Skip to main content
. 2020 Oct 17;23(11):101687. doi: 10.1016/j.isci.2020.101687

Table 1.

Examples of Various Nanoarchitecting Approaches toward Tuning the Stable Siliceous Frameworks

Type of Tuning Precursors Particle Size (nm) Outcome/Benefits References
Molecular integration Periodic mesoporous organosilicas (PMOs) Benzene, ethylene, ethane, 2,2′-bipyridine, thiophene, divinylbenzene, biphenyl, bis-imidazolium, among others 20–500 nm These organo-inorganic hybrid composites offer improved compatibility, degradability, and chemical, electronic, mechanical, magnetic, as well as optical properties. (Asefa et al., 1999; Cho et al., 2009; Croissant et al., 2014a, 2014b, 2016a; Dinker and Kulkarni, 2016; Du et al., 2016; Grosch et al., 2015; Inagaki et al., 1999; Maegawa and Inagaki, 2015; Sayari and Wang, 2005)
Disulfide-bridged constructs Bis (triethoxysilyl propyl) disulfide, (- (CH2)3-S ∼ S- (CH2)3-) 20–350 Enhanced GSH-triggered biodegradation through a disulfide-thiol exchange reaction. (Croissant et al., 2014a; Du et al., 2018b; Kim et al., 2012; Quesada et al., 2013; Teng et al., 2014; Zhang et al., 2003; Zhou et al., 2017)
Bis (triethoxysilyl propyl)tetrasulfide (- (CH2)3-S ∼ S ∼ S ∼ S- (CH2)3-) 30–2000 -do- (Wu et al., 2015; Yang et al., 2016b)
Diselenide-bridged constructs Se-Se ∼50 nm Rapid GSH-triggered biodegradation over the disulfide linkage due to weaker electronegativity. (Shao et al., 2018)
Metal-impregnated mesoporous silicas Al Incorporated Al species (Al-MCM-41/Al-MCM-48) enhanced the acidity for catalysis applications. (Aspromonte et al., 2012; Cesteros and Haller, 2001; Chen et al., 1993; Corma et al., 1994; Eimer et al., 2002; Huo et al., 2014; Kolodziejski et al., 1993; Monnier et al., 1993; Ryoo et al., 1997)
Cu ∼100 Offered pH-responsive release and degradation of MSNs. (Kankala et al., 2015, 2017, 2020b; Kuthati et al., 2017; Liu et al., 2019)
Fe 50–150 Facilitated the unique chemical coordination-accelerated biodegradation. (Wang et al., 2017)
Co, Fe, Ni Influenced the adsorption capacity, activity, and stability of the catalysts. (Parvulescu and Su, 2001)
Zn ∼100 Offered pH-responsive release of therapeutic guests in MSNs. (Kankala et al., 2020a, 2020c)
Shaping Janus-type architectures Gold, platinum, upconverting nanoparticles (UCNPs), iron oxide, and first-row-transition metal species 30–300 Metal-associated asymmetric shaped constructs with well-defined particle sizes showed improved magnetic, electrical, and optical, as well as mobility characteristics. (Abbaraju et al., 2017; Karimi et al., 2017; Li et al., 2014; Liu et al., 2019; Ma et al., 2015; Shao et al., 2016; Ujiie et al., 2015; Villalonga et al., 2013; Wang et al., 2019c; Xuan et al., 2016)
Multi-podal/multi-compartment architectures Ethyl acetate, mixed organosilane precursors 100–200 Multi-compartment nanocontainers offered selective drug adsorption for multidrug delivery. (Croissant et al., 2015a; Suteewong et al., 2013; Zhao et al., 2019)
Flower-shaped packing/dendritic/radially porous designs Adding cosolvents (diethyl ether, pentanol) and utilizing catalysts (triethanolamine, reduced ammonia), 4-mercaptophenylacetic acid, poly (acrylic acid), and altered emulsion components ratio 50–200 Center-wide radial porous channels offered improved encapsulation of large-sized therapeutic molecules. (Das et al., 2019; Du and Qiao, 2015; Gao et al., 2017; Wang et al., 2013, 2019a, 2019b; Xu et al., 2015; Zheng et al., 2018)
Dynamic modulation Deformable solids PMO (thioether/benzene/ethane-bridged)-based siliceous shells 50–200 Enriched the cellular internalization by changing their overall morphology (spherical-to-oval) during the mechanical inner stress. (Teng et al., 2018)