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Abstract

We describe a new catalytic strategy to transcend the energetic limitations of visible light by 

electrochemically priming a photocatalyst prior to excitation. This new catalytic system is able to 

productively engage aryl chlorides with reduction potentials hundreds of millivolts beyond the 

potential of Na0 in productive radical coupling reactions. The aryl radicals produced via this 

strategy can be leveraged for both carbon–carbon and carbon–heteroatom bond-forming reactions. 

Through direct comparison, we illustrate the reactivity and selectivity advantages of this approach 

relative to electrolysis and photoredox catalysis.

Activation of organic molecules through single electron transfer (SET) is a pillar of 

preparative chemistry. New strategies to induce redox events have the potential to 

significantly impact organic synthesis.1 In the past decade, visible-light photoredox catalysis 

has enabled a tremendous array of carbon–carbon and carbon–heteroatom bond-forming 

reactions.2,3 Unfortunately, blue light (440 nm) possesses sufficient energy for a maximum 

driving force of only 2.8 eV, and the available energy is further diminished by nonradiative 

pathways and intersystem crossing.4 Thus, despite catalyst design improvements,5,6 many 

desirable substrates remain inert to visible-light photoredox catalysis.7 As a result of this 

limitation, dissolving metal conditions,8 which employ reactive alkali metals in condensed 

ammonia, remain uniquely potent reductants in the synthetic arsenal9 and are still commonly 

used despite significant hazards and poor chemoselectivity.10,11 Aiming to provide safer and 
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more scalable conditions for challenging reductions, recent efforts have exploited overcharge 

protection to unlock deeply reducing cathodic potentials for electroorganic synthesis.12 

However, the requisite electrode overpotentials intrinsically limit the functional group 

tolerance. Furthermore, radical intermediates generated at a cathode are prone to reduction 

to anions.13 Overall, a new catalytic paradigm to access extremely reducing potentials under 

mild conditions and without reduction of radical intermediates would address a long-

standing challenge in organic synthesis (Figure 1).

To overcome the energetic limitations of blue photons, König and co-workers recently 

introduced an appealing approach designed to drive challenging SET events using the energy 

of two photons rather than one.14,15 This strategy relies on the light-mediated generation and 

subsequent photochemical excitation of catalytic radical anion intermediates. Although these 

systems push the limits of photoredox catalysis, they remain many orders of magnitude less 

reducing than alkali metals. Inspired by photophysical studies suggesting that other organic 

radical ions can serve as potent photoreductants,16,17 we questioned whether an alternative 

means of priming a photoredox catalyst with an electron prior to excitation could provide a 

general catalyst design platform to transcend the energetic limitations of visible light.

We hypothesized that electrochemistry18,19 could offer a more flexible approach than 

photoreduction to generate electron-primed photoredox catalysts. In addition to providing 

access to new catalysts, this approach eliminates the complications20 that can arise from the 

terminal reductants commonly used in photoredox catalysis, such as Et3N. This strategy 

builds on both long-standing21 and recent22 pioneering efforts combining electrochemistry 

with photochemistry.23 The majority of these examples take advantage of the desirable 

features of electrochemistry to generate known photochemically active intermediates or 

catalysts. However, electrochemical generation of new families of photocatalysts for organic 

synthesis remains largely unexplored. Recently, Lambert and co-workers reported a new and 

highly oxidizing photocatalyst (with a calculated potential of +3.3 V vs SCE) that is 

electrochemically accessible under a mildly oxidizing potential.22d Concurrently, we were 

exploring the use of electrochemistry to access new, electronically destabilized 

photocatalysts for challenging reductions.24 Herein we demonstrate that electrochemistry is 

a viable strategy to generate highly reducing electron-primed photoredox catalysts. We 

exploit this approach to identify an aryl imide photocatalyst capable of engaging substrates 

with reduction potentials on par with alkali metals in SET-initiated radical coupling 

reactions under otherwise mild conditions.

To explore this idea, we targeted the reductive generation of aryl radicals from unactivated 

precursors. These reactive intermediates are known to participate in a range of synthetically 

useful carbon–carbon and carbon–heteroatom bond-forming reactions; however, they are 

typically generated from diazonium salts or aryl iodides using modern photoredox catalysts.
25 With the most reducing visible-light photoredox catalysts, aryl bromides are suitable 

radical precursors.26,27 Unfortunately, aryl chlorides comprise over half of the commercially 

available aryl halides28 yet are inert under conventional visible-light photoredox catalysis 

unless they bear electron-withdrawing groups.29–31 This limitation is a result of the 

combination of thermodynamically challenging SET and the low fragmentation rate due to 

the relatively strong C(sp2)–Cl bond.32
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To assess the viability of the proposed electrophotocatalytic approach, we investigated the 

dehalogenation of 4-bromobiphenyl (1) because of its reduction potential beyond the 

standard range of photoredox catalysts (−2.4 V vs SCE) and rapid fragmentation after 

reduction, as this provides a highfidelity readout for successful SET.32 Using this model 

reaction, we assessed a series of aryl imides for activity under visible-light irradiation and an 

appropriate electrochemical potential to reductively activate the imide (Table 1). The radical 

anion derived from perylene diimide (PDI) can act as an electron-primed photoredox 

catalyst under two-photon conditions14a and is also well-behaved electrochemically.33 

Unfortunately, PDI proved ineffective in the dehalogenation of 1 under these conditions. 

Photophysical studies have indicated that naphthlene-based analogues (NpDI and NpMI) 

are more potent photoreductants after they are primed with an electron,17c but they have yet 

to be leveraged in synthesis. Excitingly, under electrophotocatalytic conditions both NpDI 
and NpMI promoted the dehalogenation of 1, despite significant electrochemical 

underpotentials in each case (1.6 and 1.1 V vs SCE respectively). While both NpMI and 

NpDI are sufficiently potent photoreductants to reduce 1, NpMI promoted dehalogenation 

significantly more efficiently. However, further stripping down the aromatic core to a 

phthalimide derivative, PhMI, resulted in a less effective photocatalyst than NpMI. On the 

basis of these data, we selected NpMI for further study after verifying that no significant 

conversion was observed in the absence of an applied voltage, light, or the catalyst.

Having identified a promising electrochemically accessible photocatalyst, we explored 

whether this system could engage abundant but much more challenging aryl chlorides in 

radical coupling reactions. We first probed the viability of a photo-Arbuzov process,34 a 

classic carbon–heteroatom bond-forming reaction that proceeds through an aryl radical 

intermediate (Table 2). For these studies, we employed more convenient constant-current 

conditions.35 We found that under simultaneous electrolysis and irradiation, NpMI induced 

the high-yielding coupling of aryl chlorides with reduction potentials at and beyond the 

limits of conventional visible-light photoredox catalysis (2–3). To identify the limits of this 

catalytic system, we next evaluated increasingly electron-rich aryl chloride substrates. 

Excitingly, aryl chloride substrates bearing electron-donating groups still underwent efficient 

SET-induced phosphorylation (4–7) even though they possess reduction potentials 

comparable to that of Na0 (−2.9 V vs SCE). Notably, an exceptionally electron-rich aryl 

chloride (−3.4 V vs SCE)36 was successfully reduced to produce 7. This result indicates that 

these conditions provide potency comparable to that of Li0 (−3.3 V vs SCE). To our delight, 

despite the presence of such a potent reductant, aryl chloride substrates bearing potentially 

sensitive functional groups7,37 such as esters (8), nitriles (9), carbamates (10), organoboron 

reagents (11), and heterocycles (12 and 13) all underwent productive SET-induced radical 

phosphorylation, and the corresponding products were isolated in good to excellent yields.

Having established the viability of carbon–heteroatom bond-forming reactions from diverse 

aryl chlorides, we next aimed to intercept the aryl radical intermediate with a heterocycle to 

form a new carbon–carbon bond (Table 3). We found that the aryl radical intermediates 

generated under these conditions from neutral to electron-rich aryl chlorides (14–18) could 

be effectively coupled to N-methylpyrrole, a classic radical trap.38 Again, reductively 
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sensitive functional groups were well-tolerated despite the potency of the photoreductant 

employed (19–21).

With a new catalytic strategy in hand, we next compared its efficacy to those of traditional 

photochemical and electrochemical approaches for the reductive activation of aryl chlorides 

(Figure 2). To this end, we investigated the relative yields of N-methylpyrrole coupling and 

dehalogenation within a subset of aryl chloride substrates ranging from electron-deficient to 

electron-rich. When the electron-primed photoredox system was used, each substrate 

delivered the desired product with excellent selectivity for radical coupling over 

dehalogenation. In contrast, 10-phenylphenothiazine (PTH), an exceptionally reducing 

photoredox catalyst (−2.1 V vs SCE),26a could only induce the coupling of the electron-

deficient aryl chloride. The neutral and electron-rich substrates were unconverted by PTH, 

consistent with the energetic limitations of visible-light photoredox Direct electrolysis, on 

the other hand, provided significantly diminished selectivity for coupling of the electron-

deficient substrate (2:1) and the other two substrates yielded in exclusively dehalogenation. 

These results are consistent with over-reduction at the electrode surface that precludes 

radical coupling reactions at the requisite potentials for aryl chloride reduction.

We next subjected radical clock 22 to both electron-primed photoredox and direct 

electrolysis conditions to probe the presence of an aryl radical intermediate and benchmark 

the rate of its over-reduction (Scheme 1). The aryl radical derived from 22 undergoes radical 

cyclization with a rate of 8 × 109 s−1.39 As anticipated, NpMI under blue-light irradiation 

and constant-current electrolysis delivered selective cyclization (54% yield, ≥20:1 selectivity 

for cyclization over dehalogenation and aryl anion-derived40 isomerization products). This 

result is fully consistent with the proposed intermediacy of an aryl radical intermediate and 

high selectivity for radical chemistry instead of over-reduction. Direct electrolysis, however, 

provided no observable cyclization and generated only dehalogenation and isomerization 

products consistent with anionic intermediates. This indicates that under the direct 

electrolysis conditions investigated, any radical reactions with rate constants lower than 109 

s−1 will not be viable because of competitive electrochemical reduction of the radical. This 

is consistent with the facile reduction of aryl radical intermediates at electrode surfaces 

(phenyl radical Ered = +0.05 V vs SCE).41

Finally, we aimed to gain preliminary insight into the promising chemoselectivity observed 

with this potent catalytic reductant. Notably, classic photoredox approaches are sensitive to 

not only the reduction potential of the substrate but also the fragmentation rate of the radical 

anion formed via SET.25a This is likely due to competition between back electron transfer 

and the productive fragmentation and coupling. Although back electron transfer can be a 

hindrance,42 we suspect that this feature also contributes to the excellent chemoselectivity 

profiles observed in photoredox catalysis. Thus, we wanted to ascertain whether the 

exceptionally potent photoreductant explored herein exhibited analogous reactivity or 

whether SET was irreversible.

To this end, we conducted a series of one-pot intermolecular competition experiments 

between bromo- and chlorobiphenyl (Figure 3). These halogen congeners possess the same 

reduction potential (−2.4 V vs SCE), but their radical anions exhibit significantly different 
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fragmentation rates.32,43 We subjected a 1:1 mixture of the two aryl halides to NpMI under 

simultaneous irradiation and a working potential of −1.3 V vs SCE. We found that the initial 

rate of C(sp2)–Br cleavage was significantly higher than that of C(sp2)–Cl cleavage (krel = 8) 

despite the fact the two aryl halides possess identical reduction potentials. This observation 

excludes that conversion is based exclusively on the reduction potential. In stark contrast, the 

two substrates are converted at similar rates under direct electrolysis conditions (krel = 2).44 

Consistent with prior work in photoredox catalysis, PTH promoted the dehalogenation of 

bromobiphenyl more rapidly than that of the chloride (krel = 15). Taken together, these data 

indicate that productive conversion is not governed exclusively by the reduction potential 

under either electron-primed or conventional photoredox catalysis. This observation 

provides a plausible rationale for the promising chemoselectivity observed under the 

conditions reported herein relative to deeply reducing direct electrolysis, which 

predominantly commits to product formation on the basis of the substrate reduction 

potential.

Overall, we have demonstrated that electrochemical stimulation is a viable strategy to 

generate catalytic photoreductants capable of transcending the limits of modern photoredox 

catalysis. We report effective radical couplings of substrates hundreds of millivolts more 

challenging to reduce than previous photoredox strategies, including substrates with 

reduction potentials well beyond that of Na0 and more negative than that of Li0. Crucially, 

despite accessing such negative potentials, the reactions possess functional group tolerance 

profiles more consistent with traditional photoredox catalysis than direct electrolysis and 

result in high selectivity for radical coupling over dehalogenation. Beyond unlocking 

electronically diverse aryl chlorides as aryl radical precursors, these data lay the foundation 

for a new catalyst design paradigm. We anticipate that electrochemically priming 

photocatalysts prior to excitation will allow much more challenging reductions than are 

feasible with blue light alone and will result in a myriad of transformations inspired by what 

is feasible under dissolving metal conditions and beyond.
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Figure 1. 
Strategies to induce SET reduction. All potentials shown are relative to SCE. PTH = 10-

phenylphenothiazine.
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Figure 2. 
Comparison of reactivities and selectivities observed with various methods of generating 

aryl radical intermediates using N-methylpyrrole as a radical trap. Yields of coupling and 

dehalogenation were measured relative to an internal standard. The electron-primed 

photoredox conditions were the same as in Table 3. The photoredox conditions followed 

pyrrole coupling procedures from the literature employing PTH as a photocatalyst. Several 

direct electrolysis conditions were attempted. The reported conditions provided the highest 

yield of A and were standard reaction conditions from Table 3 without catalyst. For further 

details, see the SI.
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Figure 3. 
Comparison of one-pot competition experiments. krel is given as kBr/kcl and was measured 

by gas chromatography based on reactions run to low conversion (<20%). The electron-

primed photoredox conditions followed from Table 1. The direct electrolysis conditions 

were those reported in ref 44. Previously reported photoredox conditions were employed 

26a. See the SI for details.
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Scheme 1. 
Comparison of Radical Clock Outcomesa

aThe reaction was conducted on a 0.4 mmol scale for 20 h.´
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Table 1.

Electrochemical Access to Electron-Primed Photocatalysts
a,b,c

a
All redox potentials given relative to SCE.

b
Ar = 2,6-diisopropyl-phenyl.

c
Reactions were conducted on a 0.4 mmol scale in DMF (0.1 M Bu4NPF6) in the presence of 2,4,6-tri-tert-butylphenol (10 mol %) and isopropyl 

alcohol (1 equiv). See the Supporting Information (SI) for further details.
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Table 2.

Scope of Aryl Chloride Phosphorylation
a

a
Reactions were conducted on a 0.4 mmol scale and run for 8 h. Et3N (2 equiv) was employed in the anode as the counter reaction. See the SI for 

further experimental details.

b
The reaction was run for 14 h.
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c
Ered was determined by differential pulse voltammetry

d
0.4 mA current.
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Table 3.

Scope of Aryl Chloride (Hetero)arylation
a

a
Reactions were conducted on a 0.4 mmol scale and run for 27 h. Et3N (2 equiv) was employed in the anode as the counter reaction. See the SI for 

further experimental details.
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