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Abstract

Numerous hazardous environmental pollutants in water bodies, both organic and inorganic, have 

become a critical global issue. As greener and bio-synthesized versions of nanoparticles exhibit 

significant promise for wastewater treatment, this review discusses trends and future prospects 

exploiting the sustainable applications of green-synthesized nanocatalysts and nanomaterials for 

the removal of contaminants and metal ions from aqueous solutions. Recent trends and challenges 

about these nanocatalysts and nanomaterials and their potential applications in wastewater 

treatment and water purification are highlighted including toxicity and biosafety issues. This 

review delineates the pros and cons and critical issues pertaining to the deployment of these 

nanomaterials endowed with their superior surface area, mechanical properties, significant 

chemical reactivity, and cost-effectiveness with low energy consumption, for removal of hazardous 

materials and contaminants from water; comprehensive coverage of these materials for industrial 

wastewater remediation, and their recovery is underscored by recent advancements in 

nanofabrication, encompassing intelligent and smart nanomaterials.
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1. Introduction

Nano-engineered materials, such as nanoadsorbents, nanometals, nanomembranes, and 

photocatalysts offer promising options for novel water technologies which can be adapted to 

customer-specific needs. A large majority of them are compatible with existing treatment 

technologies and can be integrated simply in the existing set-up. There are numerous 

contaminants in wastewater discharge which have adverse health effects namely pesticides, 

textile dyes, plasticizers, disinfection by-products, polychlorinated biphenyls (PCBs), 

polycyclic aromatic hydrocarbons (PAHs), and emerging pollutants such as 

perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), endocrine disrupting 

materials, pharmaceutical and personal care products (Bousselmi et al., 2004; Mozia et al., 

2007; Rizzo et al., 2009). Innovative engineered nanomaterials are very encouraging for 

removal of these hazardous contaminants, as they have high surface areas and remarkable 

reactivity (Zhang et al., 2019). In this context, the development of greener protocols for the 

elimination of ionic metal species from water has witnessed profound interest (Iravani, 2011; 

Shukla and Iravani, 2017; Nadagouda and Varma, 2008; Moulton et al., 2010).

Nanotechnology and nanoscience, an area of research that has a progressed at a very fast 

pace, present numerous attractive options for water/wastewater treatment. Nowadays, 

nanostructured materials have garnered attention in the degradation as well as remediation of 

toxic organic/inorganic pollutants owing to unique physicochemical properties such as their 

high catalytic activity, high physical/chemical and thermal stability, large specific surface 

area, significant chemical reactivity, and strong electron transfer ability, among others 

(Pradhan et al., 2001; Sinha et al., 2013; Xu et al., 2019; Zhang et al., 2014). Indeed, 

nanomaterials and nanoparticles (NPs) are recently applied to address the environmental 

issues e.g. water contaminant treatment and/or environmental monitoring/sensing; they are 

considered as an excellent option, since the reactive nanostructures have potential features 

that render them more efficient to convert and/or remove hazardous/toxic pollutants into 

toxic-free substances. In general, nanostructured materials e.g. nanosorbents, nanoparticles 

(Pd, Au, Ag, Cu, Fe3O4, TiO2, etc.), nanocatalytic membrane systems, are more efficient, 

require lesser time, environmentally-friendly and constitute low energy approaches but not 
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all these systems are inexpensive or green, and hence are not applied yet to treat the 

wastewater on large scales. Consequently, there is an essential need to fabricate some green 

nanomaterials, which must be very effective, having high activity/efficiency, eco-friendly, 

green and easy to handle. In this respect, green-fabricated nanomaterials can be considered 

as good candidates for the photocatalysis application in practical water treatment systems, 

although still more elaborative studies should be performed regarding the application of 

these nanomaterials.

Organisms specifically fungi and bacteria are capable of surviving and multiplying under 

stressful conditions due to the presence of higher concentrations of toxic metals (Beveridge 

et al., 1996; Rouch et al., 1995). It appears that numerous reducing agents in organisms and 

biochemical trajectories lead to bioreduction of metal ions. In view of the critical function of 

these agents, there have been more studies pertaining to the role and appliance of genetically 

engineered and natural organisms in bioreduction of metal ions (Stephen and Macnaughtont, 

1999). It has been realized that many organisms reduce various metals, metalloids and radio 

nuclides such as uranium(VI) (Lovley et al., 1991; Kashefi and Lovley, 2000; Bansal et al., 

2004; Mukherjee et al., 2001; Fredrickson et al., 2000; Lloyd and Macaskie, 2000; Lovley 

and Phillips, 1992; Lovley et al., 1993) and technetium (VII) (Kashefi and Lovley, 2000; 

Fredrickson et al., 2000; Lloyd and Macaskie, 2000; Philipse and Maas, 2002; Lloyd and 

Macaskie, 1996) and trace metals including arsenic(V) (Sweeney et al., 2004; Laverman et 

al., 1995), chromium(VI) (Kashefi and Lovley, 2000; Fredrickson et al., 2000; Zhang et al., 

1998, 1996; Wang, 2000; Lovley, 1993), cobalt(III) (Kashefi and Lovley, 2000; Zhang et al., 

1996; Sastry et al., 2003; Slawson et al., 1992; Gorby et al., 1998; Caccavo et al., 1994), 

manganese(IV) (Kashefi and Lovley, 2000; Lovley, 2000), and selenium (VI) (Konishi et al., 

2007; Oremland, 1994); majority of them being hazardous environmental contaminants. 

Therefore, these organisms can be utilized for removing metal and metal oxides 

contaminants from water and wastewaters (Lee et al., 2004; Grünberg et al., 2001; Lovley, 

1995; Lovley and Coates, 1997). As an example, aquatic macrophytes exhibited great 

potential for eliminating heavy metals (Sood et al., 2012; Gunawardaha et al., 2016; Sarkar 

and Jana, 1986) which can be harnessed for producing metallic NPs, as well (Gunawardaha 

et al., 2016; Korbekandi et al., 2014).

The conventional physicochemical strategies for the fabrication of nanomaterials entail the 

participation of hazardous and volatile materials. This has prompted the researchers to 

design suitable bioinspired biogenic and greener strategies which are eco-friendly, safer, and 

cost-effective for the development of novel and efficient nano-scale adsorbents and catalysts 

which can be harnessed for eliminating and degrading various contaminants in water (Figs. 1 

and 2). Indeed, the presence of various phenolic antioxidants in plants and other 

microorganisms serve as capping and reducing agents for the production of nanomaterials in 

varied shapes namely, flowers, wires, rods, and tubes.

In this critical review, current trends and future prospects exploiting the application of green-

synthesized nanocatalysts and nanomaterials for water and wastewater treatments are 

discussed. This encompasses advanced nanomaterials and development of novel 

nanosorbents attained via greener and sustainable processes for removing the contaminants 

and metal ions from aqueous solutions, including groundwater, drinking water, and 
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wastewater treatment. Recent trends and forthcoming challenges pertaining to green-

synthesized nanocatalysts and nanomaterials and their potential applications for treating and 

purifying wastewater are highlighted. The development of new ecofriendly treatment 

methods should be perceived as a critical element for the industries producing hazardous, 

toxic, and chemically-laden wastewater.

2. Mechanistic aspects

2.1. Mechanism for biological preparation of metal/metal oxide NPs

There are several eco-friendly and biological routes for the biogenic fabrication of 

nanomaterials using plants and microorganisms (Fig. 3) namely algae, bacteria, fungi, 

viruses, yeasts, and waste materials or fusion of such biogenic methods with alternative 

activation means such as microwave and ultrasound (Nasrollahzadeh et al., 2019a; 2019b; 

Singh et al., 2016). The presence of flavonoids, terpenoids, proteins, vitamins, phenolic acid, 

glycosides, carbohydrates, polymers, alkaloids and various antioxidants in such sources 

serve as capping/stabilizing and reducing agents for the production of sustainable 

nanostructures, namely nanoflowers, nanowires, nanorods, nanotubes, and nanoparticles. 

The biosynthesis of nanoparticles using plants and microorganisms as living organisms 

offers several environmental applications (Fig. 2) as exemplified by a simple and eco-

friendly protocol deploying Parthenocissus quinquefolia leaf extract in presence of oxalic 

acid for the synthesis Fe, Cu-based nanoparticle adsorbents; they exhibit substantial 

adsorptive capacity for aqueous Malachite (Zhang et al., 2018).

The historical utilization of organisms in the fabrication of bio (nano)materials dates back to 

1980 by Beveridge et al., (Beveridge and Murray, 1980) when they evaluated the synthesis 

of gold NPs by using the Bacillus subtilis as an aerobic, gram-positive bacterium. Indeed, 

microorganisms have the capability to adsorb and accumulate metal ions, which can secrete 

a higher amount of enzymes by cell activities, thereby increasing the reduction of metal ions 

to their elemental form. The microbial generation of NPs depends on the presence of 

reductive enzymes/metabolites of the cell wall, and either their location on the cell or 

secretion of soluble enzymes (Fig. 4) (Sengani et al., 2017; Parandhaman et al., 2019; Nair 

and Pradeep, 2002). Indeed, enzymatic reduction processes have implicated the microbial 

enzymes/metabolites especially NADH and/or NADPH-dependent enzymatic reduction of 

metal ions to NPs (Parandhaman et al., 2019; Das et al., 2010).

Das, Marsili et al., (Das et al., 2012) recounted on the biosynthesis mechanism of Au NPs 

formation in the fungi mycelia of Rhizopus oryzae; a sizeable quantities of generated extra- 

or intracellular enzymes/proteins, apparently play a main function in the reduction of 

AuCl4– ions to Au NPs and their subsequent stabilization by the capping activity of the 

enzymes. Consequently, two proteins (42 and 45 kDa) partake in the reduction of gold, 

whereas alternative protein of 80 kDa serve as capping entity in stabilization of the as-

prepared Au NPs. Various enzymes namely nitrate reductase, sulfite reductase, keratinase, 

and alphaamylase, and also plant macro-enzymes possess the capability to help reduce and 

stabilize metal ions to NPs (Parandhaman et al., 2019; Durán et al., 2015). In the enzyme-

assisted reduction (Durán et al., 2015), different amino acid residues bind to metal/metal 

oxide ions and then reduce them to metal/metal oxide NPs. These enzymes, secreted from 
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microorganisms and plants inside or outside of the cell wall, are decidedly suitable for the 

bulk production of NPs via a facile and ecofriendly procedure (Thapa et al., 2017). Owing to 

the presence of the negative charge-bearing amino acids like glutamic or aspartic acid, the 

enzymes, peptides and proteins play a vital function in the reduction of metal ions to 

synthesize NPs. Further, polysaccharides can play a key role in the reduction of metal ions, 

which are largely available from plants and/or microorganisms; negative surface charge of 

polysaccharides in view of the presence of carboxylic or phosphoric groups, which can bind 

with the positively-charged metal/metal oxide ions via an electrostatic interactions, 

culminate in the formation of various metal/metal oxide NPs by the metal ions reduction 

(Banerjee et al., 2017).

In general, biological/biogenic approaches exploit plant polyphenols, microorganisms, algae, 

enzymes, and industrial and/or agricultural wastes. Among biomaterials/biomolecules, 

enzymes and their metabolites (e.g., proteins, polysaccharides, peptide chains, 

carbohydrates, and nucleic acids, among others) have been utilized as reducing/capping 

agents for the reduction of metal/metal oxide ions to generate assorted NPs and 

functionalization of NPs (metal/metal oxides, alloy, etc.) on inorganic supports. Coker et al., 

(Coker et al., 2010) described a novel and environmentally benign approach for the 

preparation of biogenic magnetite NPs (Fe3O4 NPs), and their subsequent decoration with 

Pd NPs using bacterium Geobacter sulfurreducens to reduce Fe3+-oxyhydroxide and 

Na2PdCl4 ions without modifying the surface of bio-mineral. Similarly, Lee et al., 

(Sureshkumar et al., 2010) synthesized a ferric/ferrous magnetic Ag nanocomposite (PMBC-

Ag) as an easily recyclable heterogeneous nanocatalyst deploying bacterial cellulose (BC); 

Fe3O4 NPs gets precipitated, and integrated into the BC nanofibrous structure at alkaline pH, 

and then coated with a polydopamine layer via immersing in a dopamine solution. 

Subsequently, the PMBC-Ag was fabricated by incorporation of Ag NPs into the dopamine-

amended magnetic BC (MBC) nanofiber by the reduction of Ag+ ions.

Furthermore, biomaterial can serve as an effectual support and host for the NPs. For 

example, Das et al., (Das et al., 2013) have shown that the cell-free protein extracts of R. 
oryzae can simply be anchored on the nanosilica surface (protein-conjugated nanosilica) and 

serve as an efficient template and/or host for growth of Ag NPs in situ on the nanosilica 

surface. Indeed, protein-based decoration of Ag NPs on the nanosilica surface 

(Ag@nanosilica) was accomplished by quickly adsorbing positively-charged Ag+ ions on 

the negatively-charged protein surface via an electrostatic (π-π stacking) contact. 

Microscopic studies have revealed that the nanosilica-supported stabilized fungal whole 

protein performed as both, the reducing and capping agent wherein the spherical Ag NPs 

(∼20 nm) were well-dispersed and stable over the whole surface of nanosilica; they 

exhibited an enhanced catalytic reduction of the 4-NP by this novel and recoverable 

Ag@nanosilica.

The biological capacity of plant-mediated synthesis of nanocatalysts and nanomaterials is 

remarkably enhanced owing to its environmentally benign nature and the unique single-step 

operation with a mechanism that entails synergistic reduction, stabilization and capping of 

the NPs. Overall, the mechanism of plant-mediated synthesis of nanomaterials employing 

diverse plants is presently under continual exploration. Various metal/metal oxide salts, 
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including chlorides, acetates, and nitrates possess high reduction potentials because metals 

were attached to acetate and/or halogen and also have an electron donation tendency, which 

can enhancethe electron density of metals on their conjugative salts. The ionic forms of 

metals can be easily detached from anionic parts owing to the reduction process, which 

renders them stable via the use of plant extracts (Nasrollahzadeh et al., 2019c, a; 

Nasrollahzadeh et al., 2020a). For example, a likely mechanism for the Pd NP synthesis via 
the reduction of Pd2+ to Pd NPs using plant extract as a reducing/capping agent is presented 

in Fig. 5; biogenic synthesis of metal NPs using plants is a sustainable technique for 

generating NPs as shown below:

“Metal salts + Plant sources Biocompatible metal NPs + Biocompatible by‐products”

A generalized view has been proposed for the biosynthesis of metal nanomaterials using the 

plant biomolecules, such as flavonoids and/or polyphenols for the reduction of the metal 

ions and the stabilization of the ensuing metal nanomaterials (Fig. 6) (Mittal et al., 2013; 

Huang et al., 2011a) as exemplified for the reduction/stabilization of PdCl2 using OH groups 

of Delonix regia leaf extract that can reduce Pd(II) to Pd (0) (Fig. 7) (Dauthal and 

Mukhopadhyay, 2013).

2.2. Mechanistic aspects for the degradation of various contaminants

Various physical, chemical, and biological technologies for treating the wastewater include 

ion-exchange, reverse osmosis, oxidation, adsorption, flocculation, sedimentation, 

membrane, ultra-filtration, and advanced oxidation processes (AOPs). Among these 

conventional technologies applied in pollution control, AOPs, namely the Fenton reaction, 

photocatalysis, ozonation, and/or combinations of these, are increasingly adopted in the 

degradation of organic pollutants, due to their great efficiency, easy handling, simplicity, and 

good reproducibility (Chong et al., 2010; Bremner et al., 2009). AOP includes in situ 
generation of highly reactive and nonselective chemical oxidants (e.g. •OH, H2O2, O3, •O2) 

to degrade non-biodegradable and resistant organic contaminants. Indeed, Fenton reaction 

using •OH radical is a sustainable, effective and low-cost technique for the treatment of 

water/wastewater, as shown below (Jaafara et al., 2019):

“Fe2 + + H2O2 + H+ Fe3 + + ⋅OH + H2O”

(Jaafar et al. (2019)) have developed a series of quantum calculations based on the DFT 

(density functional theory) and ELF (electron localization function) for studying the 

degradation behavior of Neutral Red dye (NR), present in wastewater; mechanism of the 

Fenton reaction between the NR dye and free radicals (•OH) for the degradation of NR dye 

(Fig. 8) were examined in aqueous medium. An electrophilic/nucleophilic free-radical 

interaction occurs between the nucleophilic center of NR dye, electrophilic center of 

hydroxyl radical, oxygen, and nitrogen b (Nb), leading to intermediate (I), which has one of 

the highest nucleophilic activation at the carbon a (Ca). Then, the second single bond can be 

formed via a nucleophilic attack of the Ca of the NR on the oxygen of the •OH radical 

leading to intermediate (II). The optimization of the NR dye structure and determination of 
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global and local descriptors of chemical reactivity (e.g. chemical hardness, global/local 

electrophilicity, global nucleophilicity, chemical potential, and the local nucleophilicity 

indices) of •OH radical and NR dye were evaluated using the DFT technique.

Numerous pathways such as UV photolysis/photocatalysis, adsorption, reduction and 

(photo) degradation, have been deployed for treating the contaminants (Fig. 9) and removal 

organic/inorganic pollutants from groundwater, freshwater sediments, wastewater, etc 
(Eskandarloo et al., 2017).

2.2.1. Photocatalytic degradation of organic pollutants—In general, 

nanomaterials either adsorb the contaminants or they degrade them by diverse catalytic 

methods e.g. assisted by NaBH4, H2O2, and photocatalysis wherein green-synthesized NPs 

are excellent candidate for the photocatalytic water purification (Fig. 10) (Shivaji et al., 

2020); toxic organic contaminants are decomposed into other products (Yaqoob et al., 2020) 

or complete mineralization of organic contaminants occurs to yield carbon dioxide, water, or 

some inorganic ions. Generally, a semiconductor e.g. TiO2 would absorb the light that is 

higher or equal to the semiconductor band gap width, creating electron-hole pairs (e−-h+). 

The interaction on the surface of nanocatalyst with adsorbed species takes place in the 

reduction-oxidation (redox) reactions. Besides, h+
vb react with surface-bound water to form 

the •OH and concomitantly e−
cb selected using oxygen to generate a superoxide radical 

anion, as depicted below in equations.

A great deal of effort has recently been expanded to design novel and green photocatalytic 

materials based on metal-organic frameworks (MOFs), especially suited for their potential 

utilizations in the green degradation of toxic organic contaminants (Lin and Maggard, 2008; 

Yu et al., 2005; Liao et al., 2008; Toyao et al., 2013); various reports have appeared on the 

fabrication of MOF-based (photo)catalysts by transition metals to degrade highly toxic 

pollutants under visible, UV, or UV/vis light (Yu et al., 2005; Toyao et al., 2013). In this 

context, a MOF-5 was first suggested to behave as an effective photocatalyst (Fig. 11) 

(Alvaro et al., 2007); these MOFs possess a wide absorption band located in the range 500–

840 nm that are assigned to delocalized electron living on a microsecond time scale, and 

most likely occupying a conduction band (CB),the actual CB energy value being estimated 

to be 0.2 V vs. NHE, with a 3.4 eV band gap (Fig. 11a). The strategy demonstrated 

comparable activities for the aqueous phenol degradation to that of a commercial TiO2 or 

ZnO (Fig. 11b). As a result, a charge-separation state, with electrons in the CB and holes in 

valence bands (VB), rendersMOF-5 to function as an effective photocatalyst. Overall, like 

TiO2, the phenol photodegradation could be occurring via a network of reactions, namely 

initial generation of radical cations by electron-transfer from phenol to the MOF-5 hole or 

the formation of oxygen active species (such as superoxide radical anions) via the reaction 

of oxygen with the photo-ejected electrons (Fig. 11c).

In a similar study, (Das et al. (2011)) developed a Zn4O-containing doubly interpenetrated 

porous MOF (UTSA-38) with a band gap of 2.85 eV, which revealed good photocatalytic 

activity for the degradation of methyl orange (MO) in aqueous solutions under dark, visible 

and UV/vis light. The proposed mechanisms for the photodegradation of MO by UTSA-38 
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under UV or visible light irradiation are illustrated in Fig. 12; MO can be completely 

decomposed into colorless small molecules under UV light for 120 min.

2.2.2. Reduction of nitro compounds and dyes—Among different reducing agents, 

NaBH4 has been extensively considered a favored water soluble reductant and preferred 

alternative to hydrogen sources in the reduction of toxic nitro compounds to significant and 

useful amino compounds in an aqueous medium. The NaBH4 activation is a main process, 

which requires a metal substrate as active site since metal hydride complexes fabricated 

from the BH4
− ions via π-π stacking interactions have been considered intermediates in this 

reduction reaction (Nasrollahzadeh et al., 2020b). The reduction of toxic 4-NP using NaBH4 

as a reductant was described in presence of Pd nanocatalyst stabilized amine modified 

zeolite (Pd NPs@Zeo) via π-π stacking interactions (Fig. 13) (Nasrollahzadeh et al., 

2020b). Pd NPs@Zeo converts NaBH4 to molecular H2 and also BO2
− dissociated on the 

surface nanocatalyst, wherein the adsorbed 4-NP interacts with the dissociated H2 gas and 

the 4-NP reduction occurs in a step-wise manner to generate 4-aminophenol. As a result, the 

as-prepared aminophenol is finally desorbed from the surface of the nanocatalyst and the 

subsequent catalytic run starts afresh. Indeed, the main role of nanocatalyst is to adsorb the 

molecular H2 and/or 4-NP in the close proximity to facilitate simple reduction.

Inspired by the biosynthetic mineralization process, magnetically separable nanobiohybrid 

catalysts, Fe3O4@Ch-AuNPs and Fe3O4@Ch-PdNPs (Fig. 14), have been designed and 

fabricated via a three-step procedure (Parandhaman et al., 2016). The spherical Fe3O4 NPs 

(∼35 nm) were initially generated using Shewanella algae and then functionalized or coated 

with chitosan, followed by decoration with Pd and/or Au NPs to generate a water dispersible 

and reusable nanobiohybrid catalyst; they exhibited noteworthy activities for the reduction of 

4-NP and photodegradation of dye (> 99 % conversion) in polluted water at room 

temperature. The reaction was suggested to occur by the adsorption and reduction of MB by 

Pd or AuNPs through an electron transfer process. The rate of the reactions followed 

pseudo-second-order rate kinetics; Fe3O4@Ch-PdNPs and -AuNPs took just 1 min under 

UV light to complete the MB reduction with an apparent rate constant (kapp) of 5.0 min−1 

and 4.0 min−1. Besides, authors reported that the normalized rate constant (knor) values are 

1.72×102 and 1.14 × 102 mmol−1s−1, respectively, representing superior catalytic activities 

of the synthesized Fe3O4@Ch-PdNPs and -AuNPs for the degradation of MB.

2.2.3. Adsorption of arsenic—Green-fabricated amorphous iron NPs (with the 

specific surface area of 51.1368 m2 g−1) was evaluated for removing highly toxic and 

carcinogenic arsenic (As) from polluted resources (Wu et al., 2019). Consequently, it was 

detected that arsenate was uniformly adsorbed on the surfaces of iron NPs; FTIR evaluation 

showed that the adsorption was predominantly through an FeOAs bond, while XPS analyses 

revealed that only As(V) was adsorbed. Thus, the suggested mechanism for arsenate removal 

is based on primarily iron NPs reacting with arsenate to produce a monodentate chelating 

ligand and then a bidentate binuclear complex. More investigations demonstrated that the 

maximum adsorption capacity of the prepared NPs for arsenate was about 14.617 mg g−1, 

and the optimal pH range for adsorption of anionic arsenate was between 4 and 6 (Wu et al., 

2019). The sorption kinetics was also examined, and the Langmuir adsorption isotherms 
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indicated that As(V) adsorption by iron NPs best fit the regression coefficient (RL
2 = 

0.9903), thus validating the proposed chemisorption; the adsorption efficiency fitted the 

pseudo-second-order kinetic model well. Thus, the green-synthesis of iron NPs have high 

application potential towards elimination of As(V) and simplicity of their preparation.

An iron-based MOF, MIL-88B, was green-synthesized at room temperature wherein 

MIL-88B(Fe), with remarkable adsorption capacity of 156.7 mg g−1 at a low dosage, was 

analyzed for eliminating arsenate in water; capacity for removing trace arsenate on 

MIL-88B(Fe) was ∼32.3 mg g−1 at a low equilibrium concentration (6.4 μg L−1), which 

satisfied the arsenic threshold for drinking water. The FTIR and XPS analyses validated that 

the arsenate molecules bonded with the oxygen molecules, coordinating with FeO clusters in 

the framework (Hou et al., 2018).

2.2.4. (Photo)degradation and adsorption of organic contaminants—
Compared with conventional water treatment processes (e.g. adsorption, conventional 

oxidation process, etc.), (photo)degradation and Fenton-like reaction have been broadly 

utilized in the pollutants treatment (Lai et al., 2016; Huang et al., 2017; Wang et al., 2016; 

Khodadadi et al., 2017a). However, some drawbacks (such as low efficiency/activity, low 

oxidation rate, low pH levels, etc.) restrain the potential applications of these individual 

approaches to economically dispose the toxic contaminants. As an example, a bio-inspired 

strategy based on biomimetic photocatalytic systems over a combined g-C3N4-imidazole-

hemin assisted by H2O2 showed excellent photocatalytic oxidation activities under solar 

irradiation (Chen et al., 2017).

In another study, a low-cost photocatalyst Bi2WO6 and an ecofriendly biomimetic material 

hemin together enabled the development of a novel and efficient hemin-modified Bi2WO6 

composite via a facile solvothermal technique (Yi et al., 2018). Combining experimental and 

theoretical investigations showed an excellent catalytic activity with enhanced pH tolerance 

by using simulated-solar light (SSL)/H-Bi2WO6/H2O2 process. According to the 

experimental results, a plausible reaction mechanism for high photocatalytic activity/

stability of the H-Bi2WO6 is suggested in Fig. 15; •O2
−, Fe(IV)=O, and •OOH active species 

played the key role in the SSL/H-Bi2WO6/H2O2 system for the RhB degradation.

3. Applications of green-synthesized nanomaterials for water and 
wastewater treatment—Green-synthesized and biogenic NPs can be explored for 

remediation in sewage systems, treatment plants, membrane bioreactors and the other state-

of-the-art water purification devices to reduce or eliminate the perilous contaminated 

materials in water resources. However, the size control, stability, aggregation and 

sedimentation are still persistent challenges for the commercial appliances of biogenic NPs 

in treatment of effluents. Heavy metals removal and degradation of inorganic, organic, 

radioactive and pharmaceutical pollutants, nitro compounds (e.g. 4-NP as a toxic 

nitroarene), nitrate, phosphate, and also hazardous dyes such as methyl orange (MO), Congo 

red (CR), Eosin Y (EY), rhodamine B (RhB), methylene blue (MB), etc. have been 

undertaken via nano-adsorbents, nanocatalysts and nano-films in view of their high 

efficiency and greater surface area (Lapworth et al., 2012; Yadav et al., 2015; Gautam et al., 
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2015; Arora et al., 2014; Kim et al., 2007; Gawande and Jenkins-Smith, 2001; Tyagi et al., 

2018; Chipasa, 2003).

3.1. Removal of organic and inorganic contaminants

One-step ambient temperature preparation of Au NPs on γ-Al2O3 supports (Fig. 16a) has 

been demonstrated by deploying polyphenols from bayberry tannin (BT) plant (Huang et al., 

2011b); formation of Al2O3/BT/Au NPs entailed initial reduction of AuCl4− by BT as a 

reducing and stabilizing agent, which up on adsorption and glutaraldehyde-assisted self-

crosslinking on the porous γ-Al2O3, generated a bridged structure. The activity of well-

dispersed spherically-shaped gold NPs on γ-Al2O3 with a size of∼23 nm (Fig. 16b,c) was 

revealed for the reduction of 4-NP as an active and recyclable nanocatalyst assisted by 

NaBH4-mediated reduction.

Biogenic metal NPs from natural sources, such as algae, bacteria, plants and fungi have 

shown eminent capabilities for environmental applications, especially wastewater treatment. 

Earth-abundant elements should be considered first in these remediation endeavors. Iron NPs 

generated using aqueous green tea extract showed catalytic activity to degrade malachite 

green (Weng et al., 2013; Plachtová et al., 2018; Markova et al., 2014; Nadagouda et al., 

2010) and their eco-toxicological impact has been evaluated (Markova et al., 2014). 

Additionally, the production, characterization and biocompatibility aspects of green tea-

derived silver NPs have been reported (Markova et al., 2014). In another study, Anatase 

TiO2 NPs doped with iron were produced via a greener method by applying aqueous extract 

of lemongrass (Cymbopogon citratus) (Solano et al., 2019), where these Fe-TiO2 NPs 

exhibited potential for photocatalytic treatment of wastewater, and degradation of organic 

pollutants (Solano et al., 2019). Additionally, tea extract-facilitated biofabrication of Fe and 

Fe/Pd bimetallic NPs (∼20−30 nm) has been described for removing trichloroethane, a 

highly toxic chemical from water via reductive degradation mechanism (Smuleac et al., 

2011).

The elimination of As(V) and As(III) by deployment of magnetic iron oxide NPs (∼5−25 

nm) biosynthesized from tea waste has been described (Lunge et al., 2014); the elimination 

of trivalent and pentavalent arsenic (maximum adsorption capacities were about 188.69 and 

153.8 mg g−1 for As(III) and As(V), respectively) (Fig. 17) was illustrated (Lunge et al., 

2014). Moreover, iron oxide NPs were fabricated by applying bio-reducing agents from 

eucalyptus extract wherein ensuing NPs were seized in chitosan to form a recyclable 

magnetic organic-nano iron hybrid for removal of arsenic from water (Martínez-Cabanas et 

al., 2016).

A reduced graphene oxide-silver NP hybrid nanocomposite was synthesized under greener 

conditions using aqueous extract of Brassica nigra (Karthik et al., 2020) which showed 

antibacterial activities and could be deployed as a photocatalytic agent for removing dyes; 

Dye, Direct blue-14 (DB-14) was employed to evaluate the adsorption productivity of the 

prepared nanocomposites. The unqualified recovery of adsorbent after the reaction and its 

unchanged efficiency for cyclic applications demonstrated that it may serve as an 

economically and eco-friendly photocatalyst (Karthik et al., 2020).
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Ammonia and phosphate, in natural water resources can make remarkable deterioration of 

pristine water ecosystems because of eutrophication; thus, the innovative and cost-effective 

remediation methods are highly necessitated (Xu et al., 2020). In one study, the greener 

produced iron oxide NPs dispersed onto zeolite by eucalyptus leaf extracts, were applied to 

concurrently eliminate ammonia and phosphate from aqueous solutions; at primary 

concentration of 10 mg L−1 each for two co-existing ions, the prepared material eliminated 

43.3 % of NH4
+ and 99.8 % of PO4

3−. After optimization evaluations, the conditions for 

maximum adsorption capacity of the produced material for NH4
+ and PO4

3− were 3.47 and 

38.91 mg g−1, respectively (Xu et al., 2020) (Fig. 18).

In another investigation, water-soluble green-fabricated fluorescent carbon quantum dots 

(QDs) (∼260−400 nm), have been prepared by hydrothermal treatment using Tamarindus 
indica leaves (Bano et al., 2018). The ensuing QDs can be applied as sensitive probe for 

sensing Hg2+ with a detection boundary of 6 nM in the dynamic span of 0 to 0.1 μM; the 

feasibility of this detecting device was tested by using ‘real’ pond water samples for 

detection of Hg2+, and may be adaptable for additional analysis (Bano et al., 2018). A large 

assortment of biosynthesized metallic nanocatalysts deployed for the remediation and 

degradation of various pollutants in water or wastewater are presented in Tables 1 and 2.

3.2. Removal of pharmaceutical contaminants

Pharmaceutical contaminants, especially antibiotics in the natural water systems, pose 

different complications and hazardous effects for human health, wherein biogenic 

nanomaterials can be employed for remediation. For instance, tetracycline, as one of the 

highest applied antibiotics for human and veterinary applications, can be removed via 
deployment of nano zero-valent technology-based tactic (Yi et al., 2018; Gopal et al., 2020; 

Yi et al., 2019). The bimetallic nano zero-valent iron (nZVI)-Cu NPs were prepared using 

pomegranate rind extract for remediation purposes; tetracycline removal of 72 ± 0.5 % 

(initial tetracycline concentration 10 mg L−1) has been reported with the nZVI-Cu 

concentration of 750 mg L−1 at pH 7. To resolve the colloidal instability and enhance the 

tetracycline removal, bentonite-supported composite have been employed which displayed 

remarkable improvement in removal with a considerably decreased NP loading (Fig. 19) 

(Gopal et al., 2020). In another study, nickel-iron nanocomposite has been ecofriendly 

fabricated using polyphenol rich pomegranate (Punica granatum) peel extract, and ensuing 

nickel-iron was immobilized on to biocompatible and biodegradable alginate to produce 

nanocomposite beads (GS-NiFe beads) (Fig. 20) (Ravikumar et al., 2020). By using the 

optimized conditions (20 mg L−1 of tetracycline initial concentration; 1000 mg L−1 GS-NiFe 

concentration in beads; bead weight (wet): 20 % (WV−1); interaction time 90 min), 99 % 

removal was attained in a batch reactor, with adsorption and degradation processes in the 

remediation. Additionally, the maximum removal capacity (487 ± 6.84 mg g−1) was 

obtained under the reaction conditions: bed height: 15 cm; initial tetracycline concentration: 

20 mg L−1; and flow rate: 1 mL min−1 (Ravikumar et al., 2020).

In an utilization of biogenic nanomaterials, green-synthesized Cu NPs were expeditiously 

produced using aqueous Tilia extract residues (Husein et al., 2019) and the ensuingbiogenic 

NPs were applied in the removal of three selected pharmaceutical drugs from wastewater 
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samples; Diclofenac (Dic), Ibuprofen (Ibu), and Naproxen (Nap) could be eliminated 91.4, 

74.4, and 86.9 %, respectively with 10.0 mg of Cu NPs at pH 4.5 and 298 k for 60 min. The 

data fitted well with Langmuir model with R2, the values of 0.998, 0.998 and 0.977 for Dic, 

Nap, and Ibu, respectively; the maximum adsorption capacities being 36.0, 33.9, and 33.9 

mg g−1 for Dic, Nap, and Ibu, respectively. In order to provide useful information on the 

adsorption kinetic mechanism of non-steroidal anti-inflammatory drugs adsorption onto Cu 

NPs surface, diverse kinetic models were checked to analyze the kinetic data. Kinetic studies 

revealed that these sorption processes obeyed the pseudo-second-order model, while the 

thermodynamic parameters indicated the spontaneous and exothermic and/or physical nature 

of the adsorption (+38.3, +23.8, and +40.8 kJ mol−1 for Dic, Ibu, and Nap, respectively) 

(Husein et al., 2019).

In yet another attempt, a new Fe3O4 nanosorbent was prepared using plant extracts of 

cucumber (Cucumis sativus), lemon (Citrus limon), and black grapes (Vitis vinifera) via a 

green approach (Stan et al., 2017). The as-prepared Fe3O4(cum), Fe3O4(lem), and 

Fe3O4(grp) nanosorbents were applied for the elimination of seven antibiotics such as 

piperacillin, sulfamethoxazole, tetracycline, tazobactam, trimethoprim, erythromycin, and 

ampicillin from water bodies. The Box-Behnken design method was applied to recognize the 

optimum conditions for the antibiotics removal; Langmuir, Freundlich, and/or Temkin 

adsorption isotherm models were the best fitted towards the adsorption of selected 

antibiotics with an excellent removal of > 90 % was observed for most of these antibiotics.

3.3. Membrane-based water treatment

MOFs have remarkable advantages, including low cost readily achieved raw materials, 

relatively non-toxic metal source with adequate biocompatibility, and desirable 

physicochemical characteristics (e.g., semiconductor properties, high porosity and 

framework flexibility), and thus they can be employed as promising alternatives for 

environmental remediation (Hou et al., 2018; Lee et al., 2014). Interestingly, a porous matrix 

membrane (PMM) was constructed using an eco-friendly method, by applying MOF 

particles as green template, which although is insoluble in polar organic solvents but can be 

simply washed away by water (Fig. 21) (Lee et al., 2014). Such systems have appliance 

potential for pressure-driven membranes processes and carbonaceous nano-fiber membranes 

removing and separating NPs with remarkable selectivity, or osmotically-driven membrane 

systems, including pressure-retarded osmosis and forward osmosis (Lee et al., 2014).

4. Current challenges and future perspectives

There is a vital need for the introduction of novel advanced water technologies to ensure a 

high quality of drinking water, with added capacity to eliminate micropollutants. Industrial 

production processes need to be strengthened via the use of flexible and adaptable water 

treatment systems. One of the most important advantages of nanomaterials, when compared 

with conventional water technologies, is their ability to integrate various properties, resulting 

in multifunctional systems such as nanocomposite membranes that enable both, the particle 

retention and elimination of contaminants. Furthermore, nanomaterials enable higher 

process efficiency due to their unique characteristics, such as a high surface area. However, 
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some important drawbacks need to be pointed out at this stage. For instance, materials 

functionalized with NPs incorporated or deposited on their surface have risk potential, as 

NPs may be released to the environment where they can get accumulated over a longer 

period of time. In order to minimize the health risk, several national and international 

regulations and laws are being established. The main technical limitation of nano-engineered 

water technologies is that they are seldom adaptable for large-scale processes, and at present, 

in many cases are not competitive with conventional treatment technologies. Nevertheless, 

safer and earth-abundant nano-engineered materials offer great potential for innovations in 

the near future, particularly for the decentralized treatment systems, point-of-use devices, 

and heavily degradable contaminants. Biogenic NPs are promising materials due to the 

inherent greenness and sustainability of the production methods, and their good performance 

in the reduction of environmental contaminants (Gautam et al., 2019). Progress of advanced 

analytical and imaging technologies has paved various pathways for the assessment and 

measurement of nano-sized objects, especially for water treatment applications. In view of 

the applications of hazardous chemicals and materials for producing nano objects, chemical 

industry has been under stress to subrogate toxic reagents and harmful solvents; the main 

push has been to deploy biomolecules from organisms as an alternative to damaging 

synthetic chemicals to produce biocompatible nano objects. It appears that bioprepared 

nanomaterials can adsorb contaminants from aqueous watercourses or catalyze the 

degradation of organic pollutants into nontoxic categories. Biogenic nanomaterials are 

sustainable, relatively inexpensive, can be produced in an energy-efficient manner and 

ecologically reliable in view of their bio-renewable nature and could play significant roles in 

decontamination protocols for drinking and industrial wastewaters (Gautam et al., 2019). In 

terms of deployment of biogenic nanomaterials for water treatment and purification, some 

important future perspectives need to be considered:

1. The sustainability and toxicity issues need to be evaluated; more elaborative 

studies are required for application of these green-synthesized nanocatalysts and 

nanomaterials in industrial and commercial scales. On the other hand, applying 

nanomaterials may additionally contribute to the secondary pollution, and thus 

this critical issue should be addressed and evaluated comprehensively.

2. Although the production of these nanomaterials are simple and ecofriendly, some 

important and challenging aspects should be analyzed and optimized, including 

the effects of reaction parameters and stability issues, because these factors can 

modify the behavior of nanomaterials, morphologies and their pollutant removal 

performance. Further, the purification and extraction of the produced biogenic 

nanomaterials for additional applications are very important, and they should be 

isolated with high purity especially in the case of water treatment.

3. Further investigations are needed to find innovative nanohybrids and 

multifunctional nanomaterials to enhance their effectual usefulness.

4. The cost-effectiveness studies should be addressed to compare the fabrication of 

green-synthesized nanomaterials with the NPs prepared by conventional 

approaches.
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5. The efficacy issues and evaluation of remedial performances are typically 

designed on laboratory scales, simulating the variable levels of realistic exposure 

conditions, but it is crucial to investigate and evaluate the results from realistic 

environmental conditions.

5. Conclusion

Green-synthesized and biogenic nanocatalysts and nanomaterials can cost-effectively and 

proficiently eliminate the inorganic, organic, pharmaceutical, and heavy metal pollutants 

from the aqueous streams. As low cost of production is imperative for their broader 

applications in wastewater treatment, future studies should be dedicated to refining the 

economic viability of these nanomaterials and evaluation of their interactive mechanisms in 

water treatment systems. Additionally, their potential toxicity to human health and the 

environment need to be thoroughly probed; comprehensive evaluations of their noxiousness 

are very critical to ensure their safer applications. Further studies are warranted to compare 

the relative performances of these nanomaterials in terms of energy usage and resource 

utilization and recognize favorable earth-abundant materials which merit additional 

developments.

Nanotechnology-facilitated wastewater treatment systems need to ensure not only to 

circumvent the main challenges encountered by existing technologies but also to tender 

innovative treatment abilities which can permit economical applications of unconventional 

water resources to recover and develop for the water supply. Applying green-synthesized 

nanocatalysts and nanomaterials for the remediation of pollutants and aqueous metal ions 

are significantly encouraging, but some important and critical issues pertaining to the 

toxicity and biosafety issues and their mechanistic aspects should be systematically and 

comprehensively evaluated; more elaborative studies are still demanded to find the low cost, 

high adsorption capacity, and high selectivity of the fabrication method, as well as the 

recyclability of green-fabricated nanocatalysts and nanomaterials.
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Fig. 1. 
Biogenic nanomaterials for wastewater treatment: notable advantages and challenges.
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Fig. 2. 
Categories of biogenic nanomaterials for appliances in wastewater treatment.
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Fig. 3. 
Parameters for the fabrication of monodispersed and stable NPs. Reproduced with 

permission from Ref (Singh et al., 2016).
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Fig. 4. 
(a) Mechanism of extracellular/intracellular synthesis of NPs by microbial enzymes and/or 

metabolites. (b) Lactobacillus bacterial cell can serve as support and reducing agent for the 

formation of NPs. Reprinted with permission from Refs (Sengani et al., 2017; Parandhaman 

et al., 2019; Nair and Pradeep, 2002).
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Fig. 5. 
Proposed reaction mechanism for the green-synthesized Pd nanomaterials. Redrawn from 

Ref (Nasrollahzadeh et al., 2020a).
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Fig. 6. 
Probable components of various plant extracts towards the reduction of metal ions to metal 

NPs. Redrawn from Ref (Mittal et al., 2013).
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Fig. 7. 
Gallic acid-assisted (a) Pd(II) reduction and (b) Pd NPs stabilization. Redrawn from Ref 

(Dauthal and Mukhopadhyay, 2013).
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Fig. 8. 
Initial step proposed for the reaction of NR dye with hydroxyl radical. Redrawn from Ref 

(Jaafar et al., 2019).
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Fig. 9. 
Removal of pollutants by applying nanomaterials. Redrawn from Ref (Eskandarloo et al., 

2017).
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Fig. 10. 
Schematic representation and general mechanism for photocatalytic degradation of dye 

using green-synthesized NPs. Reproduced with permission from Ref (Shivaji et al., 2020).
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Fig. 11. 
(a) Calculated values of the band gaps and position of the conduction and valence bands (CB 

and VB) for MOF-5 in comparison with those of commercial TiO2. (b) A time conversion 

plot of the phenol disappearance (y axis represents “mol of phenol decomposed per g per 

mol”). (c) A possible mechanistic proposal towards the photodegradation of phenol utilizing 

MOF-5 photocatalyst. Reproduced with permission from Ref (Alvaro et al., 2007).
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Fig. 12. 
Main pathways proposed for the photodegradation of MO by UTSA-38 under visible or 

UV/vis light irradiation. Reproduced with permission from Ref (Das et al., 2011).
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Fig. 13. 
Possible mechanistic pathway for the NaBH4-assisted reduction of 4-NP by Pd NPs@Zeo. 

Reproduced with permission from Ref (Nasrollahzadeh et al., 2020b).
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Fig. 14. 
Biomolecule directed synthesis of a magnetite@chitosan-Au or Pd NPs and (HR)SEM 

images of well-dispersed spherically-shaped nanocomposite. Reproduced with permission 

from Ref (Parandhaman et al., 2016).
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Fig. 15. 
Proposed mechanism for the H2O2-assisted H-Bi2WO6 photocatalytic degradation of 

organic pollutants under solar irradiation. Reproduced with permission from Ref (Yi et al., 

2018).
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Fig. 16. 
(a) Schematic diagram illustrating the biomolecule directed synthesis of Al2O3/BT/Au NPs, 

(b,c) (HR)TEM images of the well-dispersed spherically-shaped Au NPs on Al2O3 support. 

Reproduced with permission from Ref (Huang et al., 2011b).
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Fig. 17. 
SEM images of the produced magnetic iron oxide NPs-Tea. Reproduced with permission 

from Ref (Lunge et al., 2014).
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Fig. 18. 
Green-produced iron oxide NPs dispersed onto zeolite by eucalyptus leaf extracts (EL-

MNP@zeolite). Reproduced with permission from Ref (Xu et al., 2020).
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Fig. 19. 
Bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite for removing 

tetracycline (TC). Reproduced with permission from Ref (Gopal et al., 2020).
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Fig. 20. 
(A) SEM image of GS-NiFe NPs (B) SEM image of GS-NiFe beads. Reproduced with 

permission from Ref (Ravikumar et al., 2020).

Nasrollahzadeh et al. Page 49

J Hazard Mater. Author manuscript; available in PMC 2022 January 05.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 21. 
(A) PMMs fabrication strategy. (B) PMMs were fabricated by applying MOF as green 

template for treatment of water; the reported strategy was compared with traditional mixed 

matrix membranes. Reproduced (Adapted) with permission from Ref (Lee et al., 2014).
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