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INTRODUCTION

Machine learning (ML) has the potential to transform
oncology and, more broadly, medicine.1 The in-
troduction of ML in health care has been enabled by the
digitization of patient data, including the adoption of
electronic medical records (EMRs). This transition
provides an unprecedented opportunity to derive clin-
ical insights from large-scale analysis of patient data.

Clinical decisions have traditionally been guided by
medical guidelines and accumulated experience. ML
methods add rigor to this process; algorithms can
generate individualized predictions by synthesizing
data across broad patient bases. On a policy level, these
insights can be used to inform data-driven guidelines
and risk cohorts. On a more granular level, these in-
sights enable a personalized approach to medicine that
accounts for a patient’s unique characteristics.

Despite its promise, there are numerous obstacles to
the adoption of ML in medicine.2 The success of many
methods depends on the availability of large-scale
structured data. Variability in data capture across
departments and health care systems leads to sig-
nificant challenges in creating cohesive data sets for
analysis. Furthermore, ML integration into clinical
workflows presents its own set of challenges. Although
this review focuses on the technical challenges ofML, we
note that clinical decision support tools have implications
on the treatment and subsequent outcomes of patients
and thus must be handled with great care. There is well-
placed scrutiny on MLmethods in health care as a result
of their potential consequences.3-5 ML models must gain
the trust of clinicians through interpretability, collabora-
tion between researchers and medical experts, and
prospective validation in clinical settings.

In this article, we present an overview of ML in on-
cology. We introduce several classes of ML tasks and
their interpretations. We discuss clinical data sources,
the process of data curation, and challenges involved
in creating useful data repositories for ML research.
We conclude with a survey of ML applications in on-
cology, ranging across the continuum of care.

TOOLS AND TASKS

ML encompasses a broad range of tasks and
methods.6 Supervised learning tasks have a known
available outcome to predict, such as presence of

a tumor, length of survival, or treatment response.
Unsupervised learning identifies patterns and sub-
groups within data where there is no clear outcome to
predict. It is often used for more exploratory analysis.
Reinforcement learning is yet a third class of ML used
for sequential decision making where a strategy must
be learned from data; this has natural applications in
determining optimal treatment regimens for patients
with cancer.7,8 This review focuses on supervised and
unsupervised learning settings.

Supervised Learning

In this section, we introduce several common super-
vised learning approaches that appear throughout
oncology applications. These algorithms take in a set of
features and predict a chosen outcome, which could
be either continuous (regression) or discrete (classi-
fication). Table 1 presents a summary and comparison
of these methods.

Linear models. Linear models map the independent
variables to the outcome of interest through a linear
equation. A linear regression model finds coefficients
β for each of the features. An observation’s prediction
is then given by a weighted combination of these
features (ie, β0 + β1x1+ …+ βpxp, where a patient’s
features are given by variables x1, …, xp).

Linear regression assumes that the outcome linearly
relates to the feature values and that there is an ad-
ditive relationship between features. Other variants of
regression models, such as logistic regression (for
binary classification) and Cox regression (for survival
analysis), similarly assume an additive relationship
between features but involve a transformation of the
linear function based on the prediction task.

Linear methods have been enduring popular choices
for modeling as a result of their interpretability and
straightforward methodology. Such models form the
backbone of many existing risk scores and predictive
models used throughout health care. However, out-
comes are often inherently nonlinear in the features.
For example, the effect of tumor size on cancer re-
currence risk may be different for different age groups.
A linear model does not naturally capture such in-
teractions between variables. Interaction variables can
be constructed to reflect nonlinearities; for example,
one could create a derived feature that combines age
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and tumor size to model a joint effect. However, this is
generally done on an ad hoc basis because it is im-
practical to consider all possible transformations of
pairs, or larger groups, of variables. In the subsequent
sections, we explore nonlinear methods that inherently
account for variable interactions.

Decision tree models. Classification and regression
trees (CARTs) were initially proposed by Leo Breiman
as an alternative to linear models.10 A decision tree
consists of feature splits, which split observations into
subgroups, and leaves, which contain the final sub-
groups of observations. The final tree partitions the
population; every observation is assigned to a single
leaf based on the feature splits. A single prediction is
generated for each leaf. The prediction is a probability
in the case of classification, generally calculated as the
frequency of the most common outcome in the leaf,
and a numerical value for continuous outcomes,
generally the average value of the outcomes in the leaf.
An example is shown in Figure 1.

The tree-based structure of the model allows it to
capture nonlinear relationships between features. It
can identify cutoff thresholds, such as discretely dif-
ferentiating risk levels between patients above or below
a certain age. It can also reflect dependencies be-
tween variables, such as determining that certain
comorbidities are only relevant for male patients.

The feature splits in decision trees are chosen to
minimize a loss function, ameasure of prediction error.
In a classification task, this could be the mis-
classification rate (the proportion of observations in-
correctly classified); in a regression task, this could be
the mean absolute difference between the predicted
and actual outcome values. CART forms decision trees
by making greedy recursive splits. It first separates the
data into two subsets based on the split that minimizes
the error and then splits these subsets and continues
to further levels without modifying earlier splits. A

complexity parameter controls the splitting by only
allowing splits that meet a certain error improvement
threshold. Finally, the decision tree is pruned to
remove splits that do not sufficiently improve the
model error.

More recently, optimal classification trees (OCTs) were
introduced as an alternative decision tree algorithm.12

OCTs use an optimization framework that considers
the full structure of the tree when evaluating potential
splits. A local search procedure enables the recovery
of data partitions that are not identifiable from a greedy
approach. The method also restricts tree depth through
a complexity parameter. OCTs generally demonstrate
stronger performance while maintaining the high in-
terpretability of CART.

Ensemble models. Ensemble methods, such as ran-
dom forests13 and gradient boosted machines,16,17

extend the decision tree framework. These methods
build many decision trees and generate predictions
based on the resultant set of models. In random for-
ests, each tree is trained using a random subset of
features and data, resulting in varied models. The final
prediction aggregates the predictions of the individual
trees. Gradient boosted machines train individual trees
iteratively: subsequent trees are built to place higher
weight on observations that had high error in previous
trees. This error-correcting approach often gives
a performance advantage over random forests.

Because ensemble methods aggregate many indi-
vidual trees, there is no single model that explicitly ties
the input features to the final prediction. This makes
the models more difficult to understand than linear
models, which have coefficients, and decision trees,
which have clear feature partitions. The lack of
transparency poses a challenge in application spaces
where interpretability is critical to adoption. Feature
importance measures calculated from the models can
offer more general insights,13,16 and frameworks such
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as SHapley Additive exPlanations18,19 have been proposed
as alternative ways of extracting insights.

Neural networks. Neural networks map features to pre-
dicted outcomes through a layered network of mathe-
matical transformations. Figure 2 displays a simple
feedforward neural network with a single layer. The model
maps the input features to nodes in a hidden layer through
linear functions. These nodes then map to an outcome
using a nonlinear activation function. These network dy-
namics allow neural networks to capture complex in-
teractions between features and the outcome.

In recent years, significant advancements have been made
in neural networks, including the introduction of recurrent
neural networks, convolutional neural networks, and
generative adversarial networks. We refer the reader to
Schmidhuber15 for a comprehensive review of these in-
novations. These methods form the foundation of deep
learning, a subfield of ML built on neural networks.

Neural networks have become especially popular as a re-
sult of their ability to synthesize raw images and free text.
They are amenable to unstructured data formats and can
scale to high-dimensional settings, namely cases where the
number of input features greatly exceeds the number of
observations. However, themodeling power and complexity
come at the expense of interpretability. Neural networks
have been coined as black box methods as a result of the
difficulty in extracting insights. As with ensemble methods,
the lack of interpretability limits its utility in certain clinical
settings.

Unsupervised Learning

Although the methods described earlier predict a specific
outcome, unsupervised learning is less targeted; it seeks to
identify underlying structures within data. The outputs of
these methods are not task specific (ie, not based on
a specific predicted outcome such as survival) and provide
general insight. There are several variants of unsupervised
learning, which are listed in Table 2.

We focus on clustering in this review because it has the
most natural interpretation in a health care setting. For
example, clustering EMR data for patients with a certain
disease type could offer insight into different patient profiles
within the disease. Figure 3 illustrates a simple example of
clusters where there are only two features, age and body
mass index (BMI). In general, clustering algorithms parti-
tion the data into K clusters with a goal of maximizing
similarity within clusters and separation between clusters.
In other words, a good cluster assignment would have
homogenous clusters that are highly distinct from each
other. Similarity is measured by the difference between two
observations; in this example, patients are more similar the
closer they are in age and BMI.

K-means and hierarchical clustering are two of the most
popular clustering methods. K-means clustering uses
a heuristic to find the best assignment for a fixed K.
Hierarchical clustering begins with each observation in
a separate cluster and aggregates them incrementally by
increasing distance. This results in a tree-like structure that
allows the user to find the corresponding cluster assign-
ment for any choice of K clusters.

TABLE 1. A Comparison of Popular ML Methods for Supervised Learning
Model Type Overview Benefits Drawbacks Algorithm Examples

Linear
models

Additive models that compute risk
using a weighted linear
combination of patient features

Highly interpretable: coefficients
give explicit relationship between
features and outcome

Additive: does not naturally capture
interactions between variables

Linear regression, logistic
regression9

Decision
trees

Algorithms that partition the feature
space into subpopulations with
similar outcome predictions
through a single decision tree

Nonlinear: able to represent
variable interactions.

Highly interpretable: decision paths
explicitly characterize high-/low-
risk feature combinations

Noncontinuous: does not naturally
capture continuous relationships
between variables and outcomes

CART,10 optimal
classification trees11,12

Ensemble
methods

Methods that generate predictions
using many decision trees

Each tree is fit on a subset of the
data and features, and the final
prediction aggregates these
results

Nonlinear ensemble: predictions
generated through aggregation of
many individual models can
capture more complex
interactions

Less interpretable: no single final
model to explicitly link features to
outcome Requires
postprocessing to generate
model interpretations

Random forests,13

XGBoost14

Neural
networks

Highly nonlinear models that
generate predictions through
a network of weighted
transformations of the input
features

Highly nonlinear: captures complex
interactions

Amenable to high-dimensional
unstructured data (eg, images)

Black box: method is difficult to
interpret

Training complexity: many
parameters must be tuned to
generate models

Convolutional and
recurrent neural
networks15

Abbreviations: CART, classification and regression tree; ML, machine learning.
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Cluster interpretation poses a central challenge in un-
supervised learning, particularly given the relevance of
clustering in exploratory data analysis. Users often want to
understand the distinguishing features of chosen clusters.
For example, a given disease may have a cluster composed
of older patients and another of younger patients with a high
number of comorbidities. A simple approach is to look at
the mean and variance of each feature for all clusters to
identify which features differ most between groups, al-
though this can be challenging with large feature spaces.26

Alternatively, one can fit a multiclass classification model
such as CART or OCT to the data, where the outcome is the
assigned cluster.27,28 The output tree would then give paths
that are predictive of cluster membership, providing insight
into the distinctive features of each group. However, this is
a postprocessing step; the clustering algorithms do not
inherently consider interpretation. More recent clustering
methods have been proposed to construct interpretable
clusters directly.29-31

CLINICAL DATA SOURCES

ML models offer a scalable and objective way of gleaning
insights from data. Health care data sources vary widely,
both in their structure and the information that they capture.
Increased computing power, algorithmic developments, and
data encoding schemes have introduced rich new data
sources to leverage in ML. We focus on clinical data but
note that there are additional sources that can provide
valuable information, such as financial claims records or
national registry data.

EMR

EMR data are composed of patient-level data recorded in
patient encounters with a health care system. These data
includes basic patient demographics, medical and social
history, and the record of the patient’s care, including
medications, diagnoses, procedures, vitals, and laboratory
results. This is an extremely valuable asset for large-scale
analysis because it provides structured data that are rel-
atively standardized across patients within a health care
system and somewhat consistent across systems using the
same EMR vendor. In addition, for patients who stay within
a single health care system, the EMR offers a compre-
hensive and longitudinal view of their health trajectories.
The EMR data structure makes it naturally amenable to ML
algorithms because many clinical features can be used
directly as model inputs.

Although EMR data are appealing as a result of their
structure, there are significant components that are only
available in unstructured form, including free text notes and
reports. For example, tumor descriptors might be indicated
on a radiology report but not entered into a coded field
within the EMR. In such cases, the information is in-
accessible when restricted to structured data. The field of
natural language processing (NLP) addresses this issue by
converting raw text into discrete features that can be used
as inputs into ML algorithms.32 NLP methods range from
simple approaches of counting word frequencies within
a note to more advanced methods such as GloVe33 that
represent words as vectors based on their contextual
meaning.

Genomics

The past decades have seen rapid growth in the availability
of genomic data as sequencing has become increas-
ingly cost-effective and data storage capabilities have
increased.34 Genomic data have natural structure—gene
expression, mutations, and copy number variation data can
be used directly as features in an algorithm. However, the
high dimensionality and noisy measurement of genomic
data can make it difficult to extract meaningful signals.
There are various techniques for synthesizing genomic
data, including matrix factorization (Table 2) and feature
subset selection, which are used in combination with bi-
ologic expertise.

Imaging

Imaging, such as radiology results or pathology slides,
provides critical data about a patient’s condition and is
particularly relevant in cancer treatment, diagnosis, and
continued tumor evaluation. These data are entirely un-
structured and have no natural features for an algorithm.
However, image digitization has led to the emergence
of the field of computer vision, which applies algo-
rithms to images. Radiomics translates digital images
into high-dimensional feature spaces by dividing the image
into small segments and encoding each segment’s

Age  65 years

Sex =
Female?

Current
Smoker?

Yes No

Yes No

Yes No

Risk =
25%

Risk =
40%

Risk =
32%

Risk =
75%

FIG 1. An example of a binary classification decision tree.
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characteristics.35 More recently, deep learning has been
applied to directly leverage raw imaging data. Neural
networks are able to ingest images directly without explicit
feature conversion. This has greatly expanded the utility of
imaging in predictive algorithms and has emerged as one of
the most popular areas of ML in health care.36

DATA CURATION CHALLENGES

ML depends on the availability of high-quality data and its
translation into meaningful clinical features. EMR data
present unique challenges in extraction and cleaning. EMR
systems vary significantly in data capture, making it difficult
to merge data sets across organizations. Even within
a single EMR, there are challenges to processing patient
records into a single, complete data set. These challenges
can be summarized in the following broad categories: data
extraction and transfer, data imputation, and clinical
validation.

Data Extraction and Transfer

Data curation begins with the extraction of raw EMR data.
Oncology projects also require information about the
cancer itself, such as staging and treatment information.
These data are often hosted across several sources in-
cluding hospital EMRs, cancer-specific software, and
registries. Moreover, data capture often differs between
hospital departments.

For example, a researcher may be interested in extracting
absolute neutrophil count (ANC). There is often not a single
standardized field that captures a desired feature. Rather,
there may be several laboratory entries that measture ANC,
some in different units, using different equipment, or being
taken in different parts of the hospital. To accurately retrieve
this value, one must merge together all alternative defini-
tions into a single unified field.

There is a fundamental trade-off between physician flexi-
bility and data standardization. Although it is often bene-
ficial to combine (approximately) equivalent fields from
a research perspective, there are many considerations that
lead physicians to pursue customized workflows. Flexibility
ensures minimal loss in the physician’s ability to convey

information, but it leads to difficulties in data aggregation.
This challenge highlights the need for clinical ontologies
that map data elements to their clinically meaningful fields.
This would allow researchers or clinicians to easily filter and
group together clinical features. Although coding schemes
such as Logical Observation Identifier Names and Codes37

or Anatomic Therapeutic Chemical Classification Scheme38

exist for various data elements, they are often incomplete
and not consistently applied throughout EMRs.

Data Imputation

Inevitably, some clinical data will be missing, even after
successful extraction. It is likely that not all laboratory values
are recorded at every patient visit or that patients have only
a partial available medical history. There are several ap-
proaches to handling missing data. Observations with any
missing values are often excluded, called complete case
analysis, but this can be misleading. Some fields may be
systematically missing. For example, smokers may be
hesitant to report their smoking status, so excluding pa-
tients with missing values would systematically bias the
population toward nonsmokers. Missing data can be easily
imputed by taking the average of the columns—the mean
or median in the case of continuous variables and themode
in the case of categoric variables. However, this can also
lead to bias in the imputation.

As large-scale data analysis has become more prevalent,
more nuanced methods to imputation have been in-
troduced. Multiple imputation by chained equations learns
from the full feature space in imputation rather than
considering each variable independently.39 Optimal im-
putation (OptImpute) takes an optimization approach to
imputation that leverages the global structure of the data.40

This has more recently been extended to a medical setting
(MedImpute), which further accounts for temporal data
sets in which the same patient appears in multiple in-
stances over time.41

Clinical Validation

Once data have been extracted and organized into an initial
feature space, they must be reviewed for clinical validity.
Although small cohorts can be chart reviewed, ML thrives
on large data sets where it is necessary to standardize
validation checks in a way that is reproducible and scalable.
Data cleaning and verification are primary obstacles to
ML,42,43 and medical applications introduce additional
domain-specific complexities. There is also a challenge in
distinguishing between errant values and true exceptional
cases. Although data should be cleaned to minimize value
errors or inconsistencies that are attributable to data entry
issues, it is simultaneously important to ensure that extreme
cases are not mistakenly altered.

Data cleaning has been tackled algorithmically through
conditional functional dependencies,44 statistical estima-
tion methods,45 and crowdsourcing,46 among others.
In Table 3, we present three challenge areas—value

Predicted
Risk

Age

Sex

Smoking
Status

...

FIG 2. An example of a feedforward neural network.

Machine Learning in Oncology

JCO Clinical Cancer Informatics 889



feasibility, internal consistency, and temporal consistency—
and propose basic checks and approaches to data
validation.

APPLICATIONS

Diagnosis and Early Detection

Cancer diagnosis requires synthesis of detailed clinical
data, whether gene expression, radiology images, histo-
pathology, or a combination of these data. Since the early
2000s, ML has been used to detect cancer biomarkers
through gene expression profiles.47-50 With advances in
computer vision, focus has shifted toward diagnosis from
raw images. Breast cancer has been a natural pioneer in
this domain given the importance of mammograms in
cancer diagnosis. Related work dates back to 199551 with
great progress in mammography-based diagnosis more
recently.52,53 Similar approaches have been taken to di-
agnose lung cancer through computed tomography (CT)
scans.54 Hu et al55 provide a detailed review of imaging-
based diagnosis applications. Histology has also been
explored as an application of image-based diagnosis.56

Convolutional neural networks have been applied to
a range of diagnostic tasks using pathology results,
including diagnosing prostate cancer57 and bladder
cancer,58 as well as identifying breast cancer lymph node
metastasis.57,59

ML also offers potential for early detection of cancers by
scalably synthesizing trends across patients over a poten-
tially distant time horizon. The value of early cancer de-
tection is widely recognized60 yet challenging, because
characteristics that are predictive of cancer emergence are
often subtle and varied across patients. Computer vision
methods have been used to predict future breast cancer
diagnosis using breast density in mammography61 or lung
cancer using CT scans.62 Other work has focused on
identifying cancer susceptibility using gene expression
data,63 and yet other investigators have used EMR data to
predict pancreatic cancer risk within a high-risk cohort.64

These early warning systems could potentially inform
cancer screening policies and methods. Most importantly,
they offer potential for earlier intervention and improved
patient outcomes.

Cancer Classification and Staging

Cancer staging forms the basis of much cancer classifi-
cation. It often defines eligibility criteria for clinical trials and

prognosis estimates and thus has broad implications for
treatment guidelines and patient care. The American Joint
Committee on Cancer (AJCC) guidelines have represented
the gold standard of cancer staging in current practice
since their introduction in 1977.65,66 The TNM classification
in particular allows for stage classification on a sparse set of
features—primary tumor size (T), affected lymph nodes
(N), and the presence of metastasis (M). Cancer classifi-
cation schemes benefit from this simplicity because they
require minimal data collection of a consistent and well-
accepted set of features. However, these schemes ignore
potentially important clinical features and rely on clinically
derived cutoff values. The limits of the existing system have
been recognized and have prompted investigation into
alternative approaches.

Cancer staging can be viewed more broadly as an attempt
to stratify patients into well-differentiated risk cohorts. ML
presents an opportunity to designate staging criteria directly
from data, potentially providing better prognostic differ-
entiation between stages. For example, a model that pre-
dicts disease-free survival can be used to stratify patients
into prognostic groups. In a sense, this then becomes a de
facto cancer classification system.

Researchers have applied this approach to pancreatic
cancer67 and intrahepatic cholangiocarcinoma,68 among
others. Although the individual methods vary, they all le-
verage large-scale data to derive insights into novel pre-
dictors and demonstrate better patient stratification than
the AJCC scheme. These works take advantage of the

TABLE 2. Overview of Unsupervised Learning Tasks
Task Objective Algorithm Examples

Clustering Partition a set of observations into clusters that
have similar attributes

K-means,20 hierarchical clustering,21 DBScan22

Matrix factorization Identify underlying feature structure and reduce
dimensionality of highly correlated data

Principal component analysis,23 singular value decomposition24

Association analysis Automate extraction of dependencies and rules
between features, such as “A implies B”

A priori algorithm25
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FIG 3. An example of clusters in two dimensions with K = 3.
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ability to simultaneously parse many features with poten-
tially thousands of patients, in a way that was infeasible
when the AJCC initially formed.

Cancer staging is generally approached through a super-
vised learning framework to predict survival; the predictors
are then analyzed to define staging criteria. However,
unsupervised learning has also proved useful in identifying
distinct cohorts within cancer types. Researchers have
applied clustering to lung cancer69,70 and breast cancer71

and found the resultant subgroups to be prognostically
distinct even though the algorithm does not consider
survival directly. It can be advantageous to derive sub-
groups without an explicit outcome, particularly given the
noise and difficulty in measuring survival. Clustering offers
a new perspective in cancer classification to more generally
partition patients into clinical subgroups.

Unsupervised learning has also been used to identify gene
signatures for cancers.72 Researchers have applied this to
learn about distinct profiles within cancer. The identifica-
tion of such cohorts presents an opportunity for better
disease understanding and a more tailored approach to
treatment decisions.

Predicting and Evaluating Treatment Response

ML also provides prescriptive insights. Personalized pre-
dictions for treatment response to alternative therapies, as
well as their potential adverse effects, can inform treatment
decisions and patient monitoring. Genomic data have
played an important role in this effort; the growing avail-
ability of cell line data has enabled large-scale drug sen-
sitivity prediction based on genomic profiles.73-76 Genomic
information has also been leveraged to predict clinical
response metrics, both in pancancer analysis77 and for

more targeted interactions such as leucovorin, fluorouracil,
and oxaliplatin response in patients with colorectal cancer.78

ML has been used to predict treatment response for patients
receiving neoadjuvant chemotherapy; radiomics has been
leveraged for non–small-cell lung cancer (NSCLC),79 and
a combination of clinical and imaging features has been used
for breast cancer.80 Other work has been done to identify
adverse effects of treatments, either at the drug level81 or at the
patient level.82

ML can also be used to evaluate tumor response, which has
traditionally relied on two-dimensional tumor measure-
ments assessed using RECIST.83,84 The reliance on two-
dimensional measurements came from necessity, namely
the need to use features that could feasibly be measured by
radiologists. There are shortcomings to this approach, and
researchers have found that RECIST may not accurately
track with outcome improvements.85 Just as ML has proved
useful in diagnostic imaging, it has been applied to auto-
matically detect the RECIST criteria in patients with
NSCLC.86 Other studies have introduced RECIST alterna-
tives for response evaluation with sequences of CT scans
for NSCLC87 and volumetric measurements from magnetic
resonance imaging for brain tumors.88

In conclusion, ML offers great promise in oncology. It can
be used to derive risk cohorts, predict prognosis, inform
treatment plans, and aid with diagnosis and early in-
terventions. Given the proliferation of patient data that are
available, data-driven approaches can enhance our un-
derstanding of cancer and its effect on individuals. Al-
though ML presents numerous technical and organizational
challenges, it is a worthwhile endeavor that will transform
cancer care.

TABLE 3. Key Elements for Clinical Data Validation
Challenge Approach

Value feasibility: are the values entered for a patient clinically reasonable
(even if uncommon), or do they reveal an issue with data entry or units?

Check: clinical validation of variable bounds: Are minimum and
maximum values reasonable?

Approach: Replace all out of bounds entries with NAs for imputation.

Internal consistency: are entries within a single observation consistent?
For example, are height and weight columns viable to co-occur?

Checks: calculate derived fields (eg, BMI, key laboratory ratios) and
check their bounds. In addition, apply rules on the relation between
variables; for example, a patient can only have stage IV cancer if he or
she also has metastasis.

Approach: if these fields cannot be reconciled through chart review, the
patient may be omitted.

Temporal consistency: are entries over time consistent? For example,
does the change in blood pressure over time seem reasonable or
suggest data entry issues?

Check: flag values that have a high relative increase or decrease between
visits to chart review.

Approach: replace errant spikes with NA values for imputation. Discretize
“change in X” variables to only show increase or decrease rather than
relative change percent because this will be less sensitive to noise.

Abbreviations: BMI, body mass index; NA, not available.
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