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Abstract

Background—Efforts to minimize harms from opioid drug interactions may be hampered by 

limited evidence on which drugs, when taken concomitantly with opioids, result in adverse clinical 

outcomes.

Objective—To identify signals of opioid drug interactions by identifying concomitant 

medications (precipitant drugs) taken with individual opioids (object drugs) that are associated 

with unintentional traumatic injury

Design—We conducted pharmacoepidemiologic screening of Optum Clinformatics Data Mart, 

identifying drug interaction signals by performing confounder-adjusted self-controlled case series 

studies for opioid + precipitant pairs and injury.

Setting—Beneficiaries of a major United States-based commercial health insurer during 2000–

2015

Patients—Persons aged 16–90 years co-dispensed an opioid and ≥1 precipitant drug(s), with an 

unintentional traumatic injury event during opioid therapy, as dictated by the case-only design

Measurements—Exposure: Precipitant-exposed (vs. precipitant-unexposed) person-days during 

opioid therapy. Outcome: Emergency department or inpatient International Classification of 

Diseases discharge diagnosis for unintentional traumatic injury. We used conditional Poisson 

regression to generate confounder adjusted rate ratios. We accounted for multiple estimation via 

semi-Bayes shrinkage.

Results—We identified 25,019, 12,650, and 10,826 new users of hydrocodone, tramadol, and 

oxycodone who experienced an unintentional traumatic injury. Among 464, 376, and 389 

hydrocodone-, tramadol-, and oxycodone-precipitant pairs examined, 20, 17, and 16 (i.e., 53 pairs, 

34 unique precipitants) were positively associated with unintentional traumatic injury and deemed 

potential drug interaction signals. Adjusted rate ratios ranged from 1.23 (95% confidence interval: 

1.05–1.44) for hydrocodone + amoxicillin−clavulanate to 4.21 (1.88–9.42) for oxycodone + 

telmisartan. Twenty (37.7%) of 53 signals are currently reported in a major drug interaction 

knowledgebase.
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Limitations—Potential for reverse causation, confounding by indication, and chance

Conclusions—We identified previously undescribed and/or unappreciated signals of opioid drug 

interactions associated with unintentional traumatic injury. Subsequent etiologic studies should 

confirm (or refute) and elucidate these potential drug interactions.

Registration—None

Graphical Abstract

Keywords

Drug interactions; injury; opioid analgesics; pharmacoepidemiology; population health; self-
controlled case series

1. INTRODUCTION

Opioids, given their central nervous system (CNS)-depressant effects, have been consistently 

associated with numerous types of unintentional traumatic injury, a major cause of 

morbidity, disability, and death.[1,2] Unintentional traumatic injury is the leading cause of 

death in persons <45 years of age and the fourth leading cause of death among persons of all 

ages.[3] Among older adults, falls and motor vehicle crashes predominate,[4] leading to 

dramatic increases in mortality from injury beginning at 70 years of age.[3] Drug 

interactions are believed to be a major contributor to opioid-attributed unintentional 

traumatic injury via pharmacodynamic[5] and/or pharmacokinetic mechanisms.[6] Drug 

interactions are responsible for a substantial proportion of adverse drug events (ADEs), 

including those resulting in hospitalization and death[7,8] and are potentially preventable.[6] 

Therefore, it is unsurprising that opioids (and their drug interactions) are a high priority 
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target for minimizing significant patient harms due to ADEs.[9] In fact, the National 

Academies of Sciences, Engineering, and Medicine and the United States (US) Department 

of Health and Human Services have endorsed the importance of studying opioid drug 

interactions to improve patient safety[10] and combat the opioid epidemic.[11]

Prior population-based studies of opioid drug interactions have been largely limited to 

overdose and/or injurious sequelae of concomitant use with alcohol,[12] benzodiazepines,

[13] gabapentinoids,[14] and/or skeletal muscle relaxants.[15] While the initial focus on 

these CNS depressants is intuitive, this leaves a substantial knowledge gap in potential 

opioid ADEs when co-prescribed with hundreds of other commonly used medications. The 

lack of evidence is concerning since polypharmacy is common among persons treated with 

opioids,[16] with approximately one in four noncancer pain patients exposed to a potential 

opioid drug interaction.[17,18]

Given the critical need to identify potential opioid drug interactions, we conducted high-

throughput pharmacoepidemiologic screening of administrative healthcare data to identify 

signals of potential clinically important interactions with opioids that increased rates of 

unintentional traumatic injuries. Our objective was to provide researchers with an evidence-

based list of signals, such that limited available resources could be directed to confirm (or 

refute) and elucidate these potential interactions in future etiologic studies.

2. MATERIAL AND METHODS

2.1. Overview: Identifying opioid drug interaction signals via pharmacoepidemiologic 
screening

We conducted semi-automated, high-throughput pharmacoepidemiologic screening of US 

commercial health insurance data to identify signals of opioid drug interactions. We first 

identified candidate interacting precipitants, which we operationalized as orally administered 

drugs frequently co-dispensed with opioids. We subsequently identified drug interaction 

signals by performing hundreds of confounder-adjusted self-controlled case series studies to 

examine associations between individual opioids + candidate precipitants and unintentional 

traumatic injury (the primary outcome), typical hip fracture (a secondary outcome), and 

motor vehicle crash while the subject was driving (a secondary outcome).

For each opioid-precipitant pair, we conducted a bi-directional self-controlled case series 

study to examine the rate of each outcome (see §2.8) in an opioid-treated individual during 

time exposed vs. unexposed to the precipitant. Although the “case series” phrase within self-

controlled case series may seem to imply the absence of a comparator, the approach is a 

rigorous controlled self-matched epidemiologic study design; it is the cohort analogue of the 

case-crossover design.[19] The self-controlled case series design is ideal for drug interaction 

screening because: a) the causal contrast is made within an individual and thus inherently 

controls for confounding by measured and unmeasured factors that remain constant within 

an individual over the observation period (e.g., sex, genetics, chronic diseases, frailty, 

socioeconomic status); b) the underlying statistical model can accommodate and control for 

time-varying factors;[20]; c) the approach is highly computationally-efficient,[21] since it 

includes only persons experiencing an outcome; and d) there is precedent for the use of 
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high-throughput applications. Analogous pharmacoepidemiologic screening studies have 

identified drugs associated with hypoglycemia in users of insulin secretagogues,[22] 

rhabdomyolysis in users of statins,[23] and serious bleeding in users of clopidogrel[24] and 

anticoagulants[23,25,26] as examples.

2.2. Data source

We utilized Optum Clinformatics Data Mart (OptumInsight: Eden Prairie, MN, US)[27] 

administrative data from May 1, 2000 through September 30, 2015. Optum includes 

longitudinal enrollment and healthcare billing data from >71 million commercially insured 

and Medicare Advantage beneficiaries of the largest US-based private health insurer by 

market share.[28] See additional detail in Supplemental Methods.

2.3. Identifying candidate interacting precipitant drugs during opioid drug use

We used pharmacy claim dates and days’ supply values to identify prescription dispensings 

for the following opioids as object drugs of interest: codeine (including as an ingredient in 

antitussives); fentanyl; hydrocodone (including as an ingredient in antitussives); 

hydromorphone; levorphanol; meperidine; methadone; morphine; oxycodone; 

oxymorphone; tapentadol; and tramadol. We limited dispensings to the most commonly used 

route of administration per opioid (e.g., oral hydrocodone, transdermal fentanyl). During 

periods of apparent opioid use, we used pharmacy claim dates and days’ supply values to 

identify prescription dispensings for any orally administered concomitant medication 

(precipitant drugs of interest). We linked pharmacy claims to the Lexicon Plus Drug 

Database (Cerner Multum: Denver, CO, US) to categorize precipitants by medication class.

2.4. Creating study cohorts of new users of opioids

We constructed separate study cohorts for new users of each opioid object drug aged 16–90 

years. We achieved this by requiring a baseline period (see §2.5) devoid of a dispensing for 

the given object opioid. We then utilized pharmacy claim dates and days’ supply values to 

build object drug exposure episodes consisting of ≥1 dispensing of the object opioid. We 

permitted a grace period—length calculated as days’ supply x 0.20, assuming 80% 

adherence—between contiguous opioid dispensings and at the end of the terminal 

dispensing.

2.5. Defining observation and baseline periods

For each new user meeting inclusion criteria, we began the observation period upon object 

drug initiation and censored it upon the earliest of: a) lapsed exposure to the object 

(permitting the grace period); b) a switch from the object to a pharmacologic alternative 

(i.e., non-object opioid or opioid agonist-antagonist); c) health plan disenrollment 

(permitting a maximum gap in enrollment of 45 days); or d) the end of the study dataset. 

Since the self-controlled case series design is a case-only approach, we required new users 

to experience an outcome (see §2.8) during their observation period. We did not censor upon 

outcome occurrence since this would violate an underlying assumption of the self-controlled 

case series design.[21,29]
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We defined the baseline period as the 183 days immediately preceding yet excluding the 

observation period begin date. We required the baseline period to be devoid of an 

interruption in health plan coverage and a dispensing for the object drug under study. 

Regarding the latter, we did not exclude from study object episodes preceded by a baseline 

dispensing for a pharmacologic alternative; this permitted us to study second- and later-line 

opioid therapies. For example, we excluded from the hydrocodone cohort persons with a 

baseline hydrocodone dispensing, but not persons with a baseline tramadol dispensing. We 

further required the 30 days immediately preceding and including the observation period 

begin date to be event-free; this served to minimize reverse causation since opioids are used 

to treat injury-induced pain.

2.6. Categorizing observation period time based on precipitant drug exposure

We classified each observation period day as either precipitant-exposed or precipitant-

unexposed. Precipitant-exposed days were defined by concomitant exposure to the candidate 

interacting precipitant drug. Precipitant-unexposed days were all other observation period 

days. To minimize exposure trend bias,[19] we included precipitant-unexposed days before 

and after precipitant-exposed days. Figure 1 provides a graphical representation of the 

design.

Several studies have shown that the risk of an adverse event due to a drug interaction often 

peaks shortly after initiating concomitant therapy and declines thereafter.[30-32] We 

therefore examined a duration-response relationship for each object + precipitant pair by 

stratifying precipitant-exposed observation time into the following risk windows: 0–15, 16–

30, 31–60, 61–120, and 121–180 days from initiation of concomitance.

2.7. Defining the exposure of interest and covariates

The exposure of interest was use of the candidate interacting precipitant drug. The self-

controlled case series design implicitly controls for time-invariant (e.g., sex, genetic 

polymorphisms), but not time-varying, covariates.[29] We therefore included in each 

regression model the following time-varying covariates assessed during each day of 

observation time: a) opioid daily dose, in morphine milligram equivalents (see Supplemental 

Methods);[33] and b) prior traumatic injury of interest in any diagnostic position on any 

claim type (e.g., a prior secondary-position ambulatory care hip fracture diagnosis in an 

analysis of the hip fracture endpoint). The latter covariate is relevant because prior injury 

may predict subsequent injury,[34] and the self-controlled case series design does not censor 

observation time upon event occurrence.

2.8. Identifying outcomes

The primary outcome was unintentional traumatic injury, defined as an emergency 

department or inpatient hospitalization for fracture, dislocation, sprain/strain, intracranial 

injury, internal injury of thorax, abdomen, or pelvis, open wound, injury to blood vessels, 

crushing injury, injury to nerves or spinal cord, or certain traumatic complications and 

unspecified injuries. Consistent with the American College of Surgeons’ National Trauma 

Data Standard,[35] our definition excluded: a) late effects of injuries, poisonings, toxic 

effects, and other external causes; b) superficial injury; c) contusion with intact skin surface; 
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and d) effects of a foreign body entering through orifice. Consistent with work by Sears et 

al,[36] our definition also excluded burns; such injuries are unlikely due to opioid use.

A secondary outcome was an inpatient hospitalization for typical hip fracture. We excluded: 

a) pathologic hip fractures, since these events are due to a localized process such as 

malignancy or infection;[37] and b) atypical hip fractures, since these events are infrequently 

traumatic and often attributed to bisphosphonate and/or glucocorticoid use.[38] Another 

secondary outcome was motor vehicle crash while the subject was driving, defined as an 

unintentional traumatic injury (see primary outcome above) plus an external cause of injury 

code for an unintentional traffic or nontraffic accident. We excluded crashes of a self-

inflicted, assault, or undetermined manner, consistent with the Centers for Disease Control 

and Prevention’s injury mortality framework.[39] We provide operational outcome 

definitions, their performance characteristics, and other support for their use in 

Supplemental Table 1.

2.9. Statistical analysis

For each object-outcome pair, we constructed an analytic file in which the unit of 

observation was the person-day covered by an active prescription for an opioid. The binary 

dependent variable was whether the unintentional traumatic injury occurred on that day. 

Independent variables included a unique subject identifier, whether a given person-day was 

precipitant-exposed vs. precipitant-unexposed, and the time-varying covariates listed in §2.7. 

The parameter of interest was the outcome occurrence rate ratio during precipitant-exposed 

vs. precipitant-unexposed days, i.e., rateobject+precipitant / rateobject. In a secondary analysis, 

we separately examined rate ratios for the five mutually exclusive risk windows discussed in 

§2.6. We used conditional Poisson regression models (xtpoisson with fe option, Stata v.16: 

College Station, TX, US) to estimate rate ratios and 95% confidence intervals (CIs).

[21,29,40] To avoid statistically unstable estimates, we did not estimate rate ratios when 

there were: a) <5 precipitant-exposed persons; or b) no events during precipitant-exposed 

time. Further, we do not report rate ratios from non-converged conditional Poisson 

regression models or if the variance of the beta estimate for the parameter of interest was 

>10.

To address multiple estimation inherent in calculating numerous rate ratios, we used a semi-

Bayes shrinkage method. This approach increases the validity of effect estimates and 

preserves nominal type-1 error.[41,42] See additional detail in Supplemental Methods.

To contextualize findings, we compared drug interaction signals generated by our semi-

automated approach to putative interactions documented in two drug interaction 

knowledgebases: Micromedex (IBM Watson Health: Cambridge, MA, US) and Clinical 

Drug Information (Wolters Kluwer: Alphen aan den Rijn, South Holland, Netherlands).

2.10. Institutional review board approval and role of funding source

The University of Pennsylvania’s institutional review board approved this research as 

protocol #831486. The US National Institutes of Health had no input on the conduct or 

interpretation of this research.
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3. RESULTS

Table 1 summarizes characteristics of persons constituting object drug cohorts for analyses 

of unintentional traumatic injury. For the three most commonly used opioids, these cohorts 

consisted of 25019, 12650, and 10826 new users of hydrocodone, tramadol, and oxycodone 

respectively, all of whom by design experienced an outcome; the three most commonly 

occurring injuries were sprain/strain (39.9%), certain traumatic complications and 

unspecified injuries (27.1%), and fracture (25.7%). Median durations of observation for 

hydrocodone, tramadol, and oxycodone were 12, 13, and 19 days, respectively. The plurality 

of hydrocodone (40.6%), tramadol (47.3%), and oxycodone (40.3%) users were Caucasian 

adult females. Few hydrocodone (18.1%), tramadol (17.3%), and oxycodone (15.0%) users 

had multiple unintentional traumatic injuries during observation time. In analyses of 

secondary outcomes, cohorts consisted of 1142, 848, and 461, and 246, 98, and 113 users for 

typical hip fracture and motor vehicle crash, respectively. Supplemental Table 2 and 

Supplemental Table 3 summarize characteristics of persons constituting object drug cohorts 

for analyses of these outcomes.

We identified 775, 656, and 731 candidate interacting precipitant drugs co-prescribed with 

hydrocodone, tramadol, and oxycodone respectively. After application of inclusion criteria, 

we examined 464 (59.9%), 376 (57.3%), and 389 (53.2%) precipitants in confounder-

adjusted self-controlled case series studies of unintentional traumatic injury. Table 2 

provides summary data on rate ratios for unintentional traumatic injury, before and after 

confounder adjustment; Supplemental Table 4 and Supplemental Table 5 provide summary 

data for typical hip fracture and motor vehicle crash, respectively. The heat map in 

Supplemental Figure 1 graphically depicts semi-Bayes shrunk confounder-adjusted rate 

ratios for all three outcomes; corresponding secondary analyses using an alternate variance 

parameter for semi-Bayes shrinkage yielded similar findings (Supplemental Figure 2). We 

present secondary findings that stratified precipitant-exposed observation time into risk 

windows in Supplemental Figure 3.

Among included precipitants co-prescribed with hydrocodone, tramadol, and oxycodone, 20 

(4.3%), 17 (4.5%), and 16 (4.1%) respectively had statistically significantly elevated 

adjusted rate ratios for unintentional traumatic injury after semi-Bayes shrinkage. We 

therefore deemed these 53 opioid + precipitant pairs (34 unique precipitants) as potential 

drug interaction signals (Table 3 and Figure 2). Putative interacting precipitants were CNS 

agents (N = 21, including six nonsteroidal anti-inflammatory drugs and five skeletal muscle 

relaxants), anti-infective agents (N = 6), cardiovascular agents (N = 3), nutritional agents (N 

= 2), a gastrointestinal agent (N = 1), and a renal/genitourinary agent (N = 1). Rate ratios 

ranged from 1.23 (95% CI: 1.05–1.44) for hydrocodone + amoxicillin-clavulanate to 4.21 

(1.88–9.42) for oxycodone + telmisartan. Twenty (37.7%) of the 53 potential drug 

interaction signals are currently reported in Micromedex, three of which are also reported in 

the Clinical Drug Information knowledgebase.
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4. DISCUSSION

We conducted pharmacoepidemiologic screening to identify potential opioid drug 

interactions associated with injury. Among 2492 opioid-precipitant pairs, we identified 77 

(3.1%) potential drug interaction signals associated with an increased rate of unintentional 

traumatic injury—53 signals among users of the three most commonly dispensed opioids 

(i.e., hydrocodone, tramadol, and oxycodone). Among 772 and 177 opioid-precipitant pairs, 

we identified 0 (0.0%) and 4 (2.3%) potential drug interaction signals associated with 

increased rates of hip fracture and motor vehicle crash respectively—0 and 4 signals among 

users of the three most commonly dispensed opioids. Given the semi-automated, high-

throughput nature of our investigation, we intend these findings to be interpreted as 

hypothesis generating and thereby help researchers to target limited available resources to 

assess etiology.

Despite the clear health burden of opioid drug interactions, few prior studies have rigorously 

examined their clinical importance.[43] A notable exception includes investigations of 

opioids with benzodiazepines.[13,44-47] Our study yielded many expected results for this 

combination. Concomitant use was associated with injury rates potentially increased by: 1.6-

fold for alprazolam with morphine; 1.5- to 2.9-fold for diazepam with hydrocodone, 

tramadol, or codeine; and 1.4-fold for clonazepam with oxycodone. Further, concomitant 

use of diazepam or alprazolam with oxycodone was associated with 2.6- and 3.0-fold 

increases in the rate of motor vehicle crash, respectively. Interactions between opioids and 

benzodiazepines are biologically plausible given additive or synergistic pharmacodynamic 

(e.g., CNS depression) and/or pharmacokinetic (e.g., altered transport and hepatic 

metabolism) effects. For example, if diazepam demonstrated in vivo inhibition (currently, 

only in vitro inhibition has been demonstrated) of hepatic cytochrome P450 (CYPs) 3A4[48]

—a pathway involved in the complex metabolism of active hydrocodone to inactive 

norhydrocodone—this could result in increased hydrocodone concentrations and 

exaggerated opioid effects, potentially compounded by diazepam’s long half-life and 

debated anticholinergic properties.[49] Our identification of potential signals for opioids + 

benzodiazepines, buttressed by mechanistic expectations and prior epidemiologic data, 

supports the validity of our drug interaction screening approach. Our population based 

findings are consistent with Food and Drug Administration,[50] Centers for Medicare and 

Medicaid Services,[51] and American Geriatrics Society[52] recommendations to limit or 

avoid this combination. The lack of signaling for some expected pairs (e.g., morphine + 

temazepam, rate ratioinjury = 1.8, 95% CI 0.9–3.3), especially for less commonly used 

opioids, may be driven by limited statistical precision and suggests that assumptions 

employed during semi-Bayes shrinkage were appropriately conservative for use in this 

hypothesis-generating screening context.

We newly identified similar magnitudes of association for opioid + different skeletal muscle 

relaxants. Concomitant use was associated with injury rates potentially increased by: 2.5-

fold for methocarbamol with codeine; 1.8- and 2.5-fold for orphenadrine with oxycodone or 

tramadol respectively; 1.6- to 2.9-fold for cyclobenzaprine with hydrocodone, morphine, 

hydromorphone, or codeine; 1.4-fold for tizanidine with tramadol; 1.4- and 1.5-fold for 

metaxalone with tramadol or hydrocodone respectively; and 1.3- to 2.0-fold for carisoprodol 
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with hydrocodone, tramadol, or codeine. Further, concomitant use of cyclobenzaprine with 

hydrocodone was associated with a 2.9-fold rate of motor vehicle crash. Potential 

pharmacokinetic mechanisms (e.g., orphenadrine’s inhibition of CYP2D6 and CYP3A4[53]) 

and pharmacodynamic effects (e.g., sedation, disorientation, visual disturbances, 

symptomatic hypotension, psychomotor impairment[54]) of skeletal muscle relaxants may 

support these associations. Our findings are timely given substantial nationwide increases in 

chronic use of skeletal muscle relaxants and common co-dispensing with opioids.[55]

We also identified potential signals for opioids + anti-infectives and unintentional traumatic 

injury. Use of clarithromycin with oxycodone was associated with a 1.9-fold increase in the 

rate of injury; this finding quantifies the potential importance of a reported pharmacokinetic 

interaction[56] mediated by potent CYP3A4 inhibition[57] resulting in increased oxycodone 

plasma concentrations. Use of quinine with tramadol was associated with a 2.6-fold increase 

in the rate of injury; this seemingly counterintuitive finding highlights the potential 

importance of patient behavior in response to effects of a reported pharmacokinetic 

interaction.[56] Quinine may inhibit CYP2D6’s conversion of inactive tramadol (parent 

compound) to active o-desmethyltramadol.[58] The reduction in active metabolite levels 

may result in a clinically significant loss of pain control and potentially increased 

breakthrough opioid consumption;[59] interestingly we did not identify signals for injury 

with tramadol + other strong CYP2D6 inhibitors (e.g., bupropion, paroxetine, ritonavir). 

Further, quinine may stimulate insulin release and precipitate hypoglycemia,[60] a major 

risk factor for traumatic injury.[61] Increased injury rates among users of sulfamethoxazole-

trimethoprim with hydrocodone or tramadol may be at least partly related to 

sulfamethoxazole’s innate hypoglycemic effects.[62] We are unaware of putative 

mechanisms underlying apparently increased injury rates among concomitant users of 

opioids with cephalexin or amoxicillin-clavulanate. An alternate explanation for opioid + 

anti-infective signals may be confounding by indication for the precipitant, as infection 

alone may alter drug metabolism.

Of other potential drug interaction signals identified, most are biologically plausible. For 

example, the precipitant’s effects on CYP2D6, serotonin levels, and/or vision[63] may 

precipitate the apparent 2.2-fold increase in injury risk with oxycodone + lisdexamfetamine. 

For signals that lack an obvious mechanism (e.g., tramadol + omega-3 polyunsaturated fatty 

acids) or with less conclusive biologic underpinnings (e.g., hydrocodone + ketoprofen), it is 

especially unclear whether findings reflect chance, reverse causation, confounding by 

indication, or important drug interactions that place patients at risk of injury; this is an 

important concern for precipitants used to treat injuries (e.g., nonsteroidal anti-inflammatory 

drugs) or their sequelae (e.g., anti-infectives). This represents an especially fertile space for 

future etiologic investigation.

Our study has strengths. First, we utilized a self-controlled case series design, ideal for drug 

interaction screening,[64] to minimize confounding. Second, we used a bi-directional 

implementation of the design to minimize exposure trend bias.[19] Third, we studied 

clinically meaningful outcomes identified by well-supported algorithms. Finally, we 

minimized false positive findings by using semi-Bayes shrinkage to account for multiple 

estimation.
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Our study also has limitations. First, prescription dispensings may be imperfect markers for 

actual drug ingestion. This may be particularly true for opioids. Second, we did not examine 

higher order drug interactions such as triplets or quadruplets. Such findings may be of future 

interest given the prevalence of polypharmacy[65] and specific concerns regarding “holy 

trinity”[66] (i.e., opioid + benzodiazepine + skeletal muscle relaxant) prescribing. Third, the 

bi-directional self-controlled case series design may be susceptible to reverse causation, 

especially for suspected drug interactions. If a clinician posited that a precipitant induced an 

injury in an opioid user (even if concomitant precipitant use had no causal effect on injury), 

s/he may subsequently discontinue the precipitant; this may result in a spuriously elevated 

rate ratio for the precipitant. However, we find it unlikely (particularly for non-sedating 

precipitants) that reverse causation explains the drug interaction signals identified herein. 

Interactions are often overlooked in clinical practice[67] and therefore clinicians may be 

unlikely to attribute an injury to an interaction and discontinue a precipitant to reduce future 

risk. We considered employing a unidirectional design to mitigate reverse causation, but 

such a methodologic adaptation would be susceptible to potentially substantial exposure 

trend bias. Fourth, given the hypothesis generating nature of our work, we did not consider 

injury severity. Fifth, in addition to the potential for bias and confounding, one must 

consider the role of chance. Finally, our findings may not be generalizable beyond a 

commercially insured, ambulatory care population.

5. CONCLUSIONS

Evaluating and synthesizing the clinical importance of potential drug interactions is a major 

unmet information need.[68] Given the evidence gap, a federal framework to end the opioid 

crisis has called for better research to understand opioid drug interactions.[9] We used 

longitudinal health insurance data to identify many previously undescribed and/or 

unappreciated opioid interactions potentially associated with unintentional traumatic injury, 

typical hip fracture, and/or motor vehicle crash. Our findings provide researchers with an 

evidence-based list of drug interaction signals, such that limited resources can be directed to 

confirm (or refute) and elucidate these potential interactions in follow-on etiologic studies.
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Highlights

• Opioid drug interactions are a high priority target for minimizing patient 

harms

• We identified potential opioid drug interactions associated with unintentional 

injury

• Readers should interpret these drug interaction signals as hypothesis 

generating

• Among identified signals, most were not documented in drug interaction 

knowledgebases

• Findings may help researchers target limited available resources to assess 

etiology
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Figure 1. Example of object drug exposure episode eligible for inclusion.
The presence of precipitant-unexposed person-days before and after precipitant-exposed 

person-days is indicative of a bi-directional implementation of the self-controlled case series 

design. P-E = precipitant-exposed; P-U = precipitant-unexposed.
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Figure 2. Commonly prescribed opioid + precipitant drug associations with unintentional 
traumatic injury.
Panel A depicts associations with hydrocodone. Panel B depicts associations with tramadol. 

Panel C depicts associations with oxycodone. The x-axis represents the log base 2 (semi-

Bayes shrunk adjusted rate ratio) for opioid + precipitant vs. opioid. The y-axis represents 

the log (1 / p-value) for the semi-Bayes shrunk adjusted rate ratio. Data points in the upper 

right quadrant represent statistically significant elevated rate ratios for the association 

between opioid + precipitant (vs. opioid) and injury.
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Table 3.

Opioid drug interaction signals of potential clinical concern given statistically significantly increased rates of 

unintentional traumatic injury, by commonly used object drug, by therapeutic category of precipitant drug

Object Rate ratio, semi-Bayes
shrunk and adjusted 95% confidence interval

HYDROCODONE

Anti-infective precipitant

amoxicillin-clavulanate 1.23 1.05-1.44

cephalexin 1.86 1.64-2.10

sulfamethoxazole 1.35 1.15-1.58

trimethoprim 1.34 1.14-1.57

Central nervous system precipitant

acetaminophen 1.42 1.22-1.65

bupropion 1.32 1.03-1.70

carisoprodol* 1.28 1.08-1.52

cyclobenzaprine* 1.56 1.42-1.71

diazepam*,** 1.48 1.26-1.74

etodolac 1.79 1.32-2.44

ibuprofen 1.72 1.51-1.95

ketoprofen 2.12 1.12-4.02

ketorolac 1.45 1.00-2.08

meloxicam 1.42 1.17-1.73

metaxalone* 1.51 1.23-1.86

naproxen 1.59 1.37-1.84

ondansetron* 1.28 1.06-1.54

Gastrointestinal precipitant

metoclopramide* 1.60 1.16-2.20

Nutritional precipitant

niacin 1.56 1.00-2.43

OXYCODONE

Anti-infective precipitant

cephalexin 1.59 1.34-1.89

clarithromycin*,** 1.90 1.05-3.44

Cardiovascular precipitant

telmisartan 4.21 1.88-9.42

Central nervous system precipitant

acetaminophen 1.31 1.02-1.67

clonazepam*,** 1.39 1.05-1.84

cyclobenzaprine* 1.46 1.28-1.67
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Object Rate ratio, semi-Bayes
shrunk and adjusted 95% confidence interval

HYDROCODONE

ibuprofen 1.87 1.54-2.27

ketorolac 1.69 1.08-2.65

lisdexamfetamine* 2.18 1.43-3.33

naproxen 1.56 1.25-1.94

orphenadrine* 1.80 1.11-2.93

pregabalin 1.40 1.08-1.82

varenicline 2.09 1.15-3.79

Nutritional precipitant

calcitriol 2.33 1.23-4.43

Renal and genitourinary precipitant

Metolazone† 2.39 1.31-4.37

TRAMADOL

Anti-infective precipitant

cephalexin 1.58 1.29-1.93

quinine* 2.63 1.30-5.33

sulfamethoxazole 2.02 1.63-2.52

trimethoprim 2.00 1.61-2.48

Cardiovascular precipitant

omega3 polyunsaturated fatty acid 1.91 1.06-3.41

rosuvastatin 1.52 1.05-2.20

Central nervous system precipitant

acetaminophen 1.57 1.27-1.93

carisoprodol* 1.47 1.03-2.10

diazepam* 1.59 1.17-2.18

ibuprofen 1.33 1.08-1.66

metaxalone* 1.38 1.01-1.89

Naproxen 1.67 1.33-2.11

ondansetron* 1.30 1.00-1.69

orphenadrine* 2.50 1.43-4.36

rizatriptan* 2.16 1.22-3.82

tizanidine* 1.44 1.06-1.94

We excluded propoxyphene, a medical product eventually withdrawn from the United States market, from the list of central nervous system 
precipitants for hydrocodone, tramadol, and oxycodone as this may have represented opioid switching rather than concomitant therapy.

*
drug interaction with impact on object documented in Micromedex (IBM Watson Health: Cambridge, Massachusetts, United States)

**
drug interaction with impact on object documented in Facts & Comparisons Clinical Drug Information (Wolters Kluwer: Alphen aan den Rijn, 

South Holland, Netherlands)
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†
drug interaction with impact on precipitant documented in Micromedex (IBM Watson Health: Cambridge, Massachusetts, United States)
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