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Abstract

Photosynthetic capacity is often quantified by the Rubisco-limited photosynthetic capacity (i.e. 

maximum carboxylation rate, Vcmax). It is a key plant functional trait that is widely used in Earth 

System Models for simulation of the global carbon and water cycles. Measuring Vcmax is time-

consuming and laborious; therefore, the spatiotemporal distribution of Vcmax is still poorly 

understood due to limited measurements of Vcmax. In this study, we used a data assimilation 

approach to map the spatial variation of Vcmax for global terrestrial ecosystems from a 11-year-

long satellite-observed solar-induced chlorophyll fluorescence (SIF) record. In this SIF-derived 

Vcmax map, the mean Vcmax value for each plant function type (PFT) is found to be comparable to 

a widely used N-derived Vcmax dataset by Kattge et al. (2009). The gradient of Vcmax along PFTs 

is clearly revealed even without land cover information as an input. Large seasonal and spatial 

variations of Vcmax are found within each PFT, especially for diverse crop rotation systems. The 

distribution of major crop belts, characterized with high Vcmax values, is highlighted in this Vcmax 

map. Legume plants are characterized with high Vcmax values. This Vcmax map also clearly 

illustrates the emerging soybean revolution in South America where Vcmax is the highest among 

the world. The gradient of Vcmax in Amazon is found to follow the transition of soil types with 

different soil N and P contents. This study suggests that satellite-observed SIF is powerful in 

deriving the important plant functional trait, i.e. Vcmax, for global climate change studies.

*Corresponding author at: Department of Geography and Planning, University of Toronto, Toronto, ON M5S 3G3, Canada. 
hel@geog.utoronto.ca (L. He). 
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1. Introduction

Plant functional traits are fundamental to ecological studies (Diaz et al., 2016; Kattge et al., 

2011; Kunstler et al., 2016; Levine, 2016). The Rubisco-limited photosynthetic capacity (i.e. 

maximum carboxylation rate, Vcmax) is among these traits that have large interspecific and 

intraspecific variations. Vcmax also varies strongly with time and space within the same plant 

function type, depending on radiation and nutrient availabilities (Misson et al., 2006). Our 

understanding of the spatiotemporal distributions of Vcmax and its response to changing 

climate can help project carbon sequestration by vegetation and future climate change 

(Madani et al., 2018; A. P. Walker et al., 2017).

The availability of measured Vcmax data is limited because Vcmax is traditionally determined 

by measuring A-Ci curves, which is rather laborious (Kauwe et al., 2016; Xu and Baldocchi, 

2003). Currently, Earth System Models (ESMs) heavily rely on meta-analysis based Vcmax 

databases which are derived from the correlation between leaf N content and Vcmax (Kattge 

et al., 2009). Vcmax also has strong seasonal variations (Jin et al., 2012; Wang, 2008; Wang 

et al., 2004; Wang et al., 2009a, 2009b). The value of Vcmax is often set as a constant for 

each plant function type (PFT) in terrestrial biosphere models, and the uncertainty in Vcmax 

has hampered our understanding of global carbon and water cycles (Bonan et al., 2012; 

Harper et al., 2016; L. M. He et al., 2017; Madani et al., 2018).

Recent advances in remote sensing make it possible to directly derive Vcmax for large areas 

from remotely sensed satellite observations. Recently, Alton (2018) mapped global Vcmax 

from satellite observations of chlorophyll content. However, the derived leaf Vcmax values 

are lower and vary more narrowly than compiled measurements. Carter et al. (1996) showed 

the promise of solar-induced chlorophyll fluorescence (SIF) in capturing photosynthetic 

capacity at the leaf level. Recent studies show that spaceborne SIF has a strong correlation 

with gross primary productivity (GPP) (Joiner et al., 2018; MacBean et al., 2018; Sun et al., 

2018; Sun et al., 2017a) and thus it is promising to derive Vcmax from SIF (Koffi et al., 

2015), e. g. for cropland (Y. Zhang et al. 2018; Zhang et al., 2014).

Photosynthesis involves two processes. The first one is light-dependent: light energy is 

harvested and converted into chemical energy in the form of electron carrying molecules like 

ATP and NADPH in Photosystems I and II (PS I and PS II) in the thylakoid membranes of 

chloroplasts. When a chlorophyll pigment absorbs visible light, it becomes excited and will 

return to the ground state by one of several competing processes, including photosynthesis in 

PS II, non-radiative decay, nonphotochemical quenching, and fluorescence. The yield 

fluorescence is generally small (1%–5%) but the signal is enough to provide information on 

the total amount of light absorbed, as the fluorescence is generally proportional to the total 

amount of absorbed photosynthetically active radiation (APAR) (Frankenberg and Berry, 

2018). In the second process (i.e., the Calvin cycle), which is light-independent, 
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carbohydrate molecules are assembled from CO2 using the chemical energy harvested 

during the light-dependent reactions. In this process, Ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (Rubisco) is the enzyme involved in the first major step of carbon 

fixation. Rubisco catalyzes the carboxylation of ribulose-1,5-bisphosphate (i.e. RuBP). 

However, Rubisco is able to fix only 3–10 CO2 molecules each second per molecule of 

enzyme (Bar-On and Milo, 2019). The reaction catalyzed by Rubisco is, thus, the primary 

limiting factor of the Calvin cycle at sunlit conditions. Therefore, Vcmax (the maximum rate 

of carboxylation of Rubisco; μmol CO2 m−2 s−1) is largely determined by the amount of 

Rubisco in the leaf.

Although the Calvin cycle does not use light as a reactant, it requires the products of the 

light-dependent reactions (energy carrying molecules, e. g., ATP and NADPH) to drive the 

construction of new carbohydrate molecules. After the energy is transferred, the energy 

carrying molecules return to the light-dependent reactions to obtain more energized 

electrons. In addition, several enzymes of the light-independent reactions are activated by 

light (Bar-On and Milo, 2019). Therefore, these two processes are tightly coupled.

In a leaf, nitrogen plays an important role in regulating the photosynthetic capacity as it is a 

component of pigments for light harvest, proteins associated with photosystems and Calvin 

cycle (including Rubisco), ATP and NADP. Plants require an optimized balance of light 

intensity and carbon assimilation in the process of photosynthesis for survival when 

environmental conditions are ideal and for acclimation when environmental conditions are 

severe (Smith et al., 2019). For a leaf acclimated to the environment, the allocation of N to 

light harvesting pigments (chlorophylls) and carboxylation enzymes (Rubisco) would be 

optimized in a way that they become highly correlated. Studies have found that chlorophyll 

content correlates well with Vcmax which is largely determined by the amount of Rubisco 

(Croft et al., 2017; Luo et al., 2019). Therefore, chlorophyll can be a useful indicator for the 

carboxylation capacity of a leaf (Murchie and Lawson, 2013). As sun-induced chlorophyll 

fluorescence (SIF) is not only determined by chlorophyll content but also by radiation and 

other environmental variables, we cannot relate SIF to Vcmax directly. However, we can use 

a numerical technique to estimate and remove the effects of other factors in SIF signals and 

extract the needed Vcmax. The data assimilation technique presented in this paper is 

developed for this purpose.

Excessive light may damage the photosynthetic machinery. The correlation between SIF and 

photosynthesis assimilation rate will certainly not be held for a leaf without water supply 

under sunlight, as photosynthesis needs water (to provide electrons from hydrogen atoms, 

and for heat dissipation). At such an extremely stressed condition, the absorbed light energy 

excites the pigment but the native energy or the electron acceptor is missing. The energy can 

then be used to excite oxygen and produce singlet oxygen molecules, which decompose 

chlorophylls. In this case, SIF may not be an indicator of the photosynthesis rate.

However, a plant reacts to mitigate the harmful effects of excess light in natural settings (i.e., 

via photoprotection). For example, some plants can change the leaf inclination angle to 

reduce the incident light on the leaf surface. Under persistent droughts over days and weeks, 

plants can develop mechanisms (photo-acclimatization) of up-regulation of stress response 
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proteins or down-regulation of pigment biosynthesis. For example, PS II is damaged by light 

irrespective of light intensity, and has a repair cycle as the chloroplast acclimation strategy to 

irradiance stress. The PS II repair cycle occurs in chloroplasts and in cyanobacteria, 

consisting of degradation and synthesis of the D1 protein of the PSII reaction center, 

followed by activation of the reaction center. However, environmental stresses, for example, 

extreme temperatures, salinity, and drought (Zhu et al., 2017), limit the supply of CO2 for 

use in carbon fixation, which in turn decreases the rate of repair of PSII. In autumn, many 

plants stop making chlorophylls and break down chlorophylls into smaller molecules in 

responding to cold. The decreases of light-harvesting and activity of the Calvin cycle tend to 

be synchronized; therefore, SIF has been used to track photosynthesis even under drought 

conditions (Gonsamo et al., 2019; Jiao et al., 2019; Y. Sun et al., 2015).

A spaceborne instrument is only able to observe a fraction of SIF escaped from the canopy, 

and these fractions vary greatly with the sun-target-satellite observation geometry and 

complex canopy structure (He et al., 2017b; Z. Zhang et al. 2018). Therefore, although the 

SIF-GPP correlation is strong, it is also found that the SIF-to-GPP ratio varies with PFT and 

location (Li et al., 2018a; Wood et al., 2017; Zhang et al., 2016a, 2016b), hindering the 

derivation of global Vcmax maps using SIF. Norton et al. (2018) averaged the OCO-2 SIF 

data into 2° × 2° grids, assimilated these SIF data into a combined ecosystem model 

(BETHY-SCOPE) with prescribed leaf area index (LAI) as input and found that the 

simulation of global GPP is improved; however, SCOPE (van der Tol et al., 2009) utilizes 

the SAIL5 model (Verhoef, 1984) which is a 1D radiative transfer model, therefore, they did 

not make full use of vegetation structure information (such as clumping) in their framework, 

neither was global Vcmax map produced from their study.

The objective of this study is to map the spatiotemporal distribution of Vcmax for global 

terrestrial ecosystems by reconciling the variations in the SIF-to-GPP ratio in ecosystems 

due to changes in observation geometry and canopy structure. In the following, we present 

the major findings for the top-of-canopy Vcmax that is normalized to 25 °C (Vcmax, 250) 

unless specified otherwise.

2. Materials and methods

2.1. Forcing data, SIF data, and key model parameters

A complete description of meteorological forcing data (Rienecker et al., 2011), GOME-2 

SIF data (Joiner et al., 2013) and the BEPS model (Boreal Ecosystem Productivity 

Simulator) (He et al., 2018) for Gross Primary Production (GPP) simulation and its key 

model parameters is provided in the Supplementary materials. A Leaf Area Index (LAI) 

product (named GLOBMAP) (Liu et al., 2012) is used to drive BEPS. A clumping index 

map is used to describe the canopy structure (L. He et al., 2012; He et al., 2016).

Ground measurements of SIF from winter wheat were also made using an automated multi-

angle chlorophyll fluorescence measurement system (SI). The measurements took place at a 

flux tower site (Jurong station, 31°9′N, 119°1′E) in Jiangsu province, China. The SIF was 

observed during 15th April to 30th May in 2016 when the wheat canopy was closed. The 
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SIF measurements, together with LAI, GPP from this site are used to derive the SIF-GPP 

relationship.

2.2. The “two-leaf” ecosystem model for simulation of vegetation productivity

A detailed description of BEPS is provided in the supplementary materials. In this section, 

we summarize the key BEPS modules that are related to Vcmax and GPP modeling. BEPS is 

spun up from 1981 to 2006 using the forcing data. In this study, we modified the BEPS to 

output GPP from sunlit leave for SIF retrieval. At the leaf level, Farquhar’s model is used to 

calculate the net CO2 assimilation rate (Farquhar et al., 1980). In Farquhar’s model, the CO2 

assimilation rate is either determined by Rubisco-limited or light-limited gross 

photosynthetic rates (see details in Supplementary material, Section 2.2). At light-saturated 

condition (for sunlit leaves), Vcmax and leaf temperature are two of the most important 

parameters that control Rubisco-limited gross photosynthetic rates (μmol m−2 s−1); while at 

light-limited condition, Jmax, radiation and leaf temperature are three of the most important 

parameters for the calculation of the gross photosynthetic rate. Although Farquhar’s model 

is included in many ESMs as the core photosynthesis module for almost four decades, these 

ESMs still rely on tabulated Vcmax values for each ecosystem with no consideration of their 

spatial variations. BEPS uses a “two-leaf” approach to calculate the canopy level CO2 

assimilation (Chen et al., 1999; Norman, 1982). The key parameter Vcmax is also upscaled 

weighted by the leaf nitrogen profile in the canopy (Chen et al., 2012). The objective of this 

paper is to globally map Vcmax,0, the maximum Rubisco capacity at the leaf level at the top 

of the canopy that is normalized at 25 °C.

2.3. The normalization of satellite SIF observation to the hotspot direction

Exposed at different radiation conditions, sunlit and shaded leaves differ in their SIFs, which 

can vary as large as an order of magnitude (Pinto et al., 2016). Additionally, there are large 

variations of SIF signals observed from different solar and satellite view geometries (Liu et 

al., 2016; Z. Zhang et al., 2018). The escape probability of SIF is also affected by canopy 

structure. For example, leaves in cropland are distributed most randomly among all 

vegetation types; therefore, the sunlit leaves of crops are mostly distributed at the top of the 

canopy and can be largely observed at different satellite view angles; however, the sunlit 

leaves of forests can be located in the low parts of a canopy due to their complex 3-

dimensional structure and thus the portion of observed sunlit leaves, where the most SIF 

signal originates, depends on view angles. Therefore, the global maximum SIF signal is 

often observed from croplands but not from forests, although forests are the most productive 

ecosystems.

To reliably estimate the ratio of observed SIF (especially the SIF from sunlit leaves) to the 

total emitted SIF, we need a well-documented geometric optical model, such as the 4-Scale 

model (Chen and Leblanc, 1997) and vegetation structure parameters, including LAI (Liu et 

al., 2012) and clumping index (L. M. He et al., 2012). Especially, the global clumping index 

provides unique information regarding to the leaf distributions in different ecosystems, 

which frees us from the requirement of homogenous canopy in order to calculate the ratio of 

observed sunlit leaves, which is key to SIF escape probability. For global applications, we 
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have simplified the 4-Scale model to estimate the escape probability of SIF from canopy at 

different angles (He et al., 2017b). The methodology is detailed in the SI.

Here, we applied the previously developed method to normalize GOME-2 clear-sky SIF 

measurements to the hotspot direction (Chen and Leblanc, 1997; He et al., 2017b); in other 

words, the normalization gives an estimate of the maximum SIF signal that can be observed 

in a canopy from a satellite from the hotspot direction.

2.4. The relationship between “hotspot SIF” and GPP from sunlit leaves

Previously, the canopy level SIF-to-GPP ratio has been directly used to constrain global GPP 

simulations (Joiner et al., 2018; MacBean et al., 2018). As aforementioned, the SIF-to-GPP 

ratio at the canopy level can be affected by both satellite view angle and vegetation structure; 

therefore, previous studies often relied on time-averaged SIF-to-GPP ratios calibrated for 

different ecosystems.

In this study, we propose to use “hotspot SIF” to constrain “sunlit GPP” simulation in an 

ecosystem model, such as BEPS. In theory, this “hotspot SIF” to “sunlit GPP” ratio is 

independent of both view angle and vegetation structure if assuming a uniform leaf 

inclination angle, and thus ecosystem-based calibration of the ratio is no longer necessary. 

We can explicitly use a BRDF model and vegetation structural parameters (i. e. LAI and 

clumping index) to minimize uncertainties in the SIF-to-GPP ratio at the canopy level 

among ecosystems.

Moreover, we choose to constrain “sunlit GPP” not the total GPP in our simulations because 

the photosynthesis at the hotspot direction is light-saturated (see Eq. (2)) under clear-sky 

condition when GOME-2 SIF is collected. Therefore, the modeling of sunlit GPP in BEPS is 

less prone to uncertainties induced by the radiation input data.

Another reason to constrain “sunlit GPP” not the total GPP is that the calculation of sunlit 

LAI in BEPS is less prone to the uncertainties of the total LAI (see Eqs. (6) and (7)). As 

shown in the SI, sunlit LAI does not increase proportionally to the increase of total LAI; the 

magnitude of sunlit LAI is largely stable when total LAI is larger than 2.

The “hotspot SIF” to “sunlit GPP” ratio is determined in two ways (see more details in SI). 

In the first approach, we (1) simulate sunlit-GPP in BEPS using the default Vcmax map 

which is derived according to land cover type and tabulated Vcmax from Kattge et al. (2009), 

(2) derive the “hotspot SIF” (corrected from GOME-2) to “sunlit GPP” ratio for each pixel, 

(3) create a histogram of this “hotspot SIF” to “sunlit GPP” ratio from the global simulation, 

and (4) choose the mode of this histogram (Fig. S4(a) and (b), SI). In the second approach, 

we estimate this ratio directly from measured SIF and measured GPP at a flux tower site 

(Fig. S4(c)). In the end, both approaches reach a similar ratio, 4.1 mW m−2 nm−1 sr−1/(g C 

m−2 h−1) and then this unique ratio is applied to all ecosystems without further calibration. 

We suggest that the value of this ratio should be further calibrated according to the features 

of a specific sensor (band width, spectral resolution for SIF retrieval) if it is applied to 

another SIF product.
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2.5. The data assimilation framework for Vcmax retrieval

In this study, we do not directly invert Vcmax from SIF; instead, we use an EnKF filter for 

parameter estimation (He et al., 2014; Mo et al., 2008; Schöniger et al., 2012). EnKF for 

parameter optimization is optimal for ill-posed inversion problems (Iglesias et al., 2013) 

because the parameter (Vcmax in this study) is updated in a system that synthesizes prior 

knowledge and new observations by statistical minimization of estimation errors. This is 

ideal for Vcmax retrieval as Vcmax evolves smoothly along the leaf nitrogen changes.

The normalization of GOME-2 SIF to the hotspot direction tightly follows the same strategy 

to separate sunlit and shaded leaves in BEPS. This enables us to directly constrain sunlit 

GPP in BEPS using hotspot SIF. We optimize the ecosystem model parameter, top-of-

canopy maximum carboxylation rate (Vcmax,0, normalized to 25 °C), in a parallel data 

assimilation system run on a high performance computer (He et al. 2017a; He et al., 2014). 

This system has been used to assimilate soil moisture data from the SMAP mission into 

BEPS; for this study, it follows the same theory to adjust the BEPS model status (i.e., Vcmax) 

by assimilating GPP “observations” from GOME-2. The description of EnKF is summarized 

in SI.

We start to run 80 BEPS model replicates in the system since 2007 with perturbed Vcmax 

having an average value equal to the original BEPS Vcmax input (and one standard deviation 

of 12 μmol m−2 s−1) (Fig. 1). Considering that there might be inconsistency of cloud 

conditions between forcing data and GOME-2 product, we only perform the parameter 

optimization when both forcing data and GOME-2 observations indicate clear-sky 

conditions. For each grid, whenever a GOME-2 SIF observation is available, it is normalized 

to hotspot direction and converted into sunlit GPP to constrain BEPS-simulated “sunlit 

GPP” for Vcmax retrieval. Currently, there is no much information available regarding the 

uncertainty of the GOME-2 SIF signal. When SIF is quality controlled and gridded to half 

degree spatial resolution and biweekly time frame, the estimated absolute error is 0.1–0.4 

mW m2 nm−1 sr−1 (Joiner et al., 2013; Joiner et al., 2016). Since the instantaneous SIF 

observations are used, we choose 0.5 mW m2 nm−1 sr−1 in this study. This generally means 

that higher SIF signal has less relative uncertainty and has stronger constraints in the system 

for Vcmax retrieval. The optimized Vcmax is then used in the next step for the simulation of 

both sunlit and shaded GPP in BEPS until the next Vcmax retrieval is available. An 11-year-

long record of Vcmax (2007–2017) is produced in this study based on GOME-2 SIF 

observations.

3. Results

3.1. Spatial distribution of Vcmax

The retrieved Vcmax has strong seasonal and inter-annual variations. The 11-year mean and 

standard deviation of Vcmax are shown in Fig. 2 and Table 1.

The distinct belts of boreal forests in the northern hemisphere have the lowest Vcmax values 

and variations (44.6 ± 2.7 μmol m−2 s−1 for deciduous needleleaf forests, DNF, and 48.2 ± 

5.7 μmol m−2 s−1 for evergreen needleleaf forests, ENF, respectively). These values and their 

ranges are similar to previous findings at flux tower sites (He et al., 2014; Zheng et al., 
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2017). Note that there are different definitions in LAI and Vcmax in term of “leaf area” for 

non-flat leaves. We used a definition by Chen and Black (1992b) which defines LAI as the 

half the total intercepting area per unit ground surface area; while the Vcmax values reported 

in the previous literature might use “per projected leaf area”. Considering the difference in 

“leaf area”, the Vcmax values derived under two LAI definitions will differ by a factor of 

~π/2 (projecting cylinder to plate).

Evergreen broadleaf forests (EBF) also have relatively low Vcmax (53.6 ± 14.7 μmol m−2 s
−1) around the equator but with large spatial variations. In the retrieved Vcmax map, we find 

that the Vcmax gradient in Amazon follows the transition of Oxisol soil (lack of P) to Ultisol 

soil (non-Oxisol) (Fig. 2c). This is consistent with the study by Kattge et al. (2009) who 

found that Vcmax is strongly correlated to leaf nitrogen (N) content and reported Vcmax 

values in tropical trees for oxisols soil and non-oxisols soil, respectively, and the sensitivity 

of Vcmax to leaf N is increased with increasing leaf phosphorus (P) (Walker et al., 2014). 

This result also echoes the mechanistic model by Ali et al. (2016) that shows a clear gradient 

of Vcmax in Amazon (their Fig. 4, and SI).

The Vcmax values in shrublands have the largest spatial variation (57.4 ± 31.0 μmol m−2 s−1); 

the Vcmax values from this study are close to the median Vcmax (60 μmol m−2 s−1) of Shrub 

in the Caatinga biome, eastern Brazil, from two field campaigns (Rezende et al., 2016). 

Deciduous broadleaf forests (DBF), often mixed with croplands, have a moderately high 

Vcmax and spatial variation among all PFTs (72.7 ± 14.7 μmol m−2 s−1). The Vcmax values 

for grassland are the highest (88.7 ± 20.9 μmol m−2 s−1). With the inclusion of corn, which 

is a low Vcmax C4 crop, croplands have the second highest Vcmax (82.7 ± 15.2 μmol m−2 s
−1). Vcmax in croplands also has the strongest seasonal variation (Fig. 3b) due to agricultural 

management, e. g. cropping rotations. This Vcmax map clearly shows the global distribution 

of crop belts, e. g. the corn-soybean and wheat belts in US, wheat-corn belt in China, the 

super-high productive wheat-rice cropping system in Punjab, India (Kang et al., 2009; 

Khajuria, 2016; Singh et al., 2009), and two cropland belts in Australia (Supplementary 

figures).

Interestingly, we reveal a very high Vcmax belt in South America, which is associated with 

the rapid development of soybean cultivation in recent years (Correia, 2017; Fehlenberg et 

al., 2017; Gasparri et al., 2016; McKay et al., 2016; Mier y Terán Giménez Cacho, 2016), 

the so-called soybean revolution in South America (Cattelan and Dall’Agnol, 2018; 

Richards, 2010; Torres et al., 2017). During the last 35 years, the soybean production in 

South America is ten-fold increased (SI). According to http://www.fao.org/faostat/en/

#data/QC/visualize, currently more than 80% of soybean are produced in America, while 

recently Brazil surpassed USA as the top soybean producer. The functional group of legume 

is well known for its high Vcmax (Ainsworth and Rogers, 2007; Feng and Dietze, 2013). As 

shown in Fig. 3(i), the retrieved Vcmax for croplands is as high as 220 μmol m−2 s−1, 

comparable to the ranges of soybean Vcmax measurements (101–190 μmol m−2 s−1) (Bunce, 

2016; Morgan et al., 2004; B. J. Walker et al., 2017; Xu et al., 2016). We found that the 

soybean production (Cattelan and Dall’Agnol, 2018) in each Brazilian state can explain 52% 

of variance in Vcmax (SI).
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The dervied Vcmax around coastal tundra in high Arctic is higher than orginal BEPS Vcmax 

input by 10–20 μmol m−2 s−1. This higher Vcmax retrieval echos to recent measurements by 

Rogers et al. (2017). They attribed the high Vcmax in high Arctic area to two factors: (1) the 

higher leaf N content; and (2) more N is allocated in Rubisco. They also found that the 

Vcmax (normalized at 25 °C) was significantly higher than the inputs in current Earth System 

models by two- to five-folds.

Five distinctive features are found from our Vcmax map, including (1) gradients across major 

PFTs, (2) gradients within the Amazon forest from north to south, (3) global major crop 

belts, (4) high Vcmax in crop belt of South America, and (5) moderate to high Vcmax in 

northern tundra. Potential drivers (temperature, precipitation, radiation, LAI, root-zone 

dryness) of these Vcmax features are also examined (Figs. S25–S29). The transition of 

temperature itself from the tropic to the polar region cannot explain the Vcmax distribution. 

At low to middle latitudes, lower solar radiation is associated with higher cloud coverages 

(and more precipitation); the Vcmax gradient (low to high) from this study follows the 

transition of LAI (high values in forest in wet area to low values in grassland in dry area). 

However, water stress cannot explain the high Vcmax values in tundra areas. Temperature, 

precipitation and radiation cannot explain the Vcmax gradient within Amazon forests. The 

crop belts with high Vcmax values, which are dominated by anthropogenic activities, are not 

associated with extra high or lower LAI values (Fig. S25). Comparing the Vcmax patterns in 

crop belts of South America to maps in Figs. S19 to S29, we suggest that the soybean belt 

best explains these high Vcmax values.

3.2. Seasonal variation of Vcmax

The seasonal variations of Vcmax for nine locations are provided in Fig. 3. Due to clouds, the 

EBF has the least number of retrievals (Fig. 3(a)). EBF and ENF (Fig. 3(c)) have the least 

seasonal variations. Vcmax for ENF in the spring is overestimated due to the underestimation 

of LAI in this season (Wang et al., 2016). DBF (Fig. 3(b)) in US shows strong seasonal 

variation, increasing in the spring, peaking at early summer (day of year (DOY) = 180), and 

decreasing gradually in the fall.

Due to management practices, the seasonal variations of Vcmax for croplands show 

diversified patterns (Figs. 3(d)–3(i)). The US corn belt, a single cropping system (Fig. 3(d)), 

is characterized with a Vcmax maximum in August. The croplands in the southern 

hemisphere (Fig. 3(e, i)) have peaked Vcmax during the spring. Fig. 3(f) and (g) show that 

the high Vcmax of winter wheat in the spring is replaced by another crop in the summer with 

low Vcmax values (e. g. C4 corn) in Shandong, China. With adequate irrigation and 

fertilization, Vcmax in Punjabi croplands is among the highest in the world (Fig. 3h).

Only limited validation can currently be performed for this Vcmax map that is at 36 km 

resolution, because it is difficult to find pure pixels at this resolution and Vcmax has seasonal 

and inter-annual variations (Xu and Baldocchi, 2003). Vcmax also varies with the vertical N 

profile in the canopy (Domingues et al., 2005) and with environmental conditions (e. g. soil 

nutrition, water stress, and shading) (Dechant et al., 2017; Sharwood et al., 2014). Both 

types of information are limited in the literature. Ground observations suggest that the 

maximum Vcmax ranges from 105 to 150 μmol m−2 s−1 (Feng et al., 2011; Hu et al., 2014; 
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Silva-Pérez et al., 2017; J.S. Sun et al. 2015) for wheat and from 30.1 ± 3.5 to 40 ± 1 μmol 

m−2 s−1 (Massad et al., 2007; Sharwood et al., 2014) for maize (corn). It can be as high as 

140 μmol m−2 s−1 (Borjigidai et al., 2006; Ikawa et al., 2018) for rice. The Vcmax values 

retrieved in this study are generally close to the upper range of ground values because 

retrieved values represent the top-of-canopy values which are higher than the average values 

for the canopy.

3.3. Impacts on global GPP simulation

Similar to other ecosystem models, the Vcmax values in the default BEPS are set according 

to vegetation types. After using the spatially and temporally explicit Vcmax maps in BEPS 

(Fig. 4(a–e)), the GPP estimation is reduced by 13% and 6% for ENF and croplands, 

respectively, due to decreased Vcmax (Table 2). In contrast, the GPP estimation is increased 

by 2%, 5%, 7%, 10%, and 1% for EBF, DNF, DBF, Shrub, and grassland, respectively. The 

GPP estimation for EBF at non-oxisol soil is significantly increased due to increased Vcmax. 

DBF in the US is highlighted with increased Vcmax and GPP. Although there is a remarkable 

increase of GPP in the croplands of South America, the global average GPP of croplands is 

decreased by 6% due to the stronger seasonal variation in derived Vcmax and crop rotations 

(e. g. with low Vcmax of corn).

Driving the model with the same LAI and meteorological data, the global GPP simulation 

with SIF-derived Vcmax is 126.3 ± 1.5 Pg C yr−1 (here the one standard deviation was 

derived from global GPP in 2007–2017; it is not an indicator of uncertainty). This contrasts 

to the GPP simulation using the seasonal invariable Vcmax (130.4 ± 2.2 Pg C yr−1) which 

could lead to overestimate of GPP in the spring and autumn.

4. Discussion

4.1. Why do we choose “hotspot SIF” to constrain “sunlit GPP”?

Like other remote sensing products, the accuracy of this new Vcmax map depends on the 

accuracies of the ecosystem model used for Vcmax optimization and the input data, such as 

LAI, clumping index, SIF data, metrological data and the SIF-to-GPP ratio.

As aforementioned, we have chosen to use “hotspot SIF” to constrain “sunlit GPP” rather 

than to use “total SIF” to constrain “total GPP”. This approach is necessary for the 

conversion from the canopy-level SIF measurements to the leaf-level information retrieval. It 

also has the advantage that that both the modeling of “hotspot SIF” and “sunlit GPP” are less 

prone to uncertainties in input parameters.

The modeling of sunlit GPP depends on the simulations of (1) sunlit LAI and (2) Rubisco-

limited gross photosynthetic rates. In Section 2.4, we have shown that the magnitude of 

sunlit LAI is not sensitive to the multiplication of “total LAI and clumping index” when LAI 

is relatively large. This is because the uncertainty in total LAI mostly goes to the shaded part 

in the BEPS two-leaf scheme. Comparing to light-limited GPP modeling at the leaf level 

which requires three major parameters (Jmax, leaf temperature and radiation) as inputs, the 

Rubisco-limited GPP modeling does not require radiation as input which has much 
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uncertainty. By using hotspot SIF, our framework is not very sensitive to the uncertainty in 

the meteorological forcing data (except temperature, which usually has less uncertainty).

4.2. Towards to a unique GPP-SIF ratio

Using “hotspot SIF” frees us from using ecosystem-based calibrations. Determining a 

unique SIF-to-GPP ratio across biomes is at the cutting edge of SIF studies (Duveiller and 

Cescatti, 2016; Frankenberg et al., 2011; Guan et al., 2016; Joiner et al., 2014; Li et al., 

2018b; Liu et al., 2017; Luus et al., 2017; Verma et al., 2017; Verrelst et al., 2016; Wagle et 

al., 2016; Walther et al., 2016; Wang, 2014; Wood et al., 2017; Yang et al., 2016; Yang et al., 

2015; Yoshida et al., 2015; Zhang et al., 2016a, 2016b), while previous studies were 

hindered by ignoring the variation of the SIF signal due to the variation of the shadow 

fraction with view angle. For example, it was found that there are small variations in the 

“total GPP”-to-“average SIF” slopes (4.60–5.55 g C m−2 day−1/(mWm−2 nm−1 sr−1)) 

(Zhang et al., 2016a, 2016b), which are equivalent to “average SIF”-to-“total GPP” ratio of 

4.3 to 5.2 mW m−2 nm−1 sr−1/(g C m−2 h−1). The variation of this slope should be reduced 

once the SIF signal is normalized to the hotspot direction, from which shadows are invisible. 

Combining a unique clumping index derived from multiple-angular MODIS data and a 

sophisticated geometric optical model advances the way to derive the “hotspot SIF”-to-

“sunlit GPP” ratio in this study (Chen and Leblanc, 1997; He et al., 2017b). Field 

observations at flux tower sites, although limited, also yield the same SIF-to-GPP ratio (4.1 

mW m−2 nm−1 sr−1/ (g C m−2 h−1)), further supporting the “meta-based” analysis from the 

global GPP simulation in this study.

Besides the strong arguments on the similarity of the GPP-SIF slope across PFTs (Li et al., 

2018b; Xiao et al., 2019; Z. Zhang et al., 2018), Liu et al. (2017) found that the slope is 

higher for C4 crops than for C3 plants. This is because the C4 plants have less 

photorespiration and are more efficient in photosynthesis, and therefore C4 plants emit less 

SIF for the same amount of photosynthesis than C3 plants. Currently, the information on the 

GPP-SIF slope for C4 plants is still limited. In this study, we used a C3 model and 

potentially this suggests that the GPP may be underestimated for regions where C4 plants 

dominate; however, given our current framework, a separate GPP-SIF slope can be taken 

whenever the slope information becomes more certain and the location and period of C4 

plantation become clearer in future.

4.3. Comparison of result to previous dataset

The SIF-derived Vcmax from this study is compared to a widely used N-derived Vcmax 

dataset (Fig. 5) (Kattge et al., 2009). Although both datasets show comparable magnitudes 

(R2 = 0.61) and variations, they diverge in the magnitudes of Vcmax for ENF, with higher 

values in N-derived Vcmax. This may be explained by the use of different LAI definitions for 

non-flat leaves: we use true LAI, defined as the half total intercepting area, while Kattge et 

al. (2009) may use projected LAI with lower values (Chen and Black, 1992a).

4.4. Future studies

We realize that Vcmax measurements from flux towers at a footprint of ~500 m may not 

match our retrievals at 36 km resolution. Two future efforts will be highly useful in 
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validating our proposed framework of Vcmax mapping: (1) making use of available SIF 

measurements at high spatial resolutions. These measurements include OCO-2 and OCO-3 

data at the spatial resolution of 1.1 km (Sun et al., 2017b) and TRO-POMI data at the spatial 

resolution of 3.5 × 7 km2 (Köhler et al., 2018). Especially OCO-3 has the capability to point 

to a specific flux tower site for multi-times in a day. This gives the opportunity to compare 

Vcmax retrievals from satellite imagery to eddy-covariance based retrievals (Zheng et al., 

2017). (2) making ground measurement of SIF using ultra-high resolution hyperspectral 

sensors (Xi Yang et al., 2018). Hotspot SIF measurements from these ground systems can be 

used to invert Vcmax values that can be compared to direct Vcmax measurements from A/Ci 

curves (Manter and Kerrigan, 2004).

5. Conclusions

Based on the strong correlation between SIF and GPP, this study uses a data assimilation 

approach to derive a long-term product (2007–2017) of top-of-canopy Vcmax at the leaf level 

(normalized to 25 °C) from GOME2 SIF data. A critical step in this approach is to use 

angularly-normalized instantaneous SIF in the hotspot direction to constrain simulated GPP 

from sunlit leaves in order to account for different probabilities of observing sunlit leaves 

from different view directions relative to the sun. In conclusion, we have the following major 

findings:

1. The range of the SIF-derived Vcmax retrievals are comparable to documented 

Vcmax values in the literature. The Vcmax map shows distinct belts associated 

with the distribution of plant function types (PFT). Within each PFT, Vcmax also 

varies greatly, except for conifers. In the Amazon evergreen broadleaf forests, the 

retrieved Vcmax is sensitive to soil type and hence possibly P limitation, with a 

Vcmax gradient along the transition of soil orders.

2. Seasonal variation of Vcmax depends largely on PFTs and locations. Agricultural 

activities, such as crop rotation and fertilizer use, can strongly impact both 

temporal and spatial variations of Vcmax in croplands. All well-known crop belts 

in different continents are clearly illustrated on the derived Vcmax map. 

Characterized with high Vcmax, the booming soybean revolution in South 

America is also clearly shown on the map.

A great deal of effort is needed to validate this Vcmax map. Due to the large spatio-temporal 

variations of Vcmax, low-cost and standardized Vcmax measurements for the large pixels are 

yet to be developed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The parameter optimization framework for retrieving top-of-canopy Vcmax from sun-induced 

chlorophyll fluorescence (SIF) measurements in a data assimilation system (bold frames).
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Fig. 2. 
Global top-of-canopy Vcmax normalized to 25 °C derived from 11-year (2007–2017) SIF 

data. (a) Multi-year average of Vcmax map weighted by GPP. (b) The seasonal and inter-

annual variation of Vcmax represented by one standard deviation. (c) The difference between 

SIF-derived Vcmax and BEPS-default Vcmax.
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Fig. 3. 
Top-of-canopy Vcmax normalized to 25 °C for different plant function types at 36 km 

resolution. (a) EBF at Amazon. (b) DBF at US. (c) ENF at boreal forest, Canada. (d) 

Cropland in US corn belt. (e) Cropland in Australia. (f) Cropland in France. (g) Cropland 

(wheat-corn system) in China. (h) Cropland (wheat-rice system) in Punjab, India. (i) Crop/

forest mixed pixel in South America. LAT indicates latitude, and LON indicates longitude.
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Fig. 4. 
Impacts of the SIF-derived global Vcmax map. (a) Annual GPP in 2007–2016 constrained by 

SIF. (b) Annual GPP in 2007–2016 using default Vcmax values. (c) The GPP difference 

between (a) and (b). (d) Comparison of SIF-derived Vcmax and BEPS-default Vcmax for each 

plant function type. (e) Comparison of GPP simulations w/o SIF-constraint. The values in 

(d) and (e) are listed in Supplementary tables.
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Fig. 5. 
Comparison of SIF-derived Vcmax from this study to N-derived* Vcmax (Kattge et al., 2009) 

for seven plant function types.
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Table 1

Top-of-canopy Vcmax (μmol m−2 s−1) normalized to 25 °C for different plant function types (Evergreen 

Needle-leaf trees, ENF; Evergreen Broadleaf trees, EBF; Deciduous Needle-leaf trees, DNF; Deciduous 

Broadleaf trees, DBF). “SIF” indicates Vcmax derived from SIF measurements; “BEPS” indicates the initial 

Vcmax values in BEPS.

Count Vcmax (SIF) Vcmax 1 std. (SIF) Vcmax
(BEPS)

Vcmax 1 std. (BEPS)

ENF 1954 48.2 5.7 62.8 1.2

EBF 8230 53.6 14.7 42.4 2.2

DNF 667 44.6 2.7 41.7 1.9

DBF 1071 72.7 14.7 59.9 1.7

Shrub 10,420 57.4 31.0 59.5 1.8

Grass 8022 88.7 20.9 90.3 2.0

Crops 2432 82.7 15.2 90.5 2.2
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Table 2

GPP values (g C m−2 s−1) simulated using SIF-retrieved Vcmax and default Vcmax in BEPS for different each 

plant function types.

Count GPP (SIF) GPP 1 std. (SIF) GPP (BEPS) GPP 1 std. (BEPS)

ENF 1954 1143.6 284.7 1307.6 263.3

EBF 8230 2817.6 261.8 2774.0 267.7

DNF 667 770.1 93.4 731.0 73.1

DBF 1071 1827.4 358.6 1708.5 342.4

Shrub 10,420 200.3 119.5 182.5 108.9

Grass 8022 415.7 378.9 411.0 382.9

Crops 2432 986.9 379.8 1049.1 380.9
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