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Advancements in phenotyping techniques capable of rapidly and nondestructively detecting impacts of drought on crops are
necessary to meet the 21st-century challenge of food security. Here, we describe the use of hyperspectral reflectance to predict
variation in physiological and anatomical leaf traits related with water status under varying water availability in six maize (Zea
mays) hybrids that differ in yield stability under drought. We also assessed relationships among traits and collections of traits
with yield stability. Measurements were collected in both greenhouse and field environments, with plants exposed to different
levels of water stress or to natural water availability, respectively. Leaf spectral measurements were paired with a number of
physiological and anatomical reference measurements, and predictive spectral models were constructed using a partial least-
squares regression approach. All traits were relatively well predicted by spectroscopic models, with external validation (i.e. by
applying partial least-squares regression coefficients on a dataset distinct from the one used for calibration) goodness-of-fit (R2)
ranging from 0.37 to 0.89 and normalized error ranging from 12% to 21%. Correlations between reference and predicted data
were statistically similar for both greenhouse and field data. Our findings highlight the capability of vegetation spectroscopy to
rapidly and nondestructively identify a number of foliar functional traits affected by drought that can be used as indicators of
plant water status. Although we did not detect trait coordination with yield stability in the hybrids used in this study, expanding
the range of functional traits estimated by hyperspectral data can help improve trait-based breeding approaches.

One of themore influential, yet unpredictable, factors
expected to change in future environments over the
next 50 years will be the intensity and frequency of
precipitation events (Intergovernmental Panel on Climate
Change, 2014). These changes will likely have a dra-
matic effect on plant metabolism, growth, and production

(Pryor et al., 2013; Miao et al., 2017). Over a comparable
time period, global food demand is predicted to double,
requiring intensification of agricultural production
systems (Tilman et al., 2011). The rapid development
and adoption of climate-resilient crop genotypes
capable of maintaining comparable yield production
under favorable and stress conditions (i.e. with high
yield stability) is important to overcome this 21st-
century challenge (Mickelbart et al., 2015). Advance-
ments in phenotyping techniques capable of rapidly
assessing the effects of drought on plant functional
responses from a wide genetic range is necessary to
understand plant traits required to maintain yield
stability under predicted future environmental con-
ditions (Araus et al., 2012; Cotrozzi et al., 2017; Miao
et al., 2017).
Maize (Zea mays) represents an excellent species for

developing phenotyping approaches. It is one of the
most important crops globally for humans and other
animals (Miao et al., 2017), and while yield has in-
creased in absolute value in the last decades, mainly
due to genetic gain and improved agronomic practices,
the negative impact of drought on maize productivity
has also increased due to increased frequency and in-
tensity of drought events (Araus et al., 2012). Maize also
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uses more water at specific developmental stages (e.g.
during flowering), making the optimal water manage-
ment of this species challenging (Araus et al., 2012).
Moreover, the functional responses that are associated
with increased yield stability and targeted by maize
breeders, such as the ability to maintain photosynthesis
under stressful conditions, limit transpiration, increase
water-use efficiency, and regulate osmotic adjustment
(Ribaut et al., 2009) are difficult, time-consuming, and
mostly destructive to measure by standard approaches
(e.g. those performed by classic infrared gas analyzers,
Scholander-type pressure chambers, and vapor pres-
sure osmometers). All of these aspectsmakemonitoring
of a large number of individual plants logistically
impractical.

To date, a number of foliar anatomical, physiological,
and biochemical traits have been successfully quanti-
fied using vegetation spectroscopy (Asner et al., 2011;
Couture et al., 2013, 2016; Serbin et al., 2015; Cotrozzi
et al., 2017). The estimation of these traits from leaf re-
flectance relies on variations in absorption as a conse-
quence of vibrational excitation of molecular bonds,
primarily C-H, N-H, and O-H bonds at specific wave-
lengths in the visible (400–700 nm), near-infrared (NIR;
700–1,100 nm), and short-wave infrared (SWIR;
1,100–2,400 nm) spectral regions. Model calibrations
are accomplished by pairing leaf spectral signatures
with independent and reliable referencemeasurements.
Plant traits are modeled as a function of the spectra
using multivariate methods, such as partial least-
squares regression (PLSR; Wold et al., 2001) or least
absolute shrinkage and selection operator (Lasso;
Tibshirani, 2011). Best practices suggest that these
models are validated using independent samples, after
which models can be used to predict the variable of
interest in unknown samples on the basis of their
spectral reflectance alone (Couture and Lindroth, 2012;
Schweiger, 2020). Importantly, leaf reflectance mea-
surements are rapid, taking only seconds; are nonde-
structive; and relatively inexpensive. Although the
purchase of a spectrometer can range from hundreds to
tens of thousands of U.S. dollars, the expenses to run
such instruments are minimal compared with the cost
and maintenance of other analytical instrumentation
(e.g. high performance liquid chromotography). A
spectral approach also provides the potential to assess
considerably more individual plant traits in situ and
in vivo over multiple time periods than standard ref-
erence measurements alone (e.g. those performed with
classic ecophysiological techniques or wet chemistry).
In addition, this approach can help us to monitor plant
function over large geographic regions if scaled to re-
mote sensing collections from air- or spaceborne plat-
forms (Cotrozzi et al., 2018).

Although the use of hyperspectral reflectance (by both
imaging or nonimaging sensors) is broadly regarded
as a promising phenotyping approach in agriculture
(Weber et al., 2012; Araus andCairns, 2014; Serbin et al.,
2015; Heckmann et al., 2017; Yendrek et al., 2017;
Couture et al., 2018), the potential of this technique is

still not fully realized. At present, studies aimed at
understanding relationships among leaf optical prop-
erties and photosynthetic metabolism (e.g. Doughty
et al., 2011; Serbin et al., 2012, 2015; Ainsworth et al.,
2014; Heckmann et al., 2017; Silva-Perez et al., 2017;
Yendrek et al., 2017) have estimated only a relatively
small number of traits, focusing on the maximum rates
of ribulose bisphosphate carboxylation (Vcmax) and
electron transport (Jmax). Similarly, while plant water
status has been the focus of a number of studies uti-
lizing foliar optical properties in the last decades (e.g.
Hunt et al., 1987; Peñuelas et al., 1993; Gao, 1996;
Ceccato et al., 2002; Sims and Gamon, 2003; Cheng
et al., 2008; González-Fernández et al., 2015), these
studies have primarily focused on foliar water content
or changes in water content. To date, only a few studies
(Rodríguez-Pérez et al., 2007; Santos andKaye, 2009; De
Bei et al., 2011; Rallo et al., 2014; Rapaport et al., 2015;
Cotrozzi et al., 2017) have examined the ability of re-
flectance spectroscopy to estimate leaf water potential.
These studies, however, have been limited to C3 spe-
cies, and mostly grapevine (Vitis vinifera), which po-
tentially presents a limitation when dealing with C4
species because of different leaf morphology, physiol-
ogy, and biochemistry of the two photosynthetic types
(Yendrek et al., 2017). Moreover, none of these studies
have examined the ability of spectral measurements to
estimate individual components of leaf water potential
(e.g. osmotic potential). Maize represents a model C4
species, and reflectance spectroscopy has been used to
assess the quality of maize leaves (Weber et al., 2012;
Heckmann et al., 2017; Yendrek et al., 2017), seeds
(Spielbauer et al., 2009), and forage (Volkers et al.,
2003). To date, however, few studies have explored
the capacity of spectroscopy to estimate important fresh
leaf traits in maize plants under drought stress.

In this study, we tested the capability of reflectance
spectroscopy to characterize physiological and ana-
tomical responses of six maize hybrids with different
sensitivities to drought, determined by previously
established differences in yield stability. We collected
spectral leaf signatures from maize hybrids growing
under both controlled greenhouse conditions and field
conditions. Our objectives in this study were to (1) de-
velop statistical models to estimate leaf gas-exchange,
greenness, water status, thickness, and stomatal den-
sity; and (2) compare the performance of models built
using only greenhouse samples with models including
also field samples. Further, we tested relationships
among physiological and morphological responses of
maize hybrids and their yield stability under drought
conditions.

RESULTS

Prediction of Leaf Traits

To optimize model performance, we initially exam-
ined numerous models containing different wavelength
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ranges, characterized by specific absorption features in
known literature that are directly or indirectly related
to specific traits (Supplemental Table S1). Final models
for gas-exchange traits utilized the wavelength range
500 to 900 nm for net CO2 assimilation (A), transpira-
tion (E), stomatal conductance (gs), intercellular CO2
concentration (Ci), instantaneous water-use efficiency
(WUEi), intrinsic water-use efficiency (WUEin), and
leaf temperature (Tl; Supplemental Table S1). Cross-
validated models accurately characterized A, E, gs,
and Tl (Fig. 1, A, B, C, and G; Table 1). Performance
metrics of cross-validated modes of Ci, WUEi, and
WUEin models were slightly lower than those of A, E,
gs, and Tl (Fig. 1, D, E, and F; Table 1). Standardized
PLSR coefficients and the variable important to the
projection (VIP) measures exhibited similar profiles
for both sets of models. Specifically, VIP highlighted
important wavelengths at ;550 nm and from 650 to
750 nm (Fig. 2, A–G). While statistically significant
(r 5 0.52, P . 0.001, n 5 61), the correlation between
WUEin calculated using either observed or predicted
values of A and gs was lower and the bias higher
than estimation accuracy of modelingWUEin directly
(Fig. 2F).
The most optimal leaf chlorophyll concentration,

quantified using a Soil Plant Analysis Development
(SPAD), (ChlSPAD) PLSR model used the 600- to 900-nm
spectral region, and cross-validated models estimated
chlorophyll concentration well (Fig. 1H; Table 1;
Supplemental Table S1). Similar to gas-exchange traits,
ChlSPAD standardized coefficients, and VIP values were
most pronounced in the 650- to 750-nm spectral region
(Fig. 2H).
The best-model performance for leaf water potential

(Cw) was found using the spectral full range (400 to
2,400 nm), whereas best-model performance for leaf
osmotic potential (Cp) and leaf osmotic potential at full
turgor (Cp100) utilized the wavelength range 1,400 to
2,400 nm. Cross-validated models predicting Cw, Cp,
and Cp100 preformed reasonably (Fig. 1, I, J, and K;
Table 1). Standardized coefficients and VIP profiles for
Cw were relatively flat, showing some peaks at ;600,
1,500, and 1,900 nm, whereas Cp and Cp100 were more
variable, with important wavelengths at ;1,900 nm
(Fig. 2, I, J, and K). Final models for relative water
content (RWC) and succulence (Suc) utilized the 950- to
2,400-nm region (Supplemental Table S1). Predictive
models accurately characterized RWC and Suc (Fig. 1, L
and M; Table 1). Both RWC and Suc standardized co-
efficients and VIP values were most pronounced in the
1,350- to 1,500-nm and 1,900- to 2,100-nm spectral re-
gions (Fig. 2, L and M). There was no relationship be-
tween the estimation of Cp100 calculated using either
observed or predicted values ofCp and RWC (r5 0.11,
P 5 0.40, and n 5 61). No field measurements were
collected forCp100, RWC or Suc; therefore, models were
developed only from greenhouse-collected data.
Specific leaf area (SLA) was accurately predicted with

a PLSR model that utilized wavelengths from 1,400
to 2,400 nm (Supplemental Table S1). Cross-validated

models estimated SLA very accurately (Fig. 1N; Ta-
ble 1). SLA-standardized coefficients and VIP values
highlighted important wavelengths at ;1,500 nm,
from 1,850 to 2,050 nm, and ; 2,280 nm (Fig. 2N).
The best performance for the total (sum of abax-

ial and adaxial surfaces) stomatal density (TSD)
model was found using the wavelength range 1,400 to
1,800 nm (Supplemental Table S1) and cross-validated
models yielded suboptimal estimations (Fig. 1O; Ta-
ble 1;). TSD-standardized coefficients and VIP values
were highly variable throughout the whole spectral
range used (Fig. 2O). No field measurements were
collected for TSD; therefore, models consisted only of
data from the greenhouse. Best models for abaxial and
adaxial stomatal density were less accurate than TSD
(average R2: 0.17 and 0.10, respectively, using the 1,400-
to 1,800-nm range).
Averaged fit statistics (R2, root mean square error

[RMSE], bias, and normalized root-mean-square error
[NRMSE]) for external validations were similar to those
registered for cross validation for A, E, gs, Ci, WUEi,
WUEin, Tl, Suc, SLA, and TSD, whereas they were
slightly lower for ChlSPAD (R2: 0.61 versus 0.44 for
cross- and external validation, respectively), Cw (R2:
0.63 versus 0.40), Cp (R2: 0.60 versus 0.34), Cp100 (R2:
0.53 versus 0.40), and RWC (R2: 0.90 versus 0.65;
Table 2).
Using A, Cw, Cp, and SLA as testing traits, the

performances of models built that included field
and greenhouse data or only greenhouse data were
comparable for calibration and cross validation
(Supplemental Table S1). For external validation, the
performance of the models built using greenhouse and
field samples was similar whether validations were
performed using a dataset containing both greenhouse
and field samples (as reported above;, Table 2) or on
field samples only, with the exception of A (R2: A, 0.86
versus 0.31; Cw, 0.40 versus 0.41; Cp, 0.34 versus 0.34;
and SLA, 0.77 versus 0.69). However, predictions gen-
erated from a data set containing only field samples
were dramatically compromised if using coefficients
from models built from greenhouse data only, with the
exception ofCp, whichwas slightly stronger (R2:A, 0.31
versus 0.00; Cw, 0.41 versus 0.07; Cp, 0.34 versus 0.46;
and SLA, 0.69 versus 0.35).
For all leaf traits, modeling performance of Lasso

using the full spectral range (400–2400 nm) was
lower or comparable to PLSR. Using A, gs, Ci, and
Cp as testing traits, the Lasso modeling performance
decreased when using the smaller spectral regions
from the final PLSR modeling (Supplemental
Table S2).

Correlations among Leaf Traits and Leaf Traits with
Spectral Indices

Similar correlations were found either using green-
house samples only or both greenhouse and field
samples together (Supplemental Tables S3 and S4). All
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Figure 1. Observed versus pre-
dicted cross-validated values of
assimilation (A), transpiration (B),
stomatal conductance (C), inter-
cellular CO2 concentration (D),
instantaneous water-use efficiency
(E), intrinsic water-use efficiency
(F), leaf temperature (G), leaf chlo-
rophyll concentration (H), leafwater
potential (I), leaf osmotic potential
(J), leaf osmotic potential at full tur-
gor (K), relative water content (L),
succlence (M), specific leaf area (N),
and total stomatal density (O). Error
bars for predicted values represent
the SD generated from the 500 sim-
ulated models. Dashed line is 1:1
relationship.
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Figure 2. Mean (solid), fifth, and 95th percentile (dotted) of standardized coefficients (black) and VIP values (blue) by wave-
lengths for PLSR-models predicting assimilation (A), transpiration (B), stomatal conductance (C), intercellular CO2 concentration
(D), instantaneous water-use efficiency (E), intrinsic water-use efficiency (F), leaf temperature (G), leaf chlorophyll concentration
(H), leaf water potential (I), leaf osmotic potential (J), leaf osmotic potential at full turgor (K), relative water content (L), succlence
(M), specific leaf area (N), and total stomatal density (O) for detection of drought in maize.
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significant and strong correlations (P , 0.05, r . 0.4)
among leaf traits of greenhouse samples using refer-
ence values were confirmed by using the predicted
values, except RWC with Tl and Cp100, where the re-
lationships between reference and predicted data did
not hold. We found significant and strong correlations
among reference and predicted field data, with the ex-
ception of some correlations related with Cw and Cp

(Cw with Tl and Cp; Cp with SLA). Overall, we found
more and stronger correlations using predicted data
than when using reference measurements (Supplemental
Tables S3 and S4). Using the reference values only, few
significant correlations found in the greenhouse were
confirmed in the field (Awith E and gs, Ewith gs,Ciwith
WUEin, WUEi with Tl, and Cw and Cp; Supplemental
Table S3).
Using reference values, greenhouse measurements of

A were positively related with the normalized differ-
ential vegetation index (NDVI) and a scaled photo-
chemical reflection index (sPRI, r of 0.41 and 0.52,
respectively, P, 0.05, n5 155), but not the normalized
differential water index (NDWI, r of 0.24, P. 0.05, and
n5 155). Using referencemeasurements collected in the
field, however, A was not related with NDVI, sPRI, or
NDWI (r of 0.18, 20.25, and 0.05, P . 0.05 n 5 36).
Greenhouse reference values of RWC, Suc, and Cw
were positively related to NDWI; although statistically
significant, the relationships for all three variables with
NDWIwere weak (r of 0.22, 0.26, and 0.17, respectively;
P, 0.05; n5 173 for RWCand Suc; and n5 169 forCw).

Leaf Trait Responses under Different Drought Conditions

A three-way ANOVA, including yield stability, wa-
ter treatment, and stage (Table 3) revealed that Suc and
SLAwere generally higher (4%) in genotypes with high
yield stability. No other traits were significant for yield
stability (Supplemental Fig. S1). We found significant

water treatment effects for all leaf traits except WUEin,
Tl, and TSD (Table 3). In general, A, E, gs, WUEi,
ChlSPAD, Cw, and RWC decreased under mild drought
(MD; 275%, 275%, 279%, 222%, 25%, 245%, and
210%, respectively), and even more under severe
drought (SD;286%,285%,288%,232%,212%,264%,
and 220%, respectively). Overall, Cp and Suc de-
creased ;12% and 6%, respectively, and Ci increased
;65% under MD and SD.Cp100 and SLA increased only
under SD (111% and 19%, respectively, Supplemental
Fig. S1). We also found significant stage effects for all leaf
traits except Cw (Table 3), with A, E, gs, WUEi, WUEin,
ChlSPAD, Cp, RWC, Suc, and SLA generally decreasing
(239%,230%,235%,238%,225%,22%,25%,212%,
224%, and 216%, respectively) and Ci, Tl, Cp100, and
TSD increasing (185%, 113%, 19%, and 114%, re-
spectively) at the later V10 developmental stage
(Supplemental Fig. S1). The magnitude of response,
however, varied across water treatments and was dif-
ferent for different genotypes.
We found no significant yield stability 3 water treat-

ment or yield stability 3 stage interactions, whereas we
found significant water treatment 3 stage interactions
for A, E, gs, Ci, WUEi, WUEin, Cw, Cp100, and RWC
(Table 3). Early in development (V6), A, E, and gs were
decreased more under SD than under MD, whereas at
the later (V10) stage, the effects were similar under MD
and SD. A similar behavior was observed forCw, which
had the lowest values at the first developmental stage
under SD. Ci and WUEi decreased under water depri-
vation only at the V10, and the degree of effect of the
stress was similar in both MD and SD treatments.
WUEin was increased in MD and SD plants at the first
developmental stage but decreased in both treatments
at the second developmental stage. Cp100 increased in
V10 plants under SD. The decrease of RWCwas greater
under SD than MD only at the V10 stage (Supplemental
Fig. S1). Only ChlSPAD showed a significant yield stability
3 water treatment 3 stage interaction. Genotypes with

Table 2. Model performance statistics for external validation

Averaged R2, RMSE, and NRMSE (%) for external validation data generated via regression analysis using 500 random permutations of the data for
models predicting leaf traits from maize spectra.

Trait R2 RMSE Bias NRMSE

A (mmol CO2 m22 s21) 0.86 6.96 0.70 13
E (mmol water m22 s21) 0.89 1.39 0.33 13
gs (mol water m22 s21) 0.79 0.08 0.02 15
Ci (mmol mol21) 0.52 49.54 211.32 15
WUEi (mmol CO2 mmol21 water) 0.76 0.77 20.13 11
WUEin (mmol CO2 mmol21 water) 0.55 24.54 0.97 15
Tl (°C) 0.79 1.06 0.15 18
ChlSPAD 0.44 2.99 20.15 17
Cw (2MPa) 0.40 0.25 0.00 20
Cp (2MPa) 0.34 0.10 20.02 21
Cp100 (2MPa) 0.40 0.07 0.00 16
RWC (%) 0.65 6.28 0.80 15
Suc (g g21) 0.74 0.36 20.04 14
SLA (cm2 g21) 0.77 19.87 20.88 12
TSD (mm22) 0.37 22.37 214.87 22
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high yield stabilitymaintained highChlSPAD values under
MD at the V6, but not V10, stage (Table 3; Supplemental
Fig. S1).

A second three-way ANOVA, including genotype,
water treatment, and stage (Table 4), revealed spe-
cific genotype characteristics for several traits. For
A, E, gs, and Suc, PI601361 (drought-sensitive) and
PI543842 (drought-tolerant) had higher values, whereas
PI55936 and PI601438 (both drought-sensitive) had
lower values across all water treatments. For ChlSPAD
and TSD, we found higher values in PI6011361 and
PI543842 but lower values in Ames27193 (drought-
tolerant) across water treatments. When averaged
across water treatments, PI6011361 showed higher
Cp values that were statistically significantly dif-
ferent from those of Ames27193, PI601438, and PI55935
(drought-tolerant). Ames27193, PI601438, and PI55936
had lower SLA values than PI55935 (Supplemental
Fig. S1; Supplemental Table S5). We also found sig-
nificant genotype3 water treatment interactions for
A, E, ChlSPAD, Cw, and Cp100 (Table 4). Under MD,
PI6011361 and PI543842 had higher values of A, E,
and ChlSPAD than the other genotypes, whereas no
genotypic differences for these traits were observed
under SD. PI543842 and PI601438 had a greater de-
crease in Cw under SD, whereas no genotypic differ-
ences were found under MD. Although genotypic
differences of Cp100 were found for controls with
higher values in PI559936 and PI6011361 and lower
values in PI601438 and Ames27193, no differences
among genotypes were found under either MD or
SD (Supplemental Fig. S1). Significant genotype 3
stage interactions were found for ChlSPAD, Cw, SLA,
and TSD (Table 4). PI6011361 showed numerically
the highest ChlSPAD values at both stages of analysis,
but it was significantly different from only Ames27193
at V6, while it was significantly different from PI55935,
PI559936, and PI601438 at V10. At V6, Ames27193
and PI6011361 demonstrated higher Cw values than
PI601438, whereas no genotypic differences in Cw
were observed at V10. SLA was higher in PI559935
than PI559936, PI601438, and Ames27193, whereas no
genotypic differences were observed at V10. No gen-
otypic differences were observed at V6 in terms of
TSD, while at V10 only PI601438 and Ames 27193
remained at the levels reported at V6 as all the other
genotypes increased (Supplemental Fig. S1). A sig-
nificant genotype 3 water treatment 3 stage inter-
action was found only for WUEin and ChlSPAD
(Table 4, Supplemental Fig. S1). PI6011361 (drought-
sensitive) and PI559936 (drought-sensitive) were the
only genotypes where WUEin remained high at V10,
and specifically so under MD and SD. PI6011361
(drought-sensitive) showed an ability to maintain
optimal ChlSPAD values at V6 under water stress,
whereas PI543842 (drought-tolerant) showed this
response at V10. The greatest reductions in ChlSPAD
under MD were observed in Ames27193 (drought-
tolerant) at V6 and in PI601438 (drought-sensitive)
at V10.T
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DISCUSSION

We describe a nondestructive approach by which
plant responses to water availability can be monitored
using reflectance spectroscopy. By combining reflec-
tance measurements, standard physiological and ana-
tomical measurements and statistical modeling, we
demonstrate the potential of using spectral data to es-
timatemaize leaf traits that often change under drought
stress. This documents the potential of spectroscopy to
estimate a large number of drought-related leaf features
in maize and also highlights the possibility to estimate
water potential traits in C4 plants.
Photosynthesis is a key plant process that is affected

by drought, primarily through stomatal and meso-
phyll limitations (Pinheiro and Chaves, 2011). Standard
measurements of light- and CO2-saturated photosyn-
thesis, however, are logistically challenging, potentially
taking 20 to 30 min per leaf, as the leaf has to acclimate
to the cuvette conditions. Hyperspectral approaches
present a rapid alternative to standard reference mea-
surements and have been used previously to estimate
photosynthetic activity in plants both indirectly, via
xanthophyll cycling (PRI; Gamon et al., 1997; Peñuelas
et al., 2011) and directly, by predicting specific traits
from spectral data, mainly ribulose bisphosphate, Vcmax,
and Jmax (e.g. Serbin et al., 2012; Ainsworth et al., 2014,
Heckmann et al., 2017; Yendrek et al., 2017).
The spectral region best predicting gas-exchange

traits was 500 to 900 nm. This wavelength region con-
tains wavelengths with pigment absorption features
(Merzlyak et al., 2003) as well as the red-edge (700 to
750 nm; Mutanga and Skidmore, 2007), a spectral re-
gion strongly influenced by chlorophyll content (Filella
and Peñuelas, 1994; Clevers et al., 2004; Smith et al.,
2004; Zarco-Tejada et al., 2004) and plant stress condi-
tion (Smith et al., 2004; Mutanga and Skidmore, 2007;
Cotrozzi et al., 2017). The importance of spectral fea-
tures in this wavelength region for assessing photo-
synthetic processes has been reported for several plant
species (e.g. Gamon et al., 1997; Merzlyak et al., 2003;
Serbin et al., 2012; Yendrek et al., 2017). The similarities
in wavelength ranges of importance across the different
models we report highlight that changes in pigments
are important for spectral detection of plant stress
(Gamon et al., 1997; Merzlyak et al., 2003). Here we also
show that the range of traits estimable (e.g. gas-ex-
change) can be expanded using spectroscopy to better
understand specific physiological responses to water
stress.
We found that the most important spectral region for

prediction of SPAD-based chlorophyll estimates was
600 to 900 nm. Wavelengths between 700 and 750
showed the highest VIP values reported for predicting
SPAD-based chlorophyll, highlighting the stronger re-
lationship between SPAD values and the red-edge,
compared with other traits.
A, E, and gs were well predicted, followed by WUEi

and ChlSPAD, and then by Ci and WUEin. These out-
comes suggest that physiologically processes derivedT

ab
le

4
.
P
va

lu
es

o
f
th
re
e-
w
ay

A
N
O
V
A
fo
r
th
e
ef
fe
ct
s
o
f
ge

n
o
ty
p
e
(G

),
w
at
er

tr
ea

tm
en

t
(W

),
st
ag
e
(S
),
an

d
th
ei
r
in
te
ra
ct
io
n
s
o
n
o
b
se
rv
ed

le
af

tr
ai
ts
o
f
m
ai
ze

Si
gn

ifi
ca
n
t
va
lu
es

(P
,

0
.0
5
)
ar
e
sh
o
w
n
in

b
o
ld
.
d
f,
D
eg

re
es

o
f
fr
ee

d
o
m
.

Tr
ai
t

d
f

A
E

g s
C
i

W
U
E i

W
U
E i
n

T
l

C
h
l S
P
A
D

C
w

C
p

C
p
1
0
0

R
W

C
Su

c
SL

A
T
SD

G
5

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

0
.5
5
3

0
.4
5
5

0
.5
6
2

0
.7
9
4

,
0
.0
0
1

0
.1
5
7

0
.0
0
3

0
.4
3
1

0
.0
2
6

,
0
.0
0
1

0
.0
0
1

,
0
.0
0
1

W
2

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

0
.3
7
5

0
.7
6
4

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

0
.2
9
3

S
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

0
.0
0
9

0
.7
6
1

0
.0
0
2

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

G
3
W

1
0

0
.0
0
8

0
.0
3
2

0
.0
8
1

0
.2
5
5

0
.1
5
9

0
.2
2
1

0
.9
0
9

0
.0
0
8

0
.0
4
9

0
.2
7
2

0
.0
2
3

0
.4
1
0

0
.4
4
6

0
.2
5
3

0
.7
5
2

G
3
S

5
0
.0
8
0

0
.1
8
3

0
.1
6
3

0
.6
0
2

0
.8
1
7

0
.2
6
6

0
.7
8
6

0
.0
0
9

0
.0
1
4

0
.5
7
0

0
.1
6
2

0
.2
9
2

0
.1
9
6

0
.0
1
0

0
.0
0
6

W
3
S

2
,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

,
0
.0
0
1

0
.3
5
9

0
.2
0
9

0
.0
0
1

0
.2
0
8

,
0
.0
0
1

,
0
.0
0
1

0
.6
3
1

0
.2
7
4

0
.1
2
2

G
3
W
3
S

1
0

0
.0
6
5

0
.1
8
7

0
.3
2
6

0
.3
0
2

0
.4
5
2

0
.0
4
6

0
.9
9
2

,
0
.0
0
1

0
.0
7
1

0
.4
2
8

0
.6
5
7

0
.9
8
0

0
.1
4
9

0
.3
2
2

0
.8
4
2

Plant Physiol. Vol. 184, 2020 1371

Spectral Phenotyping of Maize Drought Stress



from calculations of other measurements (i.e. predic-
tions were used in calculation of processes) lost pre-
diction accuracy, compared with processes that were
directly predicted (e.g. A, E, gs). The performance of the
model predicting A was confirmed by the strong and
positive relation with NDVI and sPRI, two spectral in-
dices related to photosynthetic activity (Gamon et al.,
1995, 1997). Using predicted values to calculate WUEin
(WUEincalc), compared with predicting WUEin directly,
as a test case (WUEincalc versus WUEin), the prediction
accuracy further decreased when using predicted
values to calculate WUEincalc (i.e. predicted A and gs)
opposed to directly predictingWUEincalc using spectral
data alone. This outcome is likely due to the propaga-
tion of error from the individual predictions in the
calculations.

Interestingly, we found excellent prediction perfor-
mance for Tl (R2: 0.89, for cross validation). The capa-
bility of reflectance spectroscopy to detect Tl changes
has been previously reported across several C3 species
exposed to variable air temperatures (e.g. Serbin 2012).
The wavelength range utilized by Serbin (2012) in-
cluded a much larger range (400 to 2,400 nm), con-
trasted with the narrower range (500 to 900 nm) we
utilized. The differences between the two outcomes is
likely a consequence of the different treatments utilized
in the two studies: temperature opposed towater stress.
The ability of photosynthetic and accessory pigments to
safely dissipate excess light energy through the xan-
thophyll cycle (Demmig-Adams and Adams, 1996)
likely contributes to the ability of spectral data to ac-
curately predict temperature in this study. A further
explanation of the discrepancy between wavelength
regions from this study and those from Serbin (2012) is
that it is likely due to the different photosynthetic
pathways, foliar anatomical structure, and experimen-
tal treatments used. Moreover, the SWIR region is
strongly sensitive to water content, given the prom-
inent water absorption features in this spectral region
(Curran, 1989), and the inclusion of different watering
treatments in this study may have altered the influence
of this spectral region on predicting leaf temperature,
shifting focus on excess energy dissipation via shifts in
pigment profiles.

Measurements of water status can be broadly di-
vided into either the amount of leaf water or leaf energy
status (Jones, 2007). Reflectance spectroscopy likely
utilizes information from both approaches because
vegetation reflectance is influenced by the amount of
water as well as by the composition and concentration
of osmolytes that affect variation in Cp, and ulti-
mately in Cw (Cotrozzi et al., 2017). We found that
three spectral regions best predicted the investigated
water-related traits. Unexpectedly, Cw, which is cur-
rently the most widely used parameter to estimate the
water status of plants exposed to drought (González-
Fernández et al., 2015), was best predicted using the
full spectral range (400 to 2,400 nm). This is in contrast
with previous findings (Santos and Kaye, 2009; De Bei
et al., 2011; Cotrozzi et al., 2017) that the NIR-SWIR

region best predicts Cw. However, Cw is the sum of a
number of components, including dissolved solutes
(Cp), the pressure potential (Cp, equal to the hydro-
static pressure), and the gravitational potential (Cg,
ignorable except in tall trees), and is also influenced
by photosynthetic regulation (Jones, 2007). Thus, Cw
is the outcome of the coordination of several under-
lying factors, each of which can potentially interact
with spectral regions differently. We feel that the in-
consistency among other studies and ours in deter-
mining the best spectral region for predicting Cw is
likely due to the anatomical differences among C3 and
C4 species, photosynthetic pathways, and the severity
and range of stress investigated.

For other modeled water-status-related traits, the
best predicting models were derived from the spectral
region dominated by water content and outside of
wavelengths commonly associated with pigments.
As we expected, models of RWC and Suc, which are
the measurements based on the amount of leaf water,
performed better by using the whole NIR-SWIR
spectral region. Agreeing with Cotrozzi et al. (2017),
standardized coefficients and VIP values effectively
highlighted two important water absorption features
of the leaf reflectance profile (1,350 to 1,500 and 1,900
to 2,100 nm). The ability of vegetation spectroscopy
to estimate RWC in maize has been previously
reported, but primarily through the use of spectral
indices (Schlemmer et al., 2005; Zygielbaum et al.,
2009; Zhang and Zhou, 2015). While we also found
statistically significant relationships among RWC,
Suc, and Cw with NDWI, a spectral index widely
used to estimate plant water content (Gao, 1996), the
relationships were weak and had substantially less
explanatory power than the PLSR-predicted esti-
mates we generated, likely due to the limited inclu-
sion of spectral data with strong water absorption
features. We found that the wavelength region that
best predicted Cp and Cp100 was primarily the SWIR
region and excluded the minor water absorption
features centered at 970 nm and 1200 nm. By elimi-
nating the NIR portion of the spectrum, we poten-
tially amplified the contribution of osmolytes to the
prediction of Cp and Cp100 in maize leaves. Multiple
studies (Shetty and Gislum, 2011; Rubert-Nason et al.,
2013; Asner and Martin, 2015; Ramirez et al., 2015;
Cotrozzi et al., 2017) have reported that wavelength
regions are important for predicting nonstructural
carbohydrates and other foliar osmolytes using spec-
troscopy alignment, or they at least closely overlapwith
the more important wavelengths we found for optimal
model prediction of Cp and Cp100. This finding sug-
gests that when SWIR data are available, they can
provide a more accurate representation of foliar water
content than indices alone. Scaling this approach to
airborne data, however, may be challenging because of
the noise generated by atmospheric water in the spec-
tral region of strong foliar water absorption.

In this study, estimation ofCwwas weak for severely
drought-stressed plants (Cw , 22.0 MPa), contrary to
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similar data in live oak reported by Cotrozzi et al.
(2017). Given the suboptimal model performance, we
encourage caution when interpreting results from a
narrow range of values of Cw, Cp, and Cp100. Regard-
less of this limitation, and considering that measure-
ments of these traits with standard methods (pressure
chamber and vapor pressure osmometer) have several
constraints in that they are destructive, user-dependent,
and point-based (Santos and Kaye, 2009; González-
Fernández et al., 2015), we propose spectroscopy as a
rapid and nondestructive approach to unbiasedly esti-
mate water, increasing data collection efforts over
larger spatial and temporal scales.
Leaf anatomical traits (e.g. leaf thickness and sto-

matal density) play a pivotal role in plant tolerance to
drought (Zhao et al., 2015; Wellstein et al., 2017), yet
measurements of these traits are time-consuming and
destructive. By using the SWIR region, we observed a
strong predictive ability for SLA (R2: 0.83 for cross
validation). This outcome was comparable with out-
comes reported by Yendrek et al. (2017; R2: 0.68 to 0.78)
using spectral data collected from diverse inbred and
hybrid lines grown at ambient and elevated ozone
concentrations in the field. Standardized coefficients
and VIP metrics for SLA highlighted the importance of
the wavelengths related to the water content of leaves.
As we expected, the weakest predictive ability among
the models presented in this study was for stomatal
density. For the nature of the trait, we found it difficult
to estimate stomatal density from leaf reflectance, as
suggested by the variability in themodel coefficient and
VIP weighting. Stomata are localized only on the epi-
dermal surfaces of leaves, and while the interaction of
light with the epidermis contributes to overall reflection
profiles, reflectance measurements are also affected by
the leaf tissue as a whole, including the palisade and
cuticular layers, and this relationship likely impeded
stomatal density prediction from spectral data.
An emergent outcome of this study is the advance-

ment of conceptual approaches of chemometric mod-
eling by examining the influence of multiple modeling
approaches and different reference measurement col-
lections on model outcomes. Comparing different mod-
eling approaches, we found that performance of PLSR
was always higher or comparable with the performance
of the Lasso approach. The reason for the higher
performance of PLSR than Lasso likely has to do with
the trait response being modeled. Responses that
contain singular relationships with spectra (e.g. pre-
dictors can converge to a few highly important wave-
lengths, such as pigments) can bemodeled after removing
a large portion of the spectrum, as done by Lasso
through penalizing intercorrelated variables. We also
found that Lasso lost prediction accuracy when smaller
spectral ranges are used, opposed to starting with full
spectrum data. Physiological processes and other phy-
tochemical compounds may need larger portions of the
spectrum for successful modeling because the neces-
sary absorption features are contained within numer-
ous and different spectral regions associated with the

component parts of these processes. The contributions
of smaller coefficients, which are included in PLSR but
removed in Lasso, likely improve prediction accuracies
in PLSR because they provide related information to the
coefficient of absorption features that individually are
suboptimal, but cumulatively contribute more than
individual wavelengths alone.
Our measurements of spectral and reference mea-

surements from both controlled and field environments
revealed three outcomes. First, greenhouse-based
models allowed us to capture a greater proportion
of trait variation than using only field-grown plants
because plants were exposed to a greater and wider
range of stress conditions. Second, the prediction
accuracy of models built using both greenhouse and
very few field measurements was similar with pre-
dictions made using spectra on either greenhouse or
field samples, as long as the trait values in field
samples were within the prediction range of models
built using greenhouse collections. Third, the pre-
diction of field responses was dramatically com-
promised if using predictive models created from
spectral data collected from greenhouse-only col-
lections. These outcomes demonstrate that field
collections are a necessary compliment to controlled
environment studies if the intent is to use models for
phenotyping field plant stress responses.
We found that few of the physiological and ana-

tomical traits measured in this study were correlated
with yield stability for the specific maize hybrids used
in this study. Only the regulation of chlorophyll con-
tent, determined as SPAD, varied between genotypes
with high or low yield stability conditions. Indeed, we
commonly found that a genotype within each drought-
sensitivity class (i.e. tolerant or sensitive) exhibited
inconsistent physiological responses to water stress.
Both drought-sensitive and drought-tolerant genotypes
exhibited higher photosynthesis, transpiration rates,
and ChlSPAD under moderate drought stress, and some
drought-sensitive genotypes had the lowest Cw values
under water stress. We found a significant three-way
interaction (yield stability class by water stress by as-
cension) for only ChlSPAD and intrinsic water use effi-
ciency with two drought-sensitive genotypes able to
maintain this status at optimal levels under water
stress at later developmental stages. The lack of a re-
lationship between the traits contributing to a statis-
tically significant response and yield stability is likely
due to the speed of the onset of stress and differences
in water availability in the containers, compared to
field conditions where yield stability was assessed.
However, we found that the physiological and ana-
tomical responses measured in the maize hybrids in
response to water stress were well predicted using
hyperspectral data, as almost all the statistical outputs
for the correlations obtained with reference measure-
ments were confirmed in both greenhouse and field
samples. This is in agreement with those of others for
spectral predictions of maize traits under differential
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environmental treatments (Yuan et al., 2016, Heckmann
et al., 2017; Yendrek et al., 2017).

CONCLUSION

Here we demonstrate that reflectance spectroscopy
provides a rapid, nondestructive approach to accu-
rately quantify physiological and anatomical functional
traits associated with water relations in maize using a
single spectral measurement. Importantly, this suggests
that the predictions from spectral data can be used in
place of standard reference collections. Moreover, this
approach can dramatically increase data collection
from a larger number of individual genotypes and
plants, in both controlled and field conditions, than
reference measurements alone. The increase in data
volume collected using hyperspectral data, coupled
with similarity in the outcomes of statistical analyses
used to measure responses across treatments, should
promote the implementation of more complex exper-
imental designs that can provide greater insight into
the genetic, environmental, and gene-by-environment
interactions that enhance and repress agricultural
production. While logistical challenges (e.g. solar an-
gle or atmospheric interference) exist, leaf-level spec-
troscopy can be effectively used as ground reference or
training input for airborne-based platforms and scaled to
field and landscape levels (Serbin et al., 2015; Meacham-
Hensold et al., 2019, 2020). Our ability to detect crop stress
responses may play a pivotal role in precision agriculture
and advancing trait-based plant breeding.

MATERIALS AND METHODS

Plant Material and Experimental Design

Greenhouse Experiment

Experiments were conducted in the Purdue University Horticulture Plant
Growth Facility (40°2591599N, 86°5495199W, 611 m above sea level) in West
Lafayette, Indiana. The United States is the world leader in maize (Zea mays)
production, and the United States Midwest represents the major maize pro-
duction region of North America (Araus et al., 2012). Seeds of six maize hybrids
with different yield stability responses under drought (drought-tolerant:
Ames271933PHP02, PI5438423PHP02, and PI5599353PHP02; drought-sensitive:
PI5599363PHP02, PI60113613PHP02, and PI6014383PHP02; Supplemental
Table S5; M.V. Mickelbart and M.R. Tuinstra, unpublished data) were planted
in a growing media containing a mixture of Fafard 52 Mix Metro-Mix 852 RSi
(professional growing mix; Sun Gro Horticulture) and Turface Athletics MVP
conditioner (PROFILE Products; 2:1 in volume) in 7.5-L black plastic containers.
After planting, containers were regularly irrigated to field capacity with a fer-
tilizer mix (400 mL L21) using 21-5-20 Peters Excel fertilizer (ICL Specialty
Fertilizers). The greenhouse day and night mean temperatures were 26°C and
20°C, respectively; and maximum day and night relative humidity were ;60%
and ;50%, respectively.

After a randomized block design, plants were then assigned to two different
sets each composed of 15 seedlings per genotype, and sub-assigned to three
different water treatments: irrigated every day to field capacity (well-watered),
water withheld for 4 d (MD) before measurements, or water withheld for 9 d
before measurements (SD). The water treatments were applied at two devel-
opmental stages. Both sets of plants experienced the first episode of different
watering regimes, but only the V6-stage leaf of the first set of plants was
measured for Stage 1. After the second round of different water treatments, the
V10 leaf of the second set of plants was measured for Stage 2. On the sixth or

tenth leaf (i.e. the youngest fully expanded leaves at the two stages of analysis)
of each plant, we collected measurements in the following order: gas-exchange,
leaf greenness, reflectance, and water potential, then leaf portions were col-
lected for the determination of other water status traits and thickness, as well as
imprinted slides for stomatal density (for a total of 180 leaf samples;
Supplemental Fig. S2). These specific traits were selected because they are
commonly investigated to evaluate the effects of drought on plants. All mea-
surements were performed between 10 and 12 h.

Field Experiment

Field activities were conducted at the Agronomy Center for Research and
Education of Purdue University (40°2892299N, 86°5993799W, 216 m above sea
level), West Lafayette, Indiana. The soil type is a Chalmers silty clay loam.
Average soil pH, organic matter, exchangeable P, and available K were 5.4,
2.5%, 39 lbs/acre, and 170 lbs/acre, respectively. The previous crop was soy-
beans (Glycine max). Tillage consisted of deep-ripping the previous fall, and
field cultivation in the spring before planting. The same six hybrids used for the
greenhouse experiment were planted in a 36-randomized–blocks design (12 3
3, six replications per hybrid). Each block was 5.334-m long and 3.048-m wide
with four rows and 0.762-m row spacing. Each row of each block contained;25
plants. Planting date was June 1, 2017. All grass and broadleaf weeds in the plot
areas were controlled with a pre-emergent residual herbicide Bicep II Magnum
(S-metolachlor and atrazine). All maize seeds were treated in a similar manner
with Acceleron (Difenoconazole, Fludioxonil, Mefenoxam, and Thiame-
thoxam). Force 3G (Tefluthrin) was soil-applied at planting to control corn
rootworm (Diabrotica virgifera virgifera).

On July 19, 2017, measurements of gas exchange, leaf greenness, reflectance,
water and osmotic potentials, and thickness were collected on the ninth leaf (the
youngest fully expanded leaf) of the plant located in the center (12th plant of the
second row)of eachof 36blocks (36 leaf samples, six leavesperhybrid) from11 to
16 h, following the same procedure adopted for the greenhouse experiment.
Weather data were collected from the Purdue University Indiana State Climate
Office at station “ACRE-West Lafayette” (http://www.iclimate.org/). Total
precipitation from June 1, 2017 to July 19, 2017 was 257.53 mm, and averaged
daily, maximum, and minimum temperatures were 22.7°C, 27.6°C, and 16.3°C,
respectively. No supplemental irrigation was applied.

The collection of data in both greenhouse and field environments was per-
formed to achieve the second main goal of this study (i.e. compare the perfor-
mance of models built using greenhouse-only samples with models that also
included field samples) as schematized in Supplemental Figure S3. Further
details are reported below.

Gas Exchange and Chlorophyll Content

Net CO2 A, E, gs, Ci, and Tl were determined using a LI-6400XT portable
photosynthesis system equipped with a 6400-02B LED light source (Li-Cor),
operating at 400-mL L21 CO2 concentration and saturating light conditions
(1,700 mmol m22 s21 photosynthetically active radiation). WUEi and WUEin

were calculated as A/E and A/gs, respectively. A SPAD 502 m (Minolta) was
used to determine leaf greenness (ChlSPAD). Three measurements per leaf were
made, and the mean of these measurements was recorded.

Collection of Leaf Spectra

Full-range (350 to 2,500 nm) reflectance profiles of maize leaves were col-
lected using a SVC-1024i spectroradiometer (Spectral Vista) with a leaf-clip and
an internal halogen light source attached to a plant probe. Integration time (i.e.
the length of time that the detectors are allowed to collect photons before
passing the accumulated charge to the converter for processing) was set at two
seconds. Measurements were made on three and five areas of the leaf adaxial
surface for each greenhouse and field leaf, respectively, with one measurement
per area, and all measurements were combined to produce an average leaf
spectrum. The relative reflectance of each leaf was determined from the mea-
surement of leaf radiance divided by the radiance of a white reference panel
internal to the leaf clip, measured every 12 spectral collections.

Water Status and Leaf Thickness

Cw was measured on the distal portion of the leaf (15 to 20 cm) that was cut
with a sharp razor blade, inserted into a rubber stopper, and then placed in a
Scholander-type pressure chamber (model 600; PMS Instrument), following the
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precautions suggested by Tiekstra et al. (2000). To determine Cp, a portion of
the leaf used for Cw was placed in a mesh insert into a microcentrifuge tube,
immersed in liquid nitrogen, and then stored at220°C until processing. Solute
concentration was determined with a vapor pressure osmometer (model no.
5500;Wescor) as reported in Stanton andMickelbart (2014). RWC and Suc were
determined on another portion of the same leaf. Following a standardized
procedure (Stanton and Mickelbart, 2014), RWC was calculated as FW-DW/
TW-DW, where FW, DW, and TW are fresh, dry, and turgid weights, respec-
tively. Leaf Suc was calculated as FW/DW. The Cp100 was calculated as
Cp 3 RWC.

After determination of TW, the leaf portion used for determining RWCwas
scanned before drying, and its leaf area was determined using the software
ImageJ v.1.38 (National Institutes of Health). SLA was calculated as leaf area/
DW.

Stomatal Density

Aleaf surface imprintmethodwasused todetermine stomatal density (Weng
et al., 2012). Abaxial and adaxial epidermal cell outlines of leaves were
imprinted onto cyanoacrylate droplets that were placed onto glass slides. Im-
ages were taken under 103 magnification using an OptiPhot2 microscope
(Nikon). Stomata were counted in an area of 0.474 mm2. For each slide, four
independent leaf areas were counted and averaged for each biological replicate.
TSD was calculated as abaxial SD 1 adaxial SD.

Model Calibration and Validations

Using both greenhouse and field samples, we generated models to predict
leaf traits fromuntransformed reflectanceprofilesusingPLSR (Wold et al., 2001).
When predictor variables are highly correlated, as is the case with hyperspectral
data, classical regression techniques can produce unreliable coefficients and
error estimates (Grossman et al., 1996). In contrast to standard regression
techniques, PLSR reduces a large number of collinear predictor variables into
relatively few, uncorrelated latent variables, and has become the preferred
method for chemometric approaches (Bolster et al., 1996; Atzberger et al., 2010;
Couture et al., 2013, 2016; Cotrozzi et al., 2018). To avoid potential overfitting
the PLSR model, the number of latent variables used was based on reduction of
the predicted residual sum-of-squares statistic (Chen et al., 2004) using leave-
one-out cross validation. Once minimized, the final set of extracted components
was combined into a linear model predicting leaf traits based on leaf spectral
profiles.

Model performance was evaluated by conducting 500 randomized permu-
tations of the data sets using 80% of the data for calibration (i.e. training) and the
remaining20%for crossvalidation (i.e. testing)with randomresampling for each
permutation. Then, for each permutation, we tracked the R2, the overall error
rate (RMSE), the percentage of error relative to the data range (NRMSE) and
bias to assess model performance when applied to the validation data set. These
randomized analyses generated a distribution of fit statistics allowing for the
assessment of model stability as well as uncertainty in model predictions. We
further determined the strength contribution of PLSR loadings by individual
wavelengths using the VIP selection statistic. The VIP statistic evaluates the
importance of individual wavelengths in explaining the variation in both the
response and predictor variables, where larger weightings confer greater value
upon the contribution of individual wavelengths to the predictive model (Wold
et al., 2001; Chong and Jun, 2005). UsingA,Cw,Cp, and SLA as testing traits, we
also compared the performance of models built with both greenhouse and field
samples and models including only greenhouse data (Supplemental Fig. S3B).

Weadditionallyperformedexternal validationbyapplyingPLSRcoefficients
on a dataset distinct from the one used for calibration and cross validation,
including again both greenhouse and field samples (;40% of the full dataset).
Five-hundred randomized permutations were conducted, and relations be-
tween predicted and observed values were tested by regression analysis. Fit
statistics (R2, RMSE, bias, and NRMSE) were again used to assess model esti-
mation accuracy. Using A,Cw,Cp, and SLA as testing traits, we also compared
the estimation efficacy for these traits in field samples between the models built
with both greenhouse and field samples andmodels including only greenhouse
data (Supplemental Fig. S3B).

Before building the final models, we developed preliminary models to
identify wavelength regions associated with the trait of interest and to identify
poorly predicted outliers on either the reference or target measurements. Final
wavelength regions included individual wavelengths at 1-nm intervals, thus
maintaining high-density spectral information in regions associated with traits,

but excluding wavelengths that contribute error to the predictions likely be-
cause of lack of absorption features. Prediction residuals were used to identify
potential outliers. Spectral data of outliers were further examined for errors,
detectable from elevated reflectance in the visible wavelengths or spectral
jumps in the NIR region that occur when the leaf clip is not fully closed. Ref-
erence data of outliers were also examined for extremes in the data distribution
(Couture et al., 2013, 2016; Cotrozzi et al., 2018; Marchica et al., 2019). The same
approach was followed to remove outliers from the data set used for external
validations. Outliers removed accounted for 12% to 13% of the initial data.

To test another multivariate statistical approach, we also analyzed the same
data sets using least absolute shrinkage and selection operator (Lasso;
Tibishirani, 1996, 2011). The aim of the Lasso approach is to improve prediction
accuracies by minimizing, or shrinking, coefficients to be less than a fixed,
upper-bounded value and removes coefficients of intercorrelated variables by
setting them to zero, providing variable selection. The same as our PLSR ap-
proach, Lasso model performance was evaluated by conducting 500 random-
ized permutations of the data sets using 80% of the data for calibration and
the remaining 20% for cross validation; and for each permutation, we
tracked R2, RMSE, NRMSE, and bias statistics. The modeling approach and
data analyses were performed using the “pls” (Mevik et al., 2016) and
“glment” (Friedman et al., 2010) packages in R (www.r-project.org) for
PLSR and Lasso, respectively.

Spectral Indices

Somewidelyused spectral indices thought to be relatedwithplant health and
water status were also calculated: PRI, an indicator of photosynthetic radiation
use efficiency, (R531 2 R570)/(R531 1 R570); Gamon et al., 1997). To avoid neg-
ative values of PRI, values were scaled as sPRI 5 (PRI 1 1)/2 as reported by
Letts et al. (2008); NDVI, an indicator of leaf greenness, photosynthetic activity,
and plant health (R7802R570)/(R7801R570); Gamon et al., 1995); andNDWI, an
indicator of vegetation liquid water content, (R857 2 R1241)/(R857 1 R124); Gao,
1996). Rx indicates reflectance at x nm wavelength.

Statistical Analyses

We first determined the effects of yield stability under drought, water
treatment, stage, and their interactions on leaf traits of greenhouse samples, by
using a three-way ANOVA following the model

Yijk 5mþ Ysi þWj þ Sk þ YsWij þ YsSik þWSjk þ YsWSijk þ eijk

Then, we similarly determined the effects of genotype, water treatment, stage,
and their interaction on leaf traits of greenhouse samples, using a three-way
ANOVA following the model

Yijk 5mþ Gi þWj þ Sk þ GWij þ GSik þWSjk þ GWSijk þ eijk

In these models, m represents the mean, Ys is yield stability under drought level
i, G is genotype level i, W is water treatment level j, S is stage level k, and eijk
represents the error term.

Relationships among predicted leaf traits from greenhouse, field, or green-
house-and-field samples were evaluated using Pearson’s correlations. Pear-
son’s correlationswere also used to test the relations amongAwithNDVI, sPRI,
and NDWI, as well asCw, RWC, and Suc with NDWI. For relationships among
A and spectral indexes, datawere separated into either greenhouse or field data;
for relationships amongCw, RWC, Suc, and NDWI, only greenhouse data were
available. Statistical analyses (that included regression analyses for external
validations of models) were performed in the program JMP 13.2 (SAS Institute).
The normality of data was preliminarily tested by the Shapiro–Wilk W test.
Effects with P , 0.05 were considered statistically significant.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Observed leaf traits of six hybrids of maize char-
acterized by different yield stability under drought exposed to different
water treatments at different developmental stages.
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Supplemental Figure S2. Experimental scheme of the greenhouse
experiment.

Supplemental Figure S3. Modeling-approach schematic.

Supplemental Table S1. Metadata and performance of the preliminary
PLSR-models used for the estimation of leaf traits by spectral data.

Supplemental Table S2. Metadata and performance of the Lasso-derived
models used for the estimation of leaf traits by spectral data.

Supplemental Table S3. Pearson’s correlation matrix describing relation-
ships among leaf traits of greenhouse and field samples by observed
standard measurements.

Supplemental Table S4. Pearson’s correlation matrix describing relation-
ships among leaf traits of greenhouse and field samples predicted by
PLSR models.

Supplemental Table S5. Identification and description of hybrids used in
this study.
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