multiplier and Re(b) returns the real part of the 

vector b. Since the phase compensation matrix P is used, then Ω = ℝ+
NhNvNp can be used in 

the constraining c ∈ Ω. The ADMM is solved (Equation (12)), using the form in Equation 

(13), through the following iterative steps96:

ck + 1 = arg min
c

Lρ c, sk, fk , (14)

sk + 1 = arg min
s

Lρ ck + 1, s, fk , (15)

fk + 1 = fk + ρ sk + 1 − Wck + 1 . (16)

The ADMM with Nesterov’s acceleration is proposed in Reference 95, and written here in 

Table 1 for the problem at hand. In Table 1, the computation of Line 7 is done using the CG 

algorithm94 instead of explicit matrix inversion. Note that the constraining c ∈ Ω is 

transferred to ∥s∥1,Ω in Equation (13), and applied in the optimization step in Equation (14). 

∥s∥1,Ω == ∥s∥1 + δΩ(sI) is the combination of the l1-norm of s and the indication function on 

sI, which are the elements of s originated by the multiplication of c by I (this is one of the 

reasons why the identity I is part of W in Equation (10)). In the algorithm of Table 1, this is 

done in Line 8, as a modified shrinkage-thresholding function sk = MSTλ/ρ
ℝ+(b). Non-

negativity is imposed in sI:

s = MSTλ/ρ
ℝ+(b) =

sI
sh
sv

=
STCλ/ρ

ℝ+ bI

STλ/ρ bh
STλ/ρ bv

. (17)

STλ/ρ(b) is the regular shrinkage-thresholding operator,82 which applies for every element b 
of the vector b the following operation:
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STλ/ρ(b) = b − (λ/ρ)(b/ b ),  if  b > λ/ρ
0,  otherwise.  (18)

Moreover, considering Ω = ℝ+
NhNvNp, STCλ/ρ

ℝ+ bI  is the non-negative real-valued shrinkage-

thresholding operator, defined as

STCλ/ρ
ℝ+(b) = Re(b) − λ/ρ,  if Re(b) > λ/ρ

0,  otherwise.  (19)

At convergence, all elements of s are real valued, and the elements of c are real valued and 

positive.

3.2 | Choosing parameters

In order to produce results with the best regularization parameter possible, λ was adjusted to 

obtain

λ = arg min
λ

‖CREF − cλ‖2
2, (20)

where cREF is the coefficients produced by NNLS (Equation (6) or the ground truth, if 

available, and cλ is the coefficients produced by the regularized method, using a specific λ.

The parameter ρ used by the ADMM and FADMM (see Table 1) was chosen empirically, 

fixed at ρ = 0.1 for the synthetic experiments and ρ = 0.01 for experiments with real data.

4 | EXPERIMENTAL ILLUSTRATION

To illustrate the results with accelerated scans that can be obtained by the proposed 

approach, we tested it with two kinds of synthetic phantom (where relaxation coefficients 

are known exactly) and with bovine cartilage and liver (as an example with real data).

4.1 | Synthetic phantoms

The synthetic phantoms are spatially similar, but they differ in the type of distribution of the 

relaxation times. The sparse phantom is composed of regions with single- and tri-

triexponential components sparsely located in a distribution with 60 relaxation times, 

logarithmically spaced from 0.25 ms to 200 ms (see Figure 2). The non-sparse phantom has 

a smooth blob-like composition, with no intentionally sparse components, and with a spatial 

correlation of at least 10% among neighbor voxels. It also presents regions with one, two, or 

three blobs randomly located (see Figure 3).

The synthetic acquisition of 32 T1ρ-weighted images with different TSL values, 

logarithmically spaced from 0.5 ms to 100 ms, was simulated. We compare FS approaches 

with CS acceleration, by spatially random undersampling using a variable density 

pattern92,93 with AF = 10. A synthetic four-channel coil with known sensitivity is used. The 

experiments also compare the noiseless acquisition with the noisy acquisition with a signal 

to noise ratio of 15.
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The proposed approach with FS data, using the joint model presented in Equation (9), was 

compared with FS reconstruction from Equation (8) combined with NNLS in Equation (6) 

or with R-NNLS in Equation (7), denoted FS + NNLS and FS + R-NNLS respectively. In 

the accelerated scan cases, we compared the proposed approach with CS reconstruction, 

using Equation (2) with R(x) = ∥x∥*, followed by NNLS or R-NNLS, denoted CS + NNLS 

and CS + R-NNLS respectively, such as the approach used in Reference 48. The same 

regularization function is used in the proposed approach and the R-NNLS, so the effect of 

the joint model from Equation (9) can be compared with the separated approach. For the 

sparse phantom the matrix W = I was used, while for the non-sparse phantom the W from 

Equation (10) was used.

In the results of Table 2 showing the normalized root mean squared error (NRMSE), the 

proposed joint approach performed better than the other approaches, especially in the 

accelerated cases. In the FS cases, the proposed approach and the FS + R-NNLS had similar 

performances. Note that the error is somewhat larger for sparse coefficients than for smooth 

relaxation coefficients.

In Figure 2, the results for the sparse phantom are shown, while in Figure 3, the results for 

the non-sparse phantom are shown. Two extreme cases are shown in these figures, the 

relaxometry using FS noiseless data, where the best results for each method are expected, 

and the relaxometry using undersampled (accelerated) noisy data, where the worst results 

are expected. Note that the results of the proposed method and the R-NNLS were very 

similar in the FS case, in Figures 2 and 3B, D, and F. The difference is more significant in 

the accelerated case, in Figures 2 and 3C, E, and G, where the proposed approach performed 

better.

A CS AF of 10 corresponds to a theoretical scan time of 16 min, of a total scan time of 160 

min for FS reference data (considering 5 min of FS per T1ρ-weighted 3D set of size 192 × 

192 × 64 for each TSL, following the protocol of T1ρ-mapping proposed in Reference 66).

4.2 | Bovine liver and cartilage

The next experiment uses data from a 3 T clinical MRI scanner. The T1ρ-weighted scans of 

the bovine cartilage and liver were captured with 30 TSL values logarithmically spaced 

between 0.50 ms and 100 ms. Coil sensitivity maps were computed using Reference 69.

We illustrate the performance of the proposed approach, comparing it against typical 

approaches of separate reconstruction and relaxometry,48 with and without acceleration. FS 

reconstruction uses the methods in Equation (8), and CS reconstruction uses the approach in 

Equation (2) with R(x) = ∥x∥*. After the reconstruction, the relaxometry uses either NNLS, 

presented in Equation (6), or R-NNLS, in Equation (7). We estimated a distribution with 60 

relaxation times, logarithmically spaced from 0.25 ms to 400 ms.

The accelerated proposed method, as well as CS, has a theoretical scan time of 21 min from 

a total scan time of 210 min (considering 7 min of FS per T1ρ-weighted 3D set of size 256 × 

256 × 80 for each TSL, following the protocol of T1ρ-mapping proposed in Reference 66). In 

these experiments, the W from Equation (10) was used in the proposed method and for R-
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NNLS. This matrix used with the l1-norm, together with constraining, enforces sparsity, 

spatial similarity, and non-negativity, generating a very stable distribution of relaxation 

coefficients.

4.2.1 | Results for bovine liver—Figure 4 shows some results for bovine liver with 

different microwaving times. The ROIs were marked across five consecutive slices. We 

computed spatial maps with mean relaxation time from the multicomponent relaxometry of 

each voxel by time-averaging the relaxation distribution. In this averaging, the coefficient at 

the largest relaxation time (400 ms), called the long component, was excluded. The long 

component will be discussed later in Figure 6. The mean relaxation times are shown in 

Figures 4A for FS + NNLS and 4C for the proposed method. We also computed the short 

fraction, shown in Figures 4B for FS + NNLS and 4D for the proposed method, which 

represents the ratio between the sum of the relaxation coefficients up to 7 ms, divided by the 

sum of all the coefficients (except the largest one, of 400 ms). The expected multicomponent 

relaxometry of each liver specimen is in Figure 4E for L60, 4F for L45, 4G for L30, and 4H 

for L15. In these plots, the central line represents the mean distribution of the coefficients 

(inside the ROI of five slices), and the bars represent the variability over the mean value of 

±1 standard deviation.

In Figures 4E and 4F, one can observe that the central position of the main lobe decreases 

with increasing microwaving time (L15 ≈ 32/33 ms, L30 ≈ 26 ms, L45 ≈ 19/21 ms, L60 ≈ 
16/17 ms). Moreover, L60 has a significant secondary lobe, as shown in Figure 4E around 4 

ms, larger than for the other specimens, in Figures 4F–4H. This can also be observed in the 

maps of the short fraction of L60, shown in Figures 4B and 4D. Comparing NNLS with the 

proposed method shown in Figure 4, we notice some small modifications in the mean 

distribution (central lines) and a significant decrease in the variability (bars). The reduction 

in variability can also be noted by comparing the spatial maps of the methods, in Figures 

4A–4D, which are less noisy in the proposed method than in FS + NNLS. The small changes 

in the distribution due to the chosen method are much smaller than the changes caused by 

microwaving time.

In Figure 5, we compare the proposed method and the R-NNLS using FS scans and 

accelerated scans (AF = 10). Only the results for L45 and L60 are shown since their 

relaxation parameter distributions are more similar than those of other specimens. We are 

interested in seeing if the error introduced by acceleration will generate smaller changes than 

the degradation of the specimens. The spatial maps obtained by R-NNLS are shown in 

Figure 5A for L60 and Figure 5C for L45. The spatial maps obtained by the proposed 

method are shown in Figure 5B for L60 and Figure 5D for L45. Also, the expected 

multicomponent relaxometry is shown for L60 in Figure 5E and for L45 in Figure 5F.

The spatial maps obtained with no acceleration are somewhat similar for the two methods, 

the proposed one and FS + R-NNLS. Some small differences can be observed on the right-

hand side of L60, as shown in Figures 5A and 5B. When acceleration is used, both methods 

lose some detail in the spatial maps, but some artifacts can be seen in the results with CS + 

R-NNLS, in Figure 5C. In Figures 5E and 5F, one can see that acceleration caused a small 
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shift in the main lobe of the relaxometry obtained by R-NNLS and a small change in the 

shape of the peak of the main lobe in the proposed method.

Due to the practical limit of our scanner of measuring the longest TSL as 100 ms, longer 

relaxation processes cannot be resolved, resulting in a flattening effect of these long 

relaxation processes into the coefficient related to the longest relaxation time (400 ms). 

Nevertheless, it is still possible to map the fraction of this component, computing its fraction 

relative to the sum of all coefficients. Figure 6 shows that this long fraction increases as the 

microwaving time increases, and it is larger in L60 than in the other specimens. There are 

some localized differences between the maps produced by R-NNLS and the proposed 

methods, but the corresponding accelerated versions are consistent with the non-accelerated 

ones.

It is important to emphasize that multicomponent relaxometry allows us to better understand 

the quantitative changes in tissue. In this case, note that from L15 to L30 the central 

relaxation time of the main lobe decreased by nearly 20% (from 32/33 ms to 26 ms). From 

L30 to L45 it decreased by another 20% (from 26 ms to 19/21 ms), and there was a small 

increase in the long fraction. From L45 to L60 the decrease of the central relaxation time of 

the main lobe was smaller, only 10% (from 19/21 ms to 16/17 ms), but the long fraction and 

the short fraction (with the peak at 4 ms) increased significantly.

4.2.2 | Results for bovine cartilage—In Figure 7, we compare the proposed method 

and the R-NNLS using FS scans and accelerated scans (AF = 10). The spatial maps obtained 

with R-NNLS are shown in Figure 7A for two different slices of the degraded cartilage and 

Figure 7C for the normal cartilage. The spatial maps obtained by the proposed method are 

shown in Figure 7B for degraded cartilage and Figure 7D for normal cartilage. In addition, 

the expected multicomponent relaxometry, computed across 12 slices, is shown for degraded 

and normal cartilages in Figures 7E and 7F, respectively. In these figures, the central line 

represents the mean distribution of the coefficients, and the bars represent the variability of 

±1 standard deviation.

Observing the spatial maps of the mean relaxation time on two different slices of the 

cartilage in Figures 7A–D, one can note that they are much more consistent in the proposed 

method when comparing accelerated and non-accelerated maps. In Figures 7E and 7F, one 

can observe, in the non-accelerated methods, that the main lobe of the distribution has a 

central relaxation time slightly higher in the degraded cartilage (58/65 ms) than in the 

normal cartilage (51/62 ms), around 12% higher in the proposed method and around 5% 

higher in R-NNLS. The error introduced by the acceleration causes a shift in the central 

relaxation time and a spreading of the main lobe in both methods. In the R-NNLS, there is a 

decrease in the central time of around 18% with acceleration for the degraded and normal 

cartilages, larger than the observed difference between them with FS data, which is 5%. In 

the proposed method, the error due to acceleration causes a decrease of the central relaxation 

time of the main lobe of around 5% for the degraded cartilage and 2% for the normal 

cartilage, much smaller than the observed difference between them with FS data, which is 

12%. This indicates that the proposed method is better than CS + R-NNLS under accelerated 

scanning.
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5 | DISCUSSION

5.1 | Observations from the experiments

These illustrative experiments show the proposed approach has the potential to bring 

multicomponent relaxation to clinical practice. There is still a lot to be refined, but the 

possibility of having a reliable 3D-T1ρ-relaxometry in about 20 min MRI scan is highly 

motivating. The noise remains a problem, as observed in these experiments, but it does not 

seem to be prohibitive for this joint approach. The integrated imaging and relaxometry 

model and the spatial regularization provided a significant improvement in reducing the 

effects of noise and undersampling.

In the synthetic experiments, one can observe that the 10-fold scan time acceleration caused 

only a median increase of 10% in the NRMSE in the proposed method, as shown in Table 2. 

In contrast, the second-best approach (FS or CS reconstruction followed by R-NNLS) had a 

median increase of 23%. However, more experiments are necessary, in specific applications, 

to determine the acceptable AFs as well as refinements of the choices of the parameters that 

are user defined.

In the experiments with bovine cartilage and liver, the 10-fold scan time acceleration caused 

fewer changes in the multicomponent relaxometry produced by the proposed method than 

observed by artificial degradation. This was not achieved by the method using separated CS 

and R-NNLS, where the changes due to acceleration were larger than the changes caused by 

degradation.

5.2 | Applications of interest

Some studies on cartilage98–100 had demonstrated that T1ρ is more sensitive to the 

proteoglycan content than T2, and provide better discrimination between osteoarthritis 

patients and controls.100 The studies in References 99, 101, and 102 utilized 

monoexponential models to characterize the T1ρ relaxation mapping of articular cartilage in 

the knee joint. However, some studies62,103 have shown that T1ρ relaxation may have 

multiexponential components, following the hypothesis of multicompartmental structure in 

cartilage. So far, biexponential models have been utilized. However, relaxometry studies 

using T2 and T2* have shown that more components exist.11,104 Similar multicomponent 

relaxation has been observed in human cartilage in vivo for T2 and T1ρ relaxation.62,105 This 

indicates that fast multicomponent relaxometry, such as that proposed here, may improve the 

diagnosis and understanding of cartilage diseases. The proposed approach can provide a 

more complete characterization of the relaxation process in the cartilage, far superior to 

mono- or biexponential mapping.

T1ρ relaxation has also been investigated for liver fibrosis.106,107 A recent preclinical study 

on rat livers108 has demonstrated the potential of T1ρ MRI for staging liver fibrosis. In 

humans, it was shown in Reference 63 that multicomponent T1ρ of the liver can distinguish 

between healthy volunteers and chronic liver disease patients. Fast T1ρ multicomponent 

relaxometry can also be a useful tool for chronic liver diseases. However, this application 

presents additional challenges, such as possible artifacts caused by motion due to breathing.
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5.3 | Extension to multidimensional relaxometry

Several studies have already observed the advantages of multidimensional relaxometry,14–19 

such as simultaneous T1-T2 and relaxometry-diffusivity.14–20,2459 Sparse distribution of 

relaxation components has been reported in References 21 and 24 Other exploited properties 

are smoothness,14 low-rankness,26 and constraining to marginal distributions.59 One future 

direction of study is the modification of the proposed approach to use multidimensional 

relaxometry, pairing T1ρ with T1, T2, or diffusivity. However, in order to be used for human 

in vivo applications, much more aggressive AFs need to be achieved, especially when 3D 

volumes need to be scanned.

5.4 | Future directions for investigation

The use of regularizing side penalties is always accompanied by the regularization parameter 

λ, which must be carefully chosen. Classical methods for choosing the regularization 

parameter,109,110 such as generalized cross-validation,111,112 the discrepancy principle,113 or 

the L-curve,114 can be used here. More recent approaches such as Stein’s unbiased risk 

estimate115 and joint maximum a posteriori (JMAP)116,117 are usually faster and more 

flexible. JMAP allows incorporation of additional information regarding λ.

Note that dictionaries that have been used to sparsely represent images,118,119 as x = Bu, 

such as wavelets,120 shearlets,121 or specially designed dictionaries for image sequences, 

such as the ones produced by principal component analysis122,123 and k-means singular 

value decomposition,124 among other learned approaches,125,126 can also be extended to 

relaxometry. In this sense, a second dictionary can be used to describe the relaxation 

coefficients, such as c = Bu. This second dictionary B with sparse coefficients u could 

generate the multicomponent relaxation coefficients c. In other words, we are not restricted 

to sparse relaxation coefficients, but sparsity is still embedded in the CS fast MR 

relaxometry problem.

Other important aspects for future investigation are the best sampling schemes, for both time 

points of the relaxation process127 and k-space sampling points.128 Investigation of optimal 

configurations to minimize scan time and maximize the quality of the distribution of 

relaxation times is necessary. Special sampling trajectories, such as non-Cartesian 

trajectories,129 can also be investigated. Radial MRI is particularly useful in moving parts of 

the body, as in abdominal and cardiovascular applications.130,131

6 | CONCLUSION

This paper has discussed several aspects of fast T1ρ MR multicomponent relaxometry in a 

coordinated way. CS imaging and relaxometry can be treated as separate inverse problems; 

however, synergistically combining these two problems into one provides a mutual benefit 

for acceleration and computational effectiveness. Very high AFs can be achieved with good 

fidelity of the relaxation coefficients within a reasonable amount of computation time. From 

the point of view of inverse problems, many aspects can be investigated in this new joint 

problem, such as forms of regularization, types of regularizing side penalty, optimization 

methods, choice of parameters, and sampling patterns. In particular, the problem of selecting 
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regularization parameters in practice for CS problems is of general interest to the inverse 

problem community.

Fast MR relaxometry can help to extract, in a clinically acceptable scan time, more 

information to analyze the structural and biochemical composition of tissues and specimens. 

This new fast tool can help us to better understand heterogeneous systems and their changes 

due to pathophysiology.
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FT Fourier transform

JMAP joint maximum a posteriori
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SNR signal to noise ratio

T1ρ spin-lattice relaxation time in the rotating frame

T2* effective T2

TSL spin-lock time
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FIGURE 1. 
Illustration of the proposed framework for the joint relaxometry and fast imaging model. A, 

The relaxometry model generates the image sequence as a linear combination of the 

relaxation coefficients using the multiexponential dictionary, which repeats the effect of the 

relaxometry system for all voxels. B, The imaging system uses the components of CS, 

including the phase compensation, the coil sensitivity transform, the spatial FTs, and the k-t-
space CS sampling pattern
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FIGURE 2. 
Illustration of multicomponent relaxation of the sparse synthetic phantoms. A, The 

visualization of the phantom at ti = 1 ms. B-G, In B, D, and F one can see the results for the 

FS noiseless case, while in C, E, and G one can see the results for the noise accelerated case. 

B, C, Voxel A, with a sparse tricomponent relaxation composition, for FS and noiseless data 

(B), and for undersampled and noisy data (C). D, E, Voxel B, with a bicomponent relaxation 

composition, for FS and noiseless data (D), and for undersampled and noisy data (E). F, G, 

Voxel C has a monocomponent relaxation distribution: for FS and noiseless data (F), and for 

undersampled and noisy data (G)
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FIGURE 3. 
Illustration of multicomponent relaxation of the non-sparse synthetic phantoms. A, The 

visualization of the phantom at ti = 1 ms. B-G, In B, D, and F, one can see the results for the 

FS noiseless case, while in C, E, and G one can see the results for the noisy accelerated case. 

A, C, Voxel A has three-lobe multicomponent relaxation: for FS and noiseless data (B), and 

for undersampled and noisy data (C). D, E, Voxel B has two-lobe multicomponent 

relaxation: for FS and noiseless data (D), and for undersampled and noisy data (E). F, G, 

Voxel C has one-lobe multicomponent relaxation: for FS and noiseless data (F), and for 

undersampled and noisy data (G)
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FIGURE 4. 
Comparative results of the proposed approach and FS + NNLS for bovine liver. Four 

specimens of bovine liver were microwaved with L60 = 60 s, L45 = 45 s, L30 = 30 s and 

L15 = 15 s. A, C, Spatial maps with the mean relaxation time for FS + NNLS (A) and the 

proposed method (C). B, D, Spatial maps with the fraction of the short components for FS + 

NNLS (B) and the proposed method (D). E-H, The expected distribution for L60 (E), for 

L45 (F), for L30 (G), and for L15 (H)
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FIGURE 5. 
Comparative results of the proposed method with R-NNLS considering FS data and 

accelerated scans. Two specimens of the bovine liver are shown, microwaved with L60 = 60 

s and L45 = 45 s since they are the most similar. Spatial maps with the mean relaxation time 

and the short fraction are shown. A, B, Results obtained by FS + R-NNLS and CS + R-

NNLS (A) and the proposed method (B) for L60. C, D, Results obtained by FS + R-NNLS 

and CS + R-NNLS (C) and the proposed method (D) for L45. E, F, The averaged 

distributions for L60 (E) and for L45 (F)
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FIGURE 6. 
Comparative results of the proposed method with R-NNLS considering FS data and 

accelerated scans. Four specimens of the bovine liver, microwaved with L60 = 60 s, L45 = 

45 s, L30 = 30 s, and L15 = 15 s, are shown. A, B, Spatial maps for the long fraction 

obtained by FS + R-NNLS (no accel.) (A) and CS + R-NNLS (AF = 10) (B). C, D, Spatial 

maps for the long fraction obtained by the proposed method (no accel.) (C) and with 

acceleration (AF = 10) (D)
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FIGURE 7. 
Comparative results of the proposed method with R-NNLS considering FS data and 

accelerated scans. Two specimens of bovine cartilage are tested, one degraded and the other 

normal. Spatial maps with the mean relaxation time are shown for two different slices. A, B, 

Results obtained by FS + R-NNLS and CS + R-NNLS (A) and the proposed method (B) for 

the degraded cartilage. C, D, Results obtained by FS + RNNLS and CS + R-NNLS (C) and 

the proposed method (D) for the normal cartilage. E, F, The averaged distributions for the 

degraded cartilage (E) and for the normal cartilage (F)
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TABLE 1

FADDM

Fast ADMM-W(y,E,D,λ,ρ,W)

1.  set f0 = 0

2.  set f1 = f0

3.  set s0 = 0

4.  set s1 = s0
5.  set k = 1

6.  while k ≤ K

7.   compute ck = DHEHED + ρWHW −1 DHEHy + WH ρsk + fk

8.   compute sk = MSTλ/ρ
ℝ+ Wck − 1/ρfk

9.   compute fk = fk + ρ sk − Wck

10.   compute dk = 1/ρ‖fk − fk‖2
2 + ρ‖sk − sk‖2

2

11.   if k > 1 and if dk < dk−1

12.    compute αk + 1 = (1 + 1 + 4αk
2)/2

13.    compute sk + 1 = sk +
αk − 1
αk + 1

sk − sk − 1

14.    compute fk + 1 = fk +
αk − 1
αk + 1

fk − fk − 1

15.   else

16.    set ak+1 = 1

17.    set fk + 1 = fk − 1

18.    set sk + 1 = sk − 1

19.    set dk = dk−1

20.   end if-else

22.   set k = k + 1

22.  end while

23.  return ck and xk = Dck

24. end procedure
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TABLE 2

NRMSE for synthetic phantoms, considering sparse and non-sparse relaxation coefficients from noiseless and 

noisy data

Sparse noiseless Sparse noisy Non-sparse noiseless Non-sparse noisy

FS + NNLS (no acceleration) 0.67 0.68 0.21 0.94

FS + R-NNLS (no acceleration) 0.55 0.65 0.19 0.55

Proposed (no acceleration) 0.53 0.59 0.19 0.54

CS + NNLS (AF = 10) 0.67 0.83 0.54 0.76

CS + R-NNLS (AF = 10) 0.65 0.88 0.44 0.58

Proposed (AF = 10) 0.59 0.74 0.21 0.44
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