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Abstract. Acute myeloid leukemia with normal karyotype 
(NK‑AML) is a group of diseases with high heterogeneity 
and immunological processes are significantly associated 
with its initiation and development. The implication of the 
immunogenomic landscape in the prognosis of patients with 
NK‑AML has remained largely elusive. In the present study, 
the expression profiles of immune‑related genes (IRGs) were 
examined and their association with overall survival  (OS) 
was determined in 60  patients with NK‑AML from The 
Cancer Genome Atlas dataset and 104 patients from the Gene 
Expression Omnibus (GEO) dataset no. GSE71014. Univariate 
Cox regression analysis was used to identify 42 and 203 IRGs 
in the two respective cohorts, which were significantly asso‑
ciated with OS in NK‑AML. A risk model was constructed 
based on the regression coefficient and expression values 
of nine survival‑associated IRGs shared between the two 
datasets [zinc finger CCCH‑type containing, antiviral 1 like; 
transferrin receptor; suppressor of cytokine signaling 1; ELAV 
like RNA binding protein 1; roundabout guidance receptor 3; 
unc‑93 homolog B1, Toll‑like receptor signaling regulator; 
protein tyrosine phosphatase non‑receptor type 6; interleukin 2 
receptor subunit alpha (IL2RA) and IL3RA]. Using this risk 
model, patients with NK‑AML may be divided into high‑ and 
low‑risk groups in prognostic predictions. The area under the 
receiver operating characteristic curve for predicting OS was 
0.793. The prognostic role of this risk model was success‑
fully verified in another independent cohort (GEO dataset 
no.  GSE71014). The prognostic risk score was positively 

associated with age and fms related receptor tyrosine kinase 3 
mutation and correlated with infiltration by T regulatory cells. 
In conclusion, the results of the present study provided an IRG 
score model for prognostic stratification of adult patients with 
NK‑AML, as well as further insight into the implication of 
IRGs in NK‑AML that may lead to the development of novel 
immunotherapy approaches for this disease.

Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease 
of hematopoietic stem cells; chromosomal aberrations have 
been recognized as the most important prognostic marker in 
patients with AML (1). Of all cases of AML, 40‑50% have a 
normal karyotype (2). Recent technological advances in gene 
expression profiling have allowed for the identification of more 
aberrantly expressed genes and the assessment of their predic‑
tive value for survival of patients with AML with normal 
karyotype (NK‑AML). The expression levels of genes such 
as neurocaldin delta, MAPK binding protein 1, copine 3 and 
RUNX family transcription factor 1 provide further references 
for predicting the prognosis of patients with NK‑AML (3‑6). 
Ahn et al (7) reported that in patients with NK‑AML, the pres‑
ence of mutated chromatin, RNA‑splicing genes or both was 
associated with poor survival. In general, these studies (3‑7) 
have indicated high genetic heterogeneity in NK‑AML. 
Patients with NK‑AML exhibit marked differences in terms of 
prognosis (8). While the significance of single gene expression 
in NK‑AML progression remains restrictive, gene expression 
signature‑derived scoring systems have a promising prognostic 
value in AML (9).

Previous studies have demonstrated that the immune system, 
consisting of immune‑related genes (IRGs), tumor‑infiltrating 
lymphocytes and cytokines, is vital during the initiation and 
progression of cancer. The immunological surveillance and 
immune escape in bone marrow microenvironment have an 
impact on the clinical outcome of patients (10). IRGs actively 
participate in the process of immune activity, involving antigen 
presentation, cytokine signaling or immune‑checkpoint 
modulation (11). Several IRGs in the immune/inflammatory 
response, such as interleukin (IL)‑10, IL‑15, Toll‑like receptor 
(TLR)8 and TRAIL, have been indicated as being involved 
in the proliferation and differentiation of AML cells (12‑14). 
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Increased soluble IL‑2 receptor levels in adult AML are 
associated with reduced chemotherapy response and reduced 
overall survival time (15). In addition, clinical benefits have 
been observed with immune checkpoint therapies in patients 
with AML. Programmed cell death protein 1 and cytotoxic 
T‑lymphocyte antigen 4 inhibitors may be effective in elderly 
patients with AML  (16). CD163 has been identified as a 
potential therapeutic target (17). However, to the best of our 
knowledge, the clinical role, particularly the prognostic role of 
IRGs in NK‑AML, has remained to be determined.

Based on the aforementioned studies on the influence of 
immunity factors on the prognosis of AML, the present study 
aimed to identify differentially expressed IRGs in patients 
with NK‑AML and assess their utility as survival predictors. 
For this purpose, public data from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases 
were subjected to bioinformatics analyses. Furthermore, given 
that integrated prognostic analysis of multiple immune genes 
is more meaningful compared with the predictive value of a 
single gene, the present study aimed to propose an integrative 
risk score model consisting of the IRGs associated with prog‑
nosis. Data of the immune status of patients with NK‑AML 
enrolled in the present study from obtained from two databases 
and further investigated.

Materials and methods

Study design. A flowchart illustrating the process of estab‑
lishing the IRG risk score (IRGRS) model is presented in 
Fig.  1. The gene expression profiles and clinical data of 
patients with NK‑AML from TCGA (https://tcga‑data.nci.nih.
gov/tcga/) and the GEO datasets (GSE71014) (https://ncbi.nlm.
nih) were retrospectively analyzed. The expression levels of the 
common IRGs were screened from all protein‑coding genes of 
the two datasets. Subsequently, the prognostic genes in TCGA 
and GEO datasets were identified by univariate Cox analysis. 
The survival‑associated genes intersection of TCGA and 
GEO data were further analyzed to construct the prognostic 
model in the TCGA cohort. The GEO cohort (GSE71014) 
was employed to validate the immune‑associated risk score 
model. Statistical analyses were performed using R software 
(version 3.5.3; http://www.r‑project.org/) and Bioconductor 
(version 3.5.3; http://www.bioconductor.org/) was utilized for 
the bioinformatics analysis.

Patient data. The RNA‑sequencing (RNA‑seq) datasets of 
patients with AML, which had been experimentally deter‑
mined using the Illumina HiSeq  2000 RNA Sequencing 
platform, were obtained from TCGA database  (18). The 
corresponding clinical information was downloaded from 
the University of California Santa Cruz (UCSC) Xena site 
(https://xenabrowser.net/), including age, sex, leukemia French 
American British morphology code, the molecular analysis 
of nucleophosmin 1 (NPM1) and fms related receptor tyro‑
sine kinase 3 (FLT3) mutations, survival time and outcome. 
Patients with normal karyotype were included and patients 
with acute promyelocytic leukemia were excluded. A total 
of 60 adult patients were selected from TCGA. There were 
30 males (50.0%) and 30 females (50.0%) with a median age 
of 53.1 (range, 21‑88) years. All gene expression levels were 

detected using the RNA‑seq method in bone marrow cells 
of patients with NK‑AML. The present study also included a 
total of 104 adult patients with NK‑AML with a median age 
of 58 (range, 16‑90) years from the GSE71014 dataset (19). 
To generate this dataset, cryopreserved bone marrow cells 
had been obtained from 104 patients with de novo AML and 
each sample was analyzed using the Illumina HumanHT‑12 
V4.0 expression beadchip (GPL10558). The gene expression 
profiles were acquired from the matched probes and were 
used for further analysis. In the present study, the IRGs were 
acquired from the ImmPort database, comprising 2,498 genes 
(https://immport.niaid.nih.gov) (20). The immune‑associated 
genes that were upregulated or downregulated in TCGA and 
GSE71014 datasets was selected.

Construction and evaluation of the IRG risk score. The 
immune‑associated genes in two datasets that were signifi‑
cantly associated with the overall survival of NK‑AML were 
identified using univariate Cox analysis respectively (P≤0.005). 
The intersection of prognosis‑associated IRGs in TCGA and 
GSE71014 datasets were selected and displayed in a Venn 
diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/). 
The prognosis‑associated IRGs were then submitted for 
multivariate analyses. Prognostic analysis was performed 
using the R  package ‘survival’ (https://CRAN.R‑project.
org/package=survival; version 3.1‑8). For the establishment 
of the prognostic score, the TCGA dataset was adopted. The 
IRGRS model was constructed by multiplying the gene expres‑
sion levels of prognosis‑associated IRGs with the corresponding 
Cox coefficient (coe), as follows: Risk score=∑n

i IRGi x coei, 
where i represents a certain specific IRG and n is the number 
of all IRGs. This was accomplished using R package ‘states’ 
(https://github.com/andybega/states; version 0.2.2).

The risk score of each patient in the TCGA cohort was calcu‑
lated according to this formula. The cut‑off value was set as the 
median risk score and all patients were divided into high‑ and 
low‑risk groups based on this value. Subsequently, it was investi‑
gated whether the survival times were different between the two 
groups. Kaplan‑Meier curves were plotted for the OS of patients 
with high‑and low‑ risk scores. Survival outcomes were compared 
using the log‑rank test. The receiver operating characteristic 
(ROC) analysis was used to evaluate the predictive performance 
of the IRGRS model, making a distinction between the high‑risk 
and low‑risk group. Areas under the curve (AUCs), optimal 
threshold values, sensitivity and specificity, were determined 
using the R package ‘survivalROC’ (https://CRAN.R‑project.
org/package=survivalROC; version 1.0.3), to evaluate the signifi‑
cance of the survival difference between the two groups. In order 
to demonstrate whether the IRGRS may act as an independent 
risk factor associated with survival, the IRGRS for patients with 
NK‑AML were assessed using univariate and multivariate Cox 
analyses which were adjusted for age, sex and the mutation of 
NPM1 and FLT3. Among them, 60 years was the cut‑off for age 
grouping. In addition, the correlations between IRGRS and Tregs 
were investigated were investigated, which were assessed using 
Spearman's correlation.

Tumor immunity relevance of the IRGRS. Regarding the 
close association between the IRGs and immune cells of the 
bone marrow microenvironment, the immune landscape was 
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assessed in the present study. The abundance of 22 types of 
infiltrating immune cells of each patient with NK‑AML in 
the TCGA cohort was estimated by translating the expression 
levels of genes downloaded from the TCGA cohort into the 
relative proportion of immune cells. This was achieved with 
the CIBERSORT algorithm based on the deconvolution, 
using the ‘CIBERSORT’ R package (CIBERSORT R script 
v1.03; http://cibersort.stanford.edu/). This tool was developed 
by Newman et al  (21) and has been validated to quantify 
the abundance of specific cell types successfully. Inaccurate 
samples were eliminated (P≥0.05). The 22 types of immune 
cells contain B, regulatory T cells (Tregs), CD4+T, CD8+ T, 
natural killer, mast, plasma and dendritic cells, neutrophils, 
eosinophils and macrophages. The association between 
IRGRS and immune cell infiltration level in NK‑AML was 
analyzed in the TCGA dataset.

Validation of the immune‑associated risk score model for 
NK‑AML. In order to evaluate the robustness of the IRGRS in 
the prognostication of patients with NK‑AML, this prognostic 

model was tested in the GEO dataset GSE71014 as an indepen‑
dent validation set, using the same analytical method used for 
the TCGA cohort. Patients were divided into high‑ and low‑risk 

Figure 1. Flowchart presenting the process of establishing the immune‑related genes risk score model. TCGA, The Cancer Genome Atlas; ROC, receiver 
operating characteristic; NK‑AML, acute myeloid leukemia with normal karyotype.

Figure 2. Venn diagram analysis of immune‑related prognostic genes. 
TCGA, The Cancer Genome Atlas.
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groups with the median risk score of the TCGA utilized as 
the cut‑off value. The GSE71014 dataset was not able to be 
used to validate the association between the prognostic risk 
models and the clinical characteristics due to a lack of clinical 
parameters.

Results

Construction of the IRGRS model and internal validation. The 
aim of the present study was to construct an immune‑asso‑
ciated prognostic model of NK‑AML. A total of 164 patients 
with NK‑AML were included in the two cohort studies. In 
the TCGA NK‑AML cohort (n=60), 42 immune‑associated 
prognostic genes were identified. In the 103  NK‑AML 
samples of the GSE71014 cohort, the expression of 203 IRGs 
was significantly associated with OS (P<0.05). The Venn 
diagram represents the number of overlapping IRGs between 
the two cohorts (n=9; Fig. 2). These nine genes were zinc 
finger CCCH‑type containing, antiviral 1 like (ZC3HAV1L), 
transferrin receptor (TFRC), suppressor of cytokine 
signaling  1 (SOCS1), ELAV like RNA binding protein  1 
(ELAVL1), roundabout guidance receptor 3 (ROBO3), unc‑93 
homolog B1, TLR signaling regulator (UNC93B1), protein 
tyrosine phosphatase non‑receptor type  6 (PTPN6), IL‑2 
receptor subunit alpha (IL2RA) and IL3RA. The hazard ratio 
(HR), 95% CI and P‑value of univariate analyses for these 
nine IRGs in the TCGA cohort affecting OS are presented in 
Table I. In order to construct an IRG‑based prognostic model 
to predict the risk of NK‑AML, the nine prognostic IRGs 
were subjected to multivariate regression analysis using the 
Cox proportional hazards model for OS in the TCGA cohort. 
According to the corresponding coefficient value and expres‑
sion value for each gene, the formula to calculate the risk 
score was as follows: IRGRS=[(‑0.33298) x expression level 
of ZC3HAV1L] + [(‑0.27376) x expression level of TFRC] + 
[(0.10993)  x expression level of SOCS1] + [(‑0.09726)  x 
expression level of ELAVL1) + [(0.22322) x expression level 
of ROBO3] + [(‑0.0229) x expression level of UNC93B1] + 
[(0.246114) x expression level of PTPN6] + [0.227133 x expres‑
sion level of IL2RA] + [(0.217204) x  expression level of 
IL3RA] (cut‑off=1.006977).

The Kaplan‑Meier survival curves revealed that patients in 
the high‑risk group exhibited a significantly lower OS rate than 
the low‑risk group (P<0.01; Fig. 3A). The estimated 5‑year OS 
rate was 8.0 vs. 54.9% for the high‑risk and the low‑risk group, 
respectively. The AUC of the ROC curve for OS prediction 
was 0.793, indicating a promising predictive value (Fig. 3B). 
In order to further investigate the impact of the IRGRS on 
the clinical outcomes, a risk curve was drawn. The prognostic 
model separates the NK‑AML patients into two groups with 
discrete clinical outcomes (Fig. 4A). It also revealed that as the 
risk score increased, the survival time to decrease. (Fig. 4B). 
In the univariate regression analysis, the IRGRS was signifi‑
cantly associated with OS (HR, 1.749; 95% CI, 1.440‑2.124; 
P<0.001). This result was consistent with that of the multi‑
variate analysis (HR, 1.662; 95% CI, 1.321‑2.091; P<0.001), 
which considered age, sex, the FAB classification, the type 
of NPM1 and the FLT3 genotype as co‑effectors (Table II). 
These results demonstrated that the IRGRS is an independent 
predictor of OS in patients with NK‑AML.

Correlation of the IRGRS with clinical and immune char‑
acteristics. Relationships were analyzed between IRGRS 
model risk score and clinical characteristics, including age, 
sex and the mutations of NPM1 and FLT3. We also explored 
the relationships between nine prognostic IRGs expression 
and this clinical characteristics. (Table III). The risk scores 
in the elderly group and FLT3 mutant group were signifi‑
cantly higher compared with those in the non‑elderly group 
and FLT3 wild‑type group. It was revealed that a high risk 
score was associated with higher age (P=0.050) and a higher 
incidence of FLT3 mutation (P=0.034), and there was no 
significant association with sex (P=0.772) and NPM1 mutation 
(P=0.398; Fig. 5).

For the immunity relevance analysis of the IRGRS, 
50 samples were available from the TCGA database, whose 
relative content of immune cells had been precisely estimated. 
A correlation analysis of the ratio of infiltrating immune cells 
and the IRGRS was performed (Table IV). In TCGA, signifi‑
cant correlations were identified between the IRGRS and 
monocytes (P=0.014), NK resting cells (P=0.028) and Tregs 
(P<0.001). As presented in Figs. 5E and 6C, a significantly 
positive correlation was observed between the amount of Tregs 
and the IRGRS in both TCGA and GEO databases (P<0.05).

Validation in the GEO database. Finally, the predictive model 
based on the IRGRS for NK‑AML was further validated in the 
GSE71014 cohort. Application of the model to the validation 
cohort in a survival analysis was able to distinctly discriminate 
patients with different survival time according to their risk 
score value (Fig. 6A and B). Furthermore, in this cohort, Tregs 
were positively correlated with the IRGRS (P=0.002; Fig. 6C). 
Plasma cells, T γ Δ cells and resting dendritic cells were also 
correlated with the IRGRS. Taken together, the data of the 
present study indicated that the predictive IRGRS model was 
of great prognostic value in NK‑AML.

Table I. Univariate Cox analysis for overall survival of the nine 
immune‑related genes in The Cancer Genome Atlas cohort.

Gene name	 HR	 95% CI	 P‑value

ZC3HAV1L	 0.736	 0.545‑0.994	 0.045
TFRC	 0.633	 0.450‑0.889	 0.008
SOCS1	 1.621	 1.217‑2.159	 0.001
ELAVL1	 0.400	 0.165‑0.972	 0.043
ROBO3	 1.329	 1.042‑1.695	 0.022
UNC93B1	 1.494	 1.098‑2.034	 0.011
PTPN6	 1.557	 1.022‑2.371	 0.039
IL2RA	 1.354	 1.141‑1.606	 0.001
IL3RA	 1.593	 1.105‑2.296	 0.013

HR, hazard ratio; ZC3HAV1L, zinc finger CCCH‑type containing, 
antiviral 1 like; TFRC, transferrin receptor; SOCS1, suppressor of 
cytokine signaling 1; ELAVL1, ELAV like RNA binding protein 1; 
ROBO3, roundabout guidance receptor  3; UNC93B1, unc‑93 
homolog B1, Toll‑like receptor signaling regulator; PTPN6, protein 
tyrosine phosphatase non‑receptor type  6; IL2RA, interleukin  2 
receptor subunit alpha.
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Figure 4. Nine immune‑related gene risk‑score analysis of NK‑AML patients in The Cancer Genome Atlas cohort. (A) Rank of risk score and distribu‑
tion of groups, the X axis represented the number of patients, the Y axis represented their risk values and red and green points represent high and low 
risk, respectively. Each point represented one patient sorted by the rank of the risk score. (B) Survival status of patients in different groups. The below 
point showed risk score distribution, survival status and time until conclusion of the study in NK‑AML patients. Red and green points represented dead 
and alive, respectively. NK‑AML, acute myeloid leukemia with normal karyotype.

Figure 3. Association of the IRGRS with survival. (A) Kaplan‑Meier curves based on IRGRS in The Cancer Genome Atlas cohort. The blue and red shadows 
around the curves indicate the 95% confidence intervals. Patients with a high‑risk score had unfavorable survival outcomes (P<0.001). (B) ROC curve of 
the IRGRS model for overall survival prediction. ROC, receiver operating characteristic; AUC, area under the ROC curve; IRGRS, immune‑related genes 
risk score.
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Discussion

The significance of IRGs in AML progression and immuno‑
therapeutics have been reported previously (22,23). However, 
to the best of our knowledge, no comprehensive, genome‑wide 
profiling analysis of the prognostic significance of all IRGs 
in NK‑AML has so far been performed. Thus, the expression 
levels of IRGs in 164 patients with NK‑AML were analyzed 
in the present study and the prognostic value of IRGs was 
subsequently assessed. A total of 42 and 203  IRGs with 
prognostic value were identified from the TCGA and 
GEO cohort, respectively. Between the two cohorts, nine 
overlapping IRGs with prognostic value in NK‑AML were 
identified. Due to the limited power of individual indicators 
to predict prognosis, multivariate Cox regression analysis 

was used to analyze the prognostic significance of nine IRGs 
and their combination in NK‑AML. The prognostic assess‑
ment model used in the present study was combined based 
on the regression coefficient and expression value of each 
of those nine IRGs. The AUC of the ROC curve was 0.793, 
suggesting moderate potential for evaluating the prognosis 
of patients with NK‑AML based on the IRGRS model. The 
present study then validated the predictive capability of 
the risk model in another independent cohort, namely the 
104 patients from GSE71014. The subgroup of patients with 
NK‑AML with high risk scores exhibited poor survival. 
The IRGs‑based risk score was demonstrated to be of high 
prognostic value to predict the survival of patients with 
NK‑AML in the clinic and it provided valuable biomarkers 
for this disease.

Table II. Univariate and multivariate Cox analysis for overall survival of risk score and clinical parameters in The Cancer 
Genome Atlas cohort.

	 Univariate	 Multivariate
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

Age (≥60 years)	 1.023	 1.004‑1.041	 0.016	 1.018	 0.998‑1.038	 0.074
Sex (male)	 0.738	 0.400‑1.362	 0.331	 0.497	 0.243‑1.018	 0.056
Grade (0‑7)	 1.160	 0.954‑1.411	 0.136	 0.987	 0.778‑1.252	 0.913
FLT3 (positive)	 3.004	 1.578‑5.719	 0.001	 3.434	 1.469‑8.028	 0.004
NPM1 (positive)	 0.918	 0.497‑1.694	 0.784	 0.391	 0.185‑0.828	 0.014
Risk score (>1.006977)	 1.749	 1.440‑2.125	 <0.001	 1.662	 1.321‑2.091	 <0.001

HR, hazard ratio; FLT3, fms related receptor tyrosine kinase 3; NPM1, nucleophosmin 1.

Table III. Association between immune indices and demographic features and FLT3 and NPM1 mutation.

	 Age, ≥60	 Sex, male	 FLT3, mutant	 NPM1, mutant
	 vs. <60 years	 vs. female	 vs. wildtype	 vs. wildtype
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene	 t	 P‑value	 t	 P‑value	 t	 P‑value	 t	 P‑value

ZC3HAV1L	 1.879	 0.067	 ‑0.355	 0.724	 0.721	 0.475	 1.359	 0.180
TFRC	 0.394	 0.695	 0.030	 0.976	 3.277	 0.002	 3.796	 <0.001
SOCS1	 ‑2.86	 0.006	 0.752	 0.455	 ‑1.579	 0.123	 ‑0.678	 0.501
ELAVL1	 1.332	 0.191	 ‑1.349	 0.183	 1.790	 0.080	 1.595	 0.116
ROBO3	 ‑2.543	 0.014	 ‑1.776	 0.081	 ‑0.875	 0.386	 1.916	 0.060
UNC93B1	 ‑1.733	 0.089	 ‑0.498	 0.621	 ‑1.266	 0.213	 ‑0.484	 0.630
PTPN6	 ‑1.341	 0.186	 ‑0.046	 0.964	 ‑1.611	 0.116	 ‑1.736	 0.089
IL2RA	 ‑1.142	 0.258	 0.373	 0.710	 ‑2.494	 0.018	 ‑0.68	 0.500
IL3RA	 ‑0.851	 0.399	 0.604	 0.549	 ‑0.526	 0.601	 1.019	 0.312
Risk score	 ‑2.02	 0.050	 0.291	 0.772	 ‑2.208	 0.034	 ‑0.852	 0.398

Mutations in NPM1 and FLT3 and age ≥60 were associated with overall survival. Patients were divided into two groups according to age 
(≥60 vs. <60), Sex (male vs. female), FLT3 (mutant vs. wildtype), NPM1 (mutant vs. wildtype). t: t value of Student's t‑test; P: P‑value of 
Student's t‑test; FLT3, fms related receptor tyrosine kinase 3; NPM1, nucleophosmin 1; ZC3HAV1L, zinc finger CCCH‑type containing, 
antiviral  1 like; TFRC, transferrin receptor; SOCS1, suppressor of cytokine signaling  1; ELAVL1, ELAV like RNA binding protein  1; 
ROBO3, roundabout guidance receptor 3; UNC93B1, unc‑93 homolog B1, Toll‑like receptor signaling regulator; PTPN6, protein tyrosine 
phosphatase non‑receptor type 6; IL2RA, interleukin 2 receptor subunit alpha.
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Figure 6. Validation of the IRGRS model in the dataset GSE71014. (A) Survival analysis based on IRGRS. Survival curve showed that patients with high‑risk 
score were correlated with a trend toward worse survival outcomes. (B) Distribution of the risk score and the associated survival data and mRNA expression 
heatmap. The x‑axis represented the number of patients. Each column represented the same patient corresponded to the below point showing risk score 
distribution, survival status and time in NK‑AML patients. (C) Associations between the IRGRS and the infiltrating Tregs.

Figure 5. Associations between the immune‑related genes risk score and clinical factors. (A) Distribution of the risk score in female and male group. 
(B) Distribution of the risk score for the ≥60 years old and <60 years old group. (C and D) Distribution of the risk score in different mutation status of FLT3 
and NPM1. Data presented as box plots, showing the lower line representing 25th percentile, highest line representing the 75th percentile. The horizontal 
line in the middle is the median (50th percentile). Dots past the ± bars indicate outliers outside of 1.5x the interquartile range. (E) The correlation between 
Tregs and the risk score was performed by using Pearson correlation analysis. FLT3, fms related receptor tyrosine kinase 3; Tregs, T‑regulatory cells; NPM1, 
nucleophosmin 1; Corr, correlation coefficient.
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In addition, the present study also determined that the nine 
IRGs constituting the model exhibited distinct risk‑associated 
patterns, including 6  relatively high‑risk genes (SOCS1, 
ROBO3, UNC93B1, PTPN6, IL2RA and IL3RA) and 3 rela‑
tively low‑risk genes (ZC3HAV1L, TFRC and UNC93B1). To 
the best of our knowledge, the ZC3HAV1L gene has not been 
extensively investigated; whereas its paralog ZC3HAV1 has 
been reported to participate in the innate antiviral immune 
process (24). TFRC, a gene that takes part in iron uptake, has the 
role of regulating the proliferation of T and B cells. Although 
it is not considered relevant to the prognosis of numerous 
different types of cancer, the prognostic value of TRFC in 
AML remains controversial (25‑27). SOCS1 is involved in the 
negative regulation of cytokines in the JAK/STAT3 signaling 
pathway. A study by Hou et al  (28) revealed that its high 
expression was indicative of unfavorable survival prognosis. 
ELAVL1, encoding RNA‑binding proteins, has been studied in 
a variety of tumor types. It has been demonstrated to regulate 
the expression of tumor protein 53 to mediate anti‑prolifera‑
tive activity and has an important role in the differentiation 
of myeloid cells in AML (29). ROBO3, an immunoglobulin 
transmembrane receptor gene, is involved in the SLIT/ROBO 

pathway associated with the development and progression of 
certain types of cancer, where AML is also included (30,31). 
UNC9381 was reported to be implicated in the innate and 
adaptive immune response by regulating the TLR pathway, 
whose activation has been observed in tumors (32,33). To the 
best of our knowledge, the involvement of the UNC9381 gene 
in AML has not been previously reported. PTPN6 is known to 
regulate processes of cell proliferation and differentiation, the 
mitotic cycle and oncogenic transformation. The implication 
of PTPN6 in AML has gradually attracted increasing atten‑
tion. It is primarily expressed in hematopoietic cells and may 
have a marked effect on the pathogenesis of leukemia (34). 
IL2RA is a receptor for IL‑2, which is involved in the regula‑
tion of immune tolerance by controlling the activity of Tregs, 
whose expression was recognized as a poor prognostic marker 
of leukemia (15,35,36). IL3RA, also named CD123, regulates 
the development of hematopoietic and immune cells. Its high 
expression has been indicated to be associated with poor 
prognosis in AML (37). However, the underlying molecular 
mechanisms of the nine IRGs corresponding to their potential 
clinical value in NK‑AML require further investigation.

Poor prognosis in elderly patients and patients with FLT3 
mutations has been widely recognized (38). Of note, the results 
of the present study revealed that the IRG model was associ‑
ated with age and the FLT3 mutation. An obviously higher 
proportion of older age over 60 and FLT3 mutation in patients 
with NK‑AML was observed in the higher risk score group. 
Furthermore, the IRG model may not only serve as a prog‑
nostic indicator but also as an immune status indicator. The 
present study investigated the associations between the IRG 
model and immune cell infiltration in order to reflect the status 
of the immune microenvironment of NK‑AML. In TCGA 
cohort, the levels of infiltrating monocytes and Tregs were 
positively correlated with IRGRS, and NK resting cells were 
negatively correlated with IRGRS. In the GEO cohort, resting 
dendritic cells, T γ Δ cells and Tregs were positively corre‑
lated with IRGRS, whilst plasma cells and T γ Δ cells were 
negatively correlated with IRGRS. The level of infiltrating 
Tregs was significantly positively correlated with IRGRS 
in two cohorts. The percentage of circulating Tregs was 
higher in patients with AML compared with that in normal 
controls and Tregs accumulating in the peripheral circulation 
vigorously mediate immune suppression (38). Patients with 
lower Treg frequency at diagnosis have a better response to 
induction chemotherapy (16,39). It has been reported that an 
increased amount of Tregs is associated with an elevated risk 
of relapse in AML (40). The results of the present study also 
suggested that the IRGRS model has the potential to serve as 
a predictor for increased immune cell infiltration. The role of 
immune cells in AML has remained to be fully investigated. 
Radpour et al (41) indicated that CD8+ T cells expand stem and 
progenitor cells in low‑ but not high‑risk AML. Immune cells 
with statistical differences only in the TCGA or GEO cohort 
could not determine their correlation with risk models. The 
role of immune cells in acute myeloid leukemia still requires 
further studies with larger samples. The preliminary observa‑
tion of the present study may provide a perspective for further 
investigation, which is required in the future.

However, there were certain limitations to the present study. 
First, the potential mechanism of these nine IRGs and Treg 

Table IV. Correlation between immune scores and immune 
cell fractions.

	 TCGA cohort	 GEO cohort
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Immune cell type	 Coef	 P‑value	 Coef	 P‑value

B memory cells 	 ‑0.200	 0.163	 0.083	 0.421
Macrophages M0	 ‑0.166	 0.250	 0.006	 0.957
Macrophages M1	 ‑0.084	 0.562	 ‑0.096	 0.347
Macrophages M2	 ‑0.040	 0.780	 ‑0.105	 0.306
Monocytes	 0.345	 0.014	 0.086	 0.403
NK activated cells 	 0.050	 0.729	 0.138	 0.179
NK resting cells 	 ‑0.311	 0.028	 ‑0.001	 0.993
Plasma cells	 ‑0.247	 0.084	 ‑0.209	 0.039
Activated CD4+ 	 ‑0.082	 0.572	 0.081	 0.431
T memory cells
Resting CD4+ 	 ‑0.133	 0.356	 ‑0.115	 0.263
T memory cells
CD4+ naïve T cells	 ‑0.124	 0.391	 ‑0.074	 0.474
CD8+ T cells	 ‑0.011	 0.941	 0.047	 0.647
T follicular helper cells	 ‑0.127	 0.380	 ‑0.040	 0.697
T γ Δ cells	 ‑0.084	 0.561	 ‑0.308	 0.002
T regulatory cells 	 0.513	 <0.001	 0.313	 0.002
B naïve cells	 0.009	 0.952	 ‑0.003	 0.978
Activated dendritic cells 			   ‑0.121	 0.238
Resting dendritic cells 			   0.268	 0.008
Eosinophils			   0.038	 0.708
Activated mast cells 			   ‑0.165	 0.105
Resting mast cells 			   ‑0.046	 0.653
Neutrophils			   ‑0.009	 0.932

Coef, correlation coefficient; NK, natural killer; TCGA, The Cancer 
Genome Atlas; GEO, Gene Expression Omnibus.
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cell‑mediated immune infiltration in NK‑AML progression 
remains elusive and further in vitro or in vivo experiments are 
required to clarify this. Furthermore, transcriptome analysis 
is not able to reflect the global immune status. In addition, the 
validity of the prognostic model based on the nine IRGs iden‑
tified in the present study requires to be verified using more 
independent samples.

In conclusion, in the present study, the clinical and prognostic 
value of IRGs in NK‑AML was systematically analyzed. An 
IRG‑based prognostic evaluation model was constructed with a 
moderate level of performance in the prognostication of patients 
with NK‑AML. The results of the present study provide novel 
approaches for immunotherapy for patients with NK‑AML.
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