
Heterogeneity and fate choice: T cell exhaustion in cancer and 
chronic infections

Mary Philip1, Andrea Schietinger2,3

1Department of Medicine/Hematology & Oncology, Department of Pathology, Microbiology, & 
Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

2Weill Cornell Medical College, Cornell University, New York, NY 10065, USA

3Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

Abstract

CD8 T cell differentiation is a tightly regulated process generating effector and memory T cells 

over the course of acute infections. In cancer and chronic infection, this differentiation program is 

derailed, and antigen-specific CD8 T cells differentiate to a hyporesponsive state generally 

referred to as T cell exhaustion. Here, we review recent findings on heterogeneity of tumor-

specific T cells and exhausted T cells during chronic infections, discussing distinct differentiation 

state dynamics, fate choices, and functional states. Delineating the regulatory mechanisms 

defining distinct T cell states and determining the requirements for therapeutic reprogramming of 

these states will provide needed insights for the design of effective immunotherapies for the 

treatment of cancer and chronic infections.

Introduction and terminology

Several terms are currently in use to describe hyporesponsive CD8 T cells, including 

tolerance, anergy, exhaustion, and dysfunction. Tolerance describes the central or peripheral 

inactivation of self-reactive T cells and serves to prevent autoimmunity [1]. Anergy is 

generally used to describe the hyporesponsive state of T cells stimulated in the absence of 

co-stimulatory signals [1]. In the context of chronic infections, hyporesponsive T cells are 

generally referred to as ‘exhausted,’ while T cells in the context of tumors have been 

described as ‘dysfunctional’ and/or exhausted. These different hyporesponsive states have 

shared and unique features. Here we will highlight (i) new insights into differentiation state 

dynamics and population heterogeneity of hyporesponsive T cells in chronic infections and 

cancer, (ii) how these states are determined by spatiotemporal factors, (iii) the underlying 

transcriptional and epigenetic regulation, and finally (iv) how these different states 

determine responses to immunotherapeutic interventions.
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Phenotypic and functional traits of exhausted T cells in chronic viral 

infection

During chronic viral infections, virus-specific CD8 T cells enter a state of ‘exhaustion’—a 

state of functional hyporesponsiveness driven by chronic antigen stimulation [2]. Exhausted 

T cells lack full effector function, coinciding with the expression of numerous inhibitory 

receptors including PD1, LAG3, TIGIT, CD38, CD39, CD160, 2B4, TIM3, and CTLA4 [3]. 

These exhaustion-associated phenotypic and functional traits have distinct underlying 

transcriptional and epigenetic programs [2,4–9]. Virus-specific T cells initially acquire 

effector function during the early phase of the infection, but in the presence of persistent 

viral antigen and inflammation/infection, T cells become progressively exhausted, losing 

effector functions in a hierarchical manner (loss of proliferative capacity and IL-2 

production first, followed by loss of TNFα, and ultimately loss of IFNγ production) [10]. 

Nevertheless, exhausted T cells are not completely unresponsive and retain some effector 

function, thereby allowing the host to control the pathogen without detrimental 

immunopathology. This is evidenced by the fact that depletion of exhausted T cells can 

cause fatal infection [11,12] while conversely, reinvigoration of exhausted T cells during 

chronic viral infection can result in fatal immunopathology [13,14]. Thus, T cell exhaustion 

is a state of ‘effective’ hyporesponsiveness, rather than a fully dysfunctional or non-

responsive state, maintaining the host–pathogen stalemate [15].

Phenotypic and functional traits of hyporesponsive, tumor-reactive T cells 

in cancers

The study of established mouse and human tumors has demonstrated that tumor-infiltrating 

CD8 T cells (TIL) exhibit hallmark exhaustion features of T cells in chronic infection: TIL 

are impaired in the production of effector cytokines and/or cytotoxic molecules, express high 

levels of inhibitory receptors, and display alterations in TCR signaling pathways and 

transcription factor programming (including NFAT, TOX, TCF1, IRF4, BLIMP1) [16–23].

In spite of these overlapping phenotypic and functional traits, T cell differentiation during 

tumorigenesis is distinct from T cell differentiation in chronic infection: tumor-specific/neo-

antigen-specific T cells generally do not differentiate through an early effector phase as seen 

with virus-specific T cells during a chronic infection; in developing tumors, tumor antigens 

are not presented ‘acutely’ in an inflammatory, stimulatory context. Instead, naїve tumor-

reactive T cells are inadequately primed and/or activated in the draining lymph nodes or 

tumors, and enter an ‘anergy’-like hyporesponsive state, which progresses into an 

exhaustion-like state due to progressive tumor growth and persistence of tumor antigen 

[18,20,24–26].

Identifying the precise differentiation state dynamics and functional states of tumor-

infiltrating T cells has been difficult due to the many cell-intrinsic and extrinsic factors 

affecting T cell differentiation and dysfunction in tumors, including (i) antigen-specificity, 

(ii) TCR affinity, (iii) tumor antigen density, (iv) time present within tumor and/or exposure 

to tumor antigen, (v) tolerance mechanisms operating during the early, non-inflammatory 
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phase of tumorigenesis, or (vi) microenvironmental immunosuppressive factors present 

within established tumors (hypoxia, nutrient deprivation etc.). Thus, TIL represent a highly 

heterogeneous T cell population with a wide range of T cell specificities, activation and 

functional/dysfunctional states with distinct requirements for therapeutic reprogramming. 

The complete responses seen in some cancer patients treated with checkpoint blockade 

antibodies have reinvigorated the field of cancer immunotherapy; however, significant 

clinical responses are only observed in a subset of patients and cancer types, and it is 

currently unknown why only certain cancers and/or patients respond to checkpoint 

immunotherapy. To address these clinical challenges and design predictably effective cancer 

treatments, current efforts are aimed at elucidating the underlying programs that define 

exhaustion states of TIL and their amenability to immunotherapeutic reprogramming. 

Recent technological advances including single-cell analysis, TCR-seq, as well as 

epigenomics and transcriptomics analyses are now beginning to yield startling new insights 

into the heterogeneity of antigen specificity, T cell repertoires, and T cell differentiation and 

functional states in tumors, and how these heterogeneities might define clinical responses to 

immunotherapy (see below) [27–38].

Heterogeneity of the exhausted T cell population during chronic infections

Exhausted T cells during chronic infections represent a heterogeneous T cell population. 

Paley et al. first demonstrated that virus-specific exhausted T cells consist of at least two 

subpopulations: a TBEThiPD1int progenitor CD8 T cell subset which proliferates and gives 

rise to an EOMEShiPD1hi terminally differentiated progeny [39]. EOMEShiPD1hi T cells do 

not replicate and display high expression of inhibitory receptors. The ultimate depletion of 

the progenitor pool and accumulation of terminally differentiated EOMEShiPD1hi T cells is 

thought to result in the loss of immune control of the infection. In support of this notion, 

livers of patients with chronic HCV infection show depletion of TBEThi precursors and 

accumulation of the terminally differentiated exhausted progeny, in contrast to patients with 

controlled infections [39].

Several other subsequent studies examined T cell heterogeneity during chronic infections 

and identified TCF1 as a critical transcription factor. Virus-specific TCF1+ 

(PD1+CXCR5+TIM3−) CD8 T cells have a memory/stem cell-like phenotype, self-renew 

and give rise to terminally differentiated TCF1low/neg (PD1+CXCR5−TIM3+) T cells [40–45] 

(Figure 1). Interestingly, these two populations are found in spatially distinct compartments: 

while the TCF1+ memory/stem cell-like progenitor population is mainly found in secondary 

lymphoid tissues, specifically in T cell zones (white pulp), the terminally differentiated, 

exhausted TCF1low/neg T cell population is predominantly found in peripheral tissues 

andthered pulp of spleens—the major sites and reservoirs of infected cells and/or antigen 

[41]. Thus, formation and maintenance of the TCF1+ progenitor population appear to be 

restricted to sites of low antigen/pathogen burden and virus replication.

Importantly, TCF1+ (and/or TBEThiPD1int) exhausted progenitor T cells, but not terminally 

differentiated exhausted TCF1low/neg (and/or EOMEShiPD1hi) T cells, proliferate in 

response to PD1/PDL1 checkpoint blockade revealing that the memory/stem cell-like 
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progenitor population is the prime target of immunotherapeutic interventions during chronic 

infections [40,41] (Figure 1).

Heterogeneity of tumor-infiltrating lymphocytes (TIL)

The identification of a memory/stem cell-like progenitor T cell population in chronic 

infections amenable to reprogramming by checkpoint blockade antibodies has sparked the 

search for similar progenitor T cell populations in tumors. Previous studies demonstrated 

that the induction of WNT/β-catenin signaling arrests T cell differentiation and drives the 

generation of self-renewing, memory stem cell-like T cells [46]. More recent studies 

characterizing TIL populations from human tumors indeed demonstrated the presence of 

TCF1+ TIL with stem cell-like characteristics and cytotoxic potential [29,43,47–49], and the 

frequency of TCF1+ CD8 T cells in tumor tissue correlated with responses to 

immunotherapy. However, it is unclear whether these TCF1+ T cells are truly tumor-reactive 

and/or represent a truly stable, self-renewing memory/stem cell-like progenitor T cell 

population as seen in chronic infections. TCF1+ TIL may include non-tumor reactive, 

bystander, cytotoxic T cells abundant in human tumor infiltrates and phenotypically distinct, 

lacking hallmarks of chronic antigen stimulation [18,21,30,35] (Figure 2). Interestingly, a 

recent study combining single-cell RNA-seq and TCR-seq, and assessing tumor reactivity of 

TIL from melanoma patients, revealed that TCF1+ TIL include bystander non-tumor reactive 

cytotoxic T cell populations, while T cell clones with tumor-reactivity had dysfunctional 

features including high expression of PD1, LAG3, CD39, and TOX, and low expression of 

TCF1 [28].

Following differentiation of a naїve tumor-specific T cell population over the course of 

tumorigenesis in an autochthonous tumor mouse model demonstrated that tumor-specific 

TIL within malignant lesions are initially TCF1hi/int, but over the course of tumorigenesis 

and with continued tumor antigen encounter, gradually lose TCF1 expression, become 

TCF1low/int and ultimately TCF1neg. This gradual loss of TCF1 coincided with the 

progressive upregulation of canonical inhibitory receptors and the inability to undergo 

functional rescue [18,20]. Thus, tumor-specific T cell dysfunction is progressive, ultimately 

resulting in a severe state of dysfunction/exhaustion which is highly resistant to therapeutic 

reprogramming. In human tumors, T cell tumor-infiltration and exposure time to tumor 

antigens (as well as specificity, affinity etc.; see above) is variable; thus TIL are in distinct 

differentiation, activation and dysfunctional states. Understanding whether and which 

dysfunctional T cell state(s) within tumors can be reinvigorated through immunotherapeutic 

interventions, or whether clinical responses require the recruitment of functional (potentially 

TCF1+) tumor-reactive T cells from ‘outside’ (e.g. draining lymph nodes, blood etc.) is 

being intensely investigated and these findings will be critically important to understand and 

design effective immunotherapeutic strategies (Figure 2).

Epigenetic programs defining dysfunctional and exhausted T cell states 

and therapeutic reprogrammability

Distinct functional CD8 T cell states, such as the naїve, effector and memory states, are 

associated with specific epigenetic programs that regulate transcription and define functional 
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and phenotypic properties [50]. Recent technological advances including ATAC-seq [51] 

allowed the identification of chromatin states of exhausted T cells in chronic infections and 

tumor-specific T cells in mouse and human cancers [6–8,20,21,29]. These analyses reveal 

that both exhausted/dysfunctional T cells in chronic infections and tumors harbor chromatin 

accessibility patterns distinct from those of naїve, effector or memory T cells, with 

thousands of uniquely differentially accessible peaks, including in loci of genes encoding 

critical exhaustion-associated transcription factors and inhibitory receptors.

Studies investigating chromatin state dynamics of tumor-specific T cells over the course of 

tumorigenesis demonstrated that naїve tumor-specific T cells enter an epigenetically 

encoded program of dysfunction after encountering tumor antigen in early malignant 

lesions. This epigenetic landscape (chromatin state 1) was markedly distinct from that of 

early effector T cells during an acute infection and from early ‘exhausted’ T cells during a 

chronic infection [20,21]. Thus, naїve tumor-specific T cells encountering tumor antigen in 

early malignant lesions in a non-inflammatory context follow a distinct differentiation 

pathway from naїve T cells encountering antigen during an infection. With continued tumor 

antigen encounter and tumor progression, PD1hi tumor-specific T cells undergo further 

chromatin remodeling, entering another distinct chromatin state (state 2). These two 

chromatin accessibility patterns correlated temporally with the T cells’ amenability to 

therapeutic reprogramming [20]. Thus tumor-specific T cells initially differentiate through a 

plastic dysfunctional state that is functionally rescuable but ultimately enter a severe and 

fixed state of dysfunction that appears to be resistant to reprogramming. Interestingly, plastic 

and fixed dysfunctional T cells expressed similar levels of PD1 and LAG3 but could be 

distinguished by expression of other surface membrane proteins, including CD38, CD39, 

2B4, and CD101, which were shown to be predictive biomarkers for therapeutic 

reprogrammability. Thus, while some inhibitory receptors such as PD1 more broadly might 

define TIL with tumor-reactivity, other inhibitory receptors can be utilized to determine 

functional states and reprogrammability of PD1hi TIL within mouse and human tumors 

[18,20,29,52]. In chronic viral infection, interestingly, it was shown that despite functional 

reinvigoration of exhausted virus-specific T cells by PD1 checkpoint blockade, chromatin 

states only changed minimally and ultimately drove T cells to reenter their previous 

functional and transcriptional exhausted state [6].

Together, these findings demonstrate that exhaustion of virus-specific T cells during chronic 

infection and tumor-specific T cells in tumors and their therapeutic reprogrammability are 

epigenetically encoded and suggest that effective immunotherapeutic strategies might 

require targeting the epigenome of T cells [50,53].

Concluding remarks

Recent technological advances have provided important insights into the heterogeneity and 

programming of hyporesponsive T cell populations in chronic infection and cancer. It has 

become increasingly clear that distinct T cell subsets with distinct transcriptional and 

epigenetic programs and functional states harbor distinct requirements for therapeutic 

reprogramming. Future studies are needed to identify (i) the precise spatiotemporal factors 

that determine these distinct functional states, and (ii) which T cell differentiation states and 
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population subsets represent the critical cellular target(s) for immunotherapy, especially in 

the context of cancer.
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Figure 1. Heterogeneity of exhausted CD8 T cells during chronic viral infections.
Virus-specific exhausted CD8 T cells consist of an exhausted TCF1+ PD1int T cell 

population with memory/stem cell-like characteristics which gives rise to a terminally 

differentiated, exhausted TCF1low/neg PD1hiT cell population. PD1/PDL checkpoint 

blockade reinvigorates the TCF1+ PD1int progenitor population but not the terminally 

differentiated TCF1 low/neg T cell population.

Philip and Schietinger Page 9

Curr Opin Immunol. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Heterogeneity of tumor-infiltrating lymphocyte (TIL) populations.
TIL are heterogeneous and include tumor-reactive and non-tumor reactive T cells. Non-

tumor reactive, bystander T cells appear functional and cytotoxic, express high levels of 

TCF1 and no or low levels of inhibitory receptors (IR). Tumor-induced T cell dysfunction is 

progressive and various dysfunctional states exist depending on spatiotemporal factors 

including antigen burden and duration of tumor antigen exposure. Tumor-specific T cells are 

initially TCF1+ but with time lose TCF1 expression, become TCF1 low/neg, and upregulate 

numerous inhibitory receptors (IR+++). It is currently not known if TCF1+ tumor-specific T 

cells represent a stable, self-renewing population. We hypothesize that, in human tumors, as 

seen in autochthonous tumor mouse models, reprogrammable and non-reprogrammable 

dysfunctional T cells may be present. Tumor-reactive T cells are also found in the periphery 

(e.g. blood and lymph nodes) and typically do not have the ‘exhausted’ phenotype, and these 

T cells maybe the population most amenable to immunotherapy.
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