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Abstract

Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality, Pioneering 

preclinical work reported by Peter Maroko and Eugene Braunwald in 1971 identified oxygen 

supply and demand are primary determinants of myocardial infarct size in the setting of a heart 

attack Since the 1950’s, advances in mechanical engineering led to the development of short-term 

circulatory support devices that range from pulsatile to continuous flow pumps. The primary 

objective of these pumps is to reduce native heart work, enhance coronary blood flow, and sustain 

systemic perfusion. Whether these pumps could reduce myocardial infarct size in the setting of 

AMI became an intense focus for preclinical investigation with variable animal models, 

experimental algorithms, and pump platforms being tested. In this review, we discuss the design of 

these preclinical studies, the evolution of mechanical support platforms, and attempts to translate 

these experimental methods into clinical trials.
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Myocardial Ischemia-Reperfusion Injury Remains a Major Unresolved 

Target of Therapy

Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality, with 

an annual incidence of over 805,000 in the United States alone [1]. Beginning with the 

“open artery theory” in the 1970s, the field of STEMI management has been ruled by the 
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fundamental principle that “time is muscle,” indicating that prolonged coronary occlusion 

leads to myocardial injury [2, 3]. For this reason, the well-established paradigm of 

contemporary management for STEMI focuses on rapid coronary reperfusion via balloon 

angioplasty and stenting to limit myocardial injury. However, despite timely reperfusion, 

nearly 10% of patients with acute myocardial infarction (MI) die during their index 

hospitalization, and 25% of survivors progress to develop chronic heart failure [4]. One 

explanation for these poor outcomes is that reperfusion of ischemic myocardium accelerates 

myocardial ischemia-reperfusion injury (IRI) leading to additional myocardial damage. Prior 

attempts to limit IRI via vascular conditioning or pharmacologic approaches have failed to 

show clear clinical benefit. Once a coronary artery becomes occluded, heart rate and 

myocardial contractility increase to compensate for reduced stroke volume, which decreases 

the myocardial oxygen supply-to-demand ratio and creates a vicious cycle of progressive 

myocardial damage.

Preclinical models of myocardial oxygen supply and demand mismatch in 

AMI

Pioneering preclinical work reported by Peter Maroko and Eugene Braunwald in 1971 

identified oxygen supply and demand are primary determinants of myocardial infarct size in 

the setting of a heart attack [5]. Using an anesthetized canine model, these investigators 

performed a left thoracotomy, opened the pericardium, and surgically ligated the left anterior 

descending artery. Serial 20 minute occlusions of the artery were performed with one-hour 

intervals between occlusions to assess ischemic burden and myocardial damage by 

quantifying ST-segment elevations. To explore whether increasing myocardial oxygen 

consumption during coronary occlusion increases myocardial damage, they employed: 1) 

pharmacologic agents to drive heart rate and contractility (isoproterenol), 2) right atrial 

pacing, 3) inotropes (glucagon and ouabain), 4) sympathomimetics (bretylium), and 5) acute 

arterial hemorrhage. To test the effects of reduced myocardial oxygen consumption, 

investigators administered either methoxamine to increase systemic blood pressure or the 

negative inotrope propranolol. Compared to controls, all methods that increased myocardial 

oxygen consumption increased ST-segment elevations, whereas reducing myocardial oxygen 

consumption with either propranolol or methoxamine reduced ST-segment elevations and 

CPK levels. Major limitations of this study included: 1) the need for surgical thoracotomy to 

access the coronary vessel, 2) the inability to quantify myocardial infarct size, 3) the 

inability to assess myocardial oxygen consumption directly, and 4) the inability to test late 

term effects of initial drug therapy on infarct size and cardiac function. The investigators 

concluded that “measures designed for reduction of myocardial oxygen demands and 

improvement of coronary perfusion, when effected promptly after a patient has been brought 

to the hospital, might potentially reduce the ultimate size of the infarction.” At the time, 2 

other cardiovascular pioneers, Charles Dotter and Andreas Greuntzig, were developing 

techniques for peripheral and coronary vascular angioplasty respectively. In 1977, the first 

coronary angioplasty was performed in Zurich and henceforth, coronary reperfusion to 

restore myocardial oxygen supply during an AMI became the cornerstone focus of STEMI 

management for the next 40 years.
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Mechanically unloading the left ventricle and delaying coronary reperfusion 

limits infarct size

Prior attempts to limit ischemia-reperfusion injury via vascular conditioning or 

pharmacologic approaches have failed to show clear clinical benefit [6–7]. A critical barrier 

to these strategies is the mandate for rapid coronary reperfusion and therefore insufficient 

time for any beneficial impact prior to reperfusion. While these strategies were being tested 

in preclinical and clinical trials, a few investigators continued working on the first arm of 

Maroko and Braunwald’s conclusion, namely, reducing myocardial oxygen demand to 

reduce infarct size. Since the 1950’s, advances in mechanical engineering led to the 

development of short-term circulatory support devices that range from pulsatile to 

continuous flow pumps. The primary objective of these pumps is to reduce native heart 

work, enhance coronary blood flow, and sustain systemic perfusion. Whether these pumps 

could reduce myocardial infarct size in the setting of AMI became an intense focus for 

preclinical investigation with variable animal models, experimental algorithms, and pump 

platforms being tested (Table 1). Intra-aortic balloon counterpulsation pumps (IABPs) were 

among the first percutaneously delivered circulatory support pumps to be studied in 

preclinical models of infarct reduction. IABPs function by inflating during diastole and 

deflating during systole to create higher diastolic pressures in the aortic root and to reduce 

ventricular afterload during systole. The net effect of IABP activation is a reduction in LV 

pressure with minimal change in LV volume, thereby leading to minimal change in net PVA 

or myocardial oxygen consumption (Figure 1A) [8–9] Several studies have confirmed that 

intact native ventricular function is a major determinant of IABP effects [10–11]. For this 

reason, the more dysfunctional the LV, the less function an IABP becomes. The challenge 

with IABP studies in preclinical models is that major determinants of IABP function 

including aortic length, diameter, and compliance may vary considerably between species 

and relative to humans. Early preclinical studies with IABPs generated mixed results with 

respect to altering infarct size (Table 1). All 4 of the referenced IABP studies were 

performed using an open thoracotomy and a surgical ligature around the left anterior 

descending artery (LAD), which may alter intra-cardiac loading conditions once the 

pericardium is incised [12–15]. Furthermore, with the exception of the study by Ledoux and 

Smalling, all prior studies initiated IABP support after LAD ligation. Ledoux and Smalling 

were the first to identify that IABP insertion before, not after, LAD reperfusion reduced 

infarct size. Based largely on the findings of this study, the Counterpulsation to Reduce 

Infarct Size Pre-PCI Acute Myocardial Infarction (CRISP-AMI) study explored the utility of 

initiating IABP therapy immediately before coronary reperfusion in patients with acute 

anterior myocardial infarction [16]. The study failed to demonstrate any reduction in 

myocardial infarct size measured by cardiac MRI among IABP recipients compared to 

subjects receiving coronary reperfusion without IABP therapy. One explanation for this 

observation is that in CRISP AMI, a majority of patients were treated beyond 3 hours from 

time of symptom onset to IABP insertion and/or reperfusion, which may have impacted any 

potential for infarct salvage with IABP therapy [17–18].

Another mechanical circulatory support platform studies in the early 1980’s was left atrial-

to-femoral artery bypass. Using an extracorporeal rotary flow pump, a drainage cannula was 
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placed into the left atrium and a return cannula placed in the femoral artery. Oxygenated 

blood was removed from the left atrium and delivered to the systemic arterial circulation. 

The net effect of this support system is minimal change in LV pressure, but a significant 

reduction in LV volume leading to reduced PVA and myocardial oxygen consumption 

(Figure 1B) [19–20]. Catinella and Spencer tested this approach by applying the LA-FA 

bypass circuit 15 minutes after surgical LAD ligation [21]. Four hours later, compared to 

controls, myocardial infarct size was reduced in the LA-FA bypass group. The clinical utility 

of LA-FA bypass was further explored in a porcine model where balloon occlusion of the 

LAD for 120 minutes was followed by 120 minutes of reperfusion without mechanical 

support [22]. In the mechanically supported group, percutaneous LA-FA bypass was 

initiated after 120 minutes of ischemia, and LAD occlusion was prolonged for an additional 

30 minutes (total of 150 minutes of LAD occlusion), followed by 120 minutes of reperfusion 

with device support. Compared to controls, LA-FA bypass significantly reduced infarct size 

in the group despite 30 additional minutes of LAD occlusion (Figure 2). These findings 

extended the observations of Ledoux and Smalling by suggesting that mechanical unloading 

of the LV and delaying coronary reperfusion reduces infarct size. In 2014, the TandemHeart 

to Reduce Infarct Size (TRIS) trial was initiated and proposed insertion of the TandemHeart 

LA-FA bypass circuit before reperfusion in patients presenting with anterior STEMI. The 

trial was terminated in 2015 due to lack of enrollment. While the TandemHeart is able to 

effectively unload the LV, the failure of this trial reflected concerns among the interventional 

community about the feasibility of trans-septal puncture prior to reperfusion in STEMI.

Over the same time period, a third class of acute circulatory support devices, known as trans-

valvular pumps were being developed. Trans-valvular pumps employed micro-axial 

impellers to transfer rotational kinetic energy to blood and thereby generate flow. These 

pumps were deployed across the aortic valve and displace blood directly from the LV to the 

aorta. In contrast to LA-FA bypass, trans-valvular pumps reduce both LV pressure and 

volume, thereby significantly reducing PVA and myocardial oxygen consumption. The 

magnitude of PVA reduction is determined, in part, b the magnitude of flow generated by the 

trans-valvular pump (Figures 1C-D) [23]. One of the earliest trans-valvular pumps was the 

Hemopump (Nimbus Inc), which was a micro-axial impeller attached by a driveline to an 

extracorporeal motor (Figure 2). Initial preclinical testing in a canine model of surgical LAD 

ischemia and reperfusion showed reduced cardiac workload due to systolic and diastolic 

unloading with a concomitant increase in perfusion to ischemic myocardium [24]. Based on 

these preliminary studies, Smalling and colleagues compared the effect of IABPs versus the 

Hemopump in a canine model of surgical LAD ischemia and reperfusion [25]. The IABP 

and Hemopump were active throughout the entire period of LAD occlusion and reperfusion. 

Compared to controls without mechanical support, both the IABP and Hemopump reduced 

infarct size by 57% and 65% respectively. A follow up study in 2005 using a similar canine 

model of surgical LAD ischemia and reperfusion injury confirmed that initiation of 

Hemopump support within 15 minutes before, not after, reperfusion reduced infarct size [26] 

(Figure 3). Clinical translation of these exciting studies was limited by a risk of potential 

adverse effects of the Hemopump including vascular complications, hemolysis, and the need 

for a driveline and externalized motor.
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In 2015, the SHIELD 1 trial tested the clinical utility of the HeartMate Percutaneous Heart 

Pump (HM-PHP) device in 50 patients undergoing high risk PCI (Figure 2). In this study, 

the HM-PHP increased cardiac index and mean arterial pressure [27]. The HM-PHP shares 

the external motor and drive-line connected to a trans-valvular impeller from the Hemopump 

design. However, in contrast the Hemopump, the HM-PHP device can be deployed into the 

LV via a 14Fr sheath and employs a self-expanding 24Fr impeller across the aortic valve, 

which allows the device to achieve flows above 4 liters/minute without the need for surgical 

access. The HM-PHP is under investigation in the United States as part of the SHIELD-2 

trial. However, this study was paused in 2017 due to isolated instances of pump stoppage. 

The HM-PHP device is not currently available for commercial use.

In parallel to the development of the Hemopump, another trans-valvular pump known as the 

Impella (Abiomed Inc) was introduced into clinical practice in the early 2000’s. In contrast 

to the Hemopump, the Impella microaxial impellers were connected to an intracorporeal 
motor without the need for an externalized driveline (Figure 2). In 2003, Meyns and 

colleagues employed a sheep model of surgical LAD ischemia and reperfusion injury to test 

whether full or partial trans-valvular support with a surgically implanted Impella 5.0 LP 

pump reduced infarct size [28] (Figure 3). These investigators observed that initiation of full 

support at the time of reperfusion with flow rates of over 4 liters/minutes had a greater 

reduction in infarct size compared to partial support (2.5 liters/minute). Using aortic and 

coronary sinus blood samples, they further reported that reduced myocardial oxygen 

consumption during Impella support correlated directly with reduced myocardial infarct 

size. In 2012, a percutaneously delivered Impella CP pump was introduced into clinical 

practice and allowed for flows of 3.5 liters/ minute without the need for surgery. In 2015, 

this novel Impella device was employed in a non-surgical swine model of LAD ischemia and 

reperfusion to test whether first unloading the LV and extending the delay to reperfusion by 

60 minutes (primary unloading) would reduce infarct size [29] (Figure 3). Compared to 

animals receiving primary reperfusion alone, primary unloading reduced infarct size, 

increased signaling through the reperfusion injury salvage kinase (RISK) pathway and 

increased levels of the cardioprotective cytokine stromal derived factor one alpha (SDF1a). 

This was the first report to introduce the concept of mechanical conditioning whereby LV 

unloading and delayed reperfusion activates a cardioprotective signaling program within the 

myocardium. Since then, several laboratories have confirmed that primary unloading with 

variable periods of ‘mechanical conditioning’ before reperfusion in swine and canine models 

[30–31]. Furthermore, compared to primary reperfusion, primary unloading with the Impella 

CP for 30 minutes before reperfusion in swine triggers a cardioprotective shift in myocardial 

gene expression, preserves mitochondrial integrity, and leads to a durable reduction in LV 

scar size as quantified by cardiac magnetic resonance imaging 28 days after the initial 

ischemic injury [32]. Collectively, these preclinical studies led to a clinical first-in-human 

study known as the Door To Unloading With Impella CP System in Acute Myocardial 

Infarction to Reduce Infarct Size (DTU): A Prospective Feasibility Study (NIH CLINICAL 

TRIAL: NCT03000270). This is a multi-center, prospective, randomized, two-arm 

feasibility trial to assess the potential role of unloading with the Impella CP prior to 

revascularization in reducing infarct size. The study design includes 1:1 randomization 

between: 1) 30 minutes of unloading with Impella CP prior to primary percutaneous 
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coronary intervention (PPCI); and 2) initiation of Impella CP unloading followed 

immediately by PPCI. In addition to evaluating safety, infarct size at 3–5 days and 30 days 

will be evaluated using cardiac magnetic resonance imaging. This study is actively underway 

in the United States.

In conclusion, reducing myocardial infarct size remains a major unmet need with broad-

reaching implications for long-term survival and morbidity associated with heart failure after 

an acute myocardial infarction. Over the past 50 years, mechanical circulatory support 

devices have evolved from balloon counterpulsation pumps to extracorporeal rotary flow 

pumps to intracorporeal micro-axial flow pumps that can be rapidly implanted without the 

need for surgery (Figure 4). Cumulative experience from laboratories around the world 

testing these devices in preclinical models of ischemia-reperfusion injury suggest that LV 

unloading prior to reperfusion (Primary Unloading) may be the most efficient method to 

achieve the two objectives proposed by Maroko and Braunwald in 1971 to reduce infarct 

size, namely “reduction of myocardial oxygen demands and improvement of coronary 
perfusion.” Whether Primary Unloading translates to improved clinical outcomes remains to 

be determined.
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Figure 1. 
Impact of acute mechanical circulatory support pumps on myocardial oxygen consumption. 

A) Compared to baseline, intra-aortic balloon pumps reduce LV pressure, not volume, 

thereby creating a small reduction in pressure-volume area (PVA), which directly correlates 

with myocardial oxygen consumption; B) Left atrial to femoral artery (LA-FA) bypass 

pumps such as the TandemHeart device reduce PVA by significantly decreasing LV volume, 

not pressure; C-D) Trans-valvular pumps such as the Hemopump, Impella, or HeartMate 

percutaneous heart pump, reduce PVA by decreasing both LV pressure and volume. The 

magnitude of PVA reduction directly correlates with the magnitude of flow through a trans-

valvular pump. Full lines represent ‘Pump Off’. Hashed lines represent ‘Pump On’. PVA is 

illustrated by the boxes encompassing the product of LV pressure (P) and volume (V).
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Figure 2. 
Transvalvular Pumps. A) The Hemopump has a trans-valvular impeller connected to an 

extra-corporeal motor by a driveline; B) The Impella has a trans-valvular impeller connected 

to an intracorporeal motor without a driveline; C) The investigational HeartMate 

Percutaneous Heart Pump (HM-PHP) has a self-expanding trans-valvular impeller 

connected to an extra-corporeal motor by a driveline.

Kapur et al. Page 10

J Cardiovasc Transl Res. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A) Infarct reduction before, not after, reperfusion with the Hemopump; B) Infarct reduction 

before, not after, reperfusion with full Impella support (>4 liters/minute of flow); C) Infarct 

reduction with the TandemHeart LA-FA bypass pump before reperfusion; D) Infarct 

reduction with the Impella CP before reperfusion.
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Figure 4. 
Summary of key lessons over the past four decades of preclinical studies exploring infarct 

reduction with acute mechanical left ventricular support devices
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Table 1.

Summary of preclinical studies of acute mechanical left ventricular support devices to reduce infarct size

Animal 
Model Year

Duration 
of 

Ischemia 
(min)

Duration of 
Reperfusion 

(min)

Mechanical 
Support 
Before or 

After 
Reperfusion

Occluded 
Vessel

Method of 
Occlusion Device

Reduction 
in Infarct 

Size?
Reference

Canine 1978 480 X Before LAD Ligation IABP Yes Roberts & 
Gay [6]

Baboons 1979 1440 X Before LAD Ligation IABP No
Haston & 

McNamara 
[7]

Porcine 1980 1440 X Before LAD Ligation IABP No
Laas & 

Replogle 
[8]

Porcine 2008 60 240
Before vs 

After LAD Ligation IABP Yes / No
Ledoux & 
Smalling 

[9]

Canine 1983 240 X Before LAD Ligation LA-FA 
Bypass Yes

Catinella & 
Spencer 

[12]

Porcine 2013 120 120 Before LAD Balloon 
angioplasty TandemHeart Yes Kapur & 

Karas [13]

Canine 1989 120 60 Before LAD Ligation Hemopump Yes
Merhige & 
Wampler 

[14]

Canine 1992 120 60 Before LAD
Snare 

ligation Hemopump/
IABP Yes

Smalling & 
Amirian 

[15]

Canine 2005 120 240 Before vs 
After LAD Snare 

ligation Hemopump Yes / No
Achour & 
Smalling 

[16]

Sheep 2003 60 120 Before vs 
After LAD Ligation Impella 5.0 Yes

Meyns & 
Flameng 

[17]

Porcine 2015 90 120 Before LAD Balloon 
angioplasty Impella CP Yes Kapur & 

Karas [18]

Porcine 2015 120 120 Before LCx Ligation Impella LD Yes Sun & 
Wang [20]

Porcine 2018 90 120 Before LAD Balloon 
angioplasty Impella CP Yes Esposito & 

Kapur [21]
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