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Synopsis Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic

bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts

for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences

in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined

cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data,

resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breed-

average genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory

control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that

reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal

RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified

188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that

were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral

nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance

our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants

for further research.

Introduction

Comparative phylogenetic studies of animal cognition

have the potential to illuminate genetic mechanisms

that contribute to variation in cognitive phenotypes

(MacLean and Nunn 2017). However, our ability to

identify genotype–phenotype associations in these con-

texts requires both cognitive assays that can be

meaningfully employed in large and diverse compara-

tive samples and high-quality genomic data on the taxa

being studied. Due to these challenges, few studies have

implemented genomic approaches in comparative stud-

ies of animal cognition (Chittka et al. 2012).

As a result of recent advances in the study of ca-

nine cognition and dog genomics, domestic dogs
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(Canis lupus familiaris) present rich opportunities

for these types of studies. As the first domesticated

species, and one which has undergone strong diver-

sifying selection due to selective breeding by humans,

dog breeds are characterized by an extraordinary de-

gree of phenotypic diversity. Currently more than

400 dog breeds are recognized internationally, each

representing a closed breeding population with dis-

tinct phenotypic features (Karlsson and Lindblad-

Toh 2008). In the last two decades, scientists have

made rapid progress toward characterizing the ge-

netic underpinnings of phenotypic variation among

breeds. In 2003, the first complete dog genome was

published (Kirkness et al. 2003), which was shortly

followed by a dense single nucleotide polymorphism

(SNP) map (Lindblad-Toh et al. 2005), the develop-

ment of several commercially-available genotyping

arrays (Karlsson et al. 2007; Boyko et al. 2010;

Vaysse et al. 2011), and phylogenetic analyses of

dog breeds (VonHoldt et al. 2010; Parker et al.

2017). These tools have been used in genome-wide

association studies (GWASs) to identify genetic con-

tributions to phenotypic variability among breeds,

including aspects of morphology (Boyko et al.

2010), disease susceptibility (Ahonen et al. 2013),

and athleticism (Kim et al. 2018).

However, we know considerably less about genetic

factors associated with variance in cognitive and be-

havioral phenotypes, despite growing evidence for

breed differences in these domains (Scott and

Fuller 1965; Wilsson and Sundgren 1997; Wobber

et al. 2009; Jakovcevic et al. 2010; Serpell and

Duffy 2014; Horschler et al. 2019). Most studies to

date have focused on genetic correlates of behavioral

differences between breeds. For example, Vaysse

et al. (2011) performed an across-breed GWAS for

breed boldness (using data from Jones et al. 2008)

and five personality traits—sociability, curiosity,

playfulness, chase-proneness, and aggressiveness—us-

ing data from the Swedish Kennel Club (Svartberg

and Forkman 2002). These analyses identified a small

set of loci associated with boldness and sociability,

some of which occurred in the same genomic regions

associated with ear morphology and body size. Using

data from the Canine Behavioral Assessment and

Research Questionnaire (C-BARQ), Zapata et al.

(2016) assessed associations between allele frequen-

cies across approximately 45,000 SNPs and breed

differences in fear and aggression; they identified

several loci associated with these traits, some of

which were known to also control variation in

body size. Most recently, MacLean et al. (2019) con-

ducted an across-breed GWAS on traits measured by

the C-BARQ, using a sample of 101 breeds in

conjunction with genetic data from more than

100,000 loci in the dog genome. These analyses iden-

tified 131 SNPs implicated in breed differences in

behavior, which were found disproportionally in

genes that are highly expressed in the brain and

which are implicated in nervous system functions.

Although breed differences in cognition are less

well studied, we have recently analyzed patterns of

variation across breeds using data from the citizen

science project Dognition.com (Gnanadesikan et al.

2020). Analysis of this dataset identified four factors

underlying individual differences in cognition, which

were interpreted as reflecting variation in inhibitory

control, communication, memory, and physical rea-

soning (Table 1 and Supplementary Fig. S1), although

it should be noted that the inhibitory control factor is

in a single social context and is therefore likely to be

an incomplete measure. Gnanadesikan et al. (2020)

investigated the extent to which breed-level variation

in these traits covaried with genetic similarity among

breeds—a modified form of narrow-sense heritability

(Visscher et al. 2008) which we term “among-breed

heritability”—finding that all four traits were moder-

ately to highly heritable. In this study, we build on

this work by conducting a GWAS on breed-average

differences in cognitive phenotypes. Given the herita-

ble variation in these traits, we hypothesized that by

modeling breed-average cognitive phenotypes as a

function of allele frequency across a large set of

SNPs, we could identify molecular variants associated

with these cognitive traits. We further hypothesized

that if the genes implicated in these analyses contrib-

ute to breed differences in cognition, they should be

highly expressed in brain tissue and enriched for bi-

ological processes related to nervous system functions.

In previous studies, body and brain weight have

been strongly associated with aspects of behavior and

cognition in dogs (McGreevy et al. 2013; Horschler

et al. 2019) as well as other species (Deaner et al.

2007; Sol et al. 2008; Kotrschal et al. 2013; MacLean

et al. 2014; Benson-Amram et al. 2016). Whether

body weight is included as a covariate in genomic

analyses of behavioral traits in dogs has varied in

prior research, with advantages and disadvantages

to both approaches. While models that do not con-

trol for body mass tend to identify size-related ge-

netic variants (e.g., Jones et al. 2008; Zapata et al.

2016), these same variants may be functionally

linked to cognition or behavior through effects on

brain architecture (Horschler and MacLean 2019;

Horschler et al. 2019); in contrast, models that do

control for body mass should reveal residual varia-

tion among breeds not explained by effects of body

or brain mass (e.g., MacLean et al. 2019). Given the
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tradeoffs between these approaches, we conducted

analyses both with and without controlling for

breed-average weight.

Methods

Cognitive data

The cognitive dataset was collected through

Dognition.com, a citizen science website that guides

owners through experiments they can conduct at

home with their own dogs. Previous analyses of

data from Dognition.com have replicated findings

from similar protocols implemented in traditional

laboratory settings, supporting the validity of this

citizen science approach (Stewart et al. 2015). The

cognitive outcome measures used here are the results

of a factor analysis reported in (Gnanadesikan et al.

2020). In brief, an exploratory factor analysis was

conducted using the psych package (Revelle 2018)

in R version 3.5.2 (R Core Team 2018), with data

from all adult (>1-year old) purebred dogs in the

Dognition dataset (n¼ 2044; nbreeds¼ 172). Factoring

was conducted using the minimizing residuals

method (minres) and an oblique rotation (oblimin).

Two tasks were excluded from the analysis: yawning,

which as a binary measure was not well suited to

factor analysis, and eye contact, which did not load

significantly onto any factor in initial analysis. Four

factors were extracted, as indicated by a parallel anal-

ysis of simulated and resampled data. These factors

were interpreted as reflecting latent cognitive

Table 1 Overview of the Dognition measures and their primary (>0.2) factor loadings, with positive (þ) and negative (�) loadings

noted accordingly

Factor (Loading direction) Task Description Measure

Inhibitory Control(þ) Forbidden food:

watching mean

The participant places a treat on the floor in front of

dog, verbally forbids the dog from taking it, and

watches their dog

Mean latency to eat the

treat, up to 90 s

Forbidden food: back

turned

Identical to the watching condition, but the participant

turns their back to the dog after placing the food on

the ground

Mean latency to eat the

treat, up to 90 s

Forbidden food: eyes

covered

Identical to the watching condition, but the participant

covers their eyes after placing the food on the

ground

Mean latency to eat the

treat, up to 90 s

Communication(þ) Arm pointing The participant places two treats on the ground—one

to the left and one to the right—and gestures to-

wards one of them using an extended arm and index

finger

Proportion of first

approaches to the in-

dicated treat

Foot pointing Identical to arm pointing, except the gesture is per-

formed with the participant’s foot

Proportion of first

approaches to the in-

dicated treat

Memory (þ) Delayed memory The participant visibly places food under one of two

cups, but waits for a delay (60, 90, 120, 180 s) be-

fore the dog is allowed to search

Proportion of first

approaches to the cor-

rect (remembered) cup

Memory (þ) /

Communication

(�)

Memory vs. pointing The participant visibly places food under one of two

cups and points with their arm and index finger to

the other cup

Proportion of first

approaches to the visi-

bly baited (remem-

bered) cup

Memory (þ) /

Physical reasoning

(�)

Memory vs. smell The participant visibly places food under one of two

cups, but then blocks the dog’s view and moves the

food to under the other cup

Proportion of first

approaches to the visi-

bly baited (remem-

bered) cup

Physical reasoning(þ) Inferential reasoning Out of view of the dog, the participant hides food

under one of two cups. The participant then lifts the

empty cup, revealing that there is no food

underneath

Proportion of first

approaches to the cor-

rect (not shown) cup

Physical reasoning The participant places food under one of two folded

sheets of paper, such that the food props up the one

piece of paper, while the other lies flat

Proportion of first

approaches to the cor-

rect (displaced) side

Two tasks were excluded from the analysis: yawning, which as a binary measure was not well suited to factor analysis, and eye contact, which

did not load significantly onto any factor in an initial analysis. For more information on the battery, including the order of trials and familiar-

izations, see Stewart et al. (2015). For a visual representation of the factor loadings, see Supplementary Fig. S1, and for a full description of the

factor analysis see Gnanadesikan et al. (2020)
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variables related to inhibitory control, communica-

tion, memory, and physical reasoning (Table 1 and

Supplementary Fig. S1), although as in any factor

analysis, these names are simplifications of a more

complex factor structure. For a more detailed discus-

sion of these interpretations and their limitations, see

the supplementary information, as well as

Gnanadesikan et al. (2020).

Genetic data

Genetic data were obtained from a publicly available

data set (Parker et al. 2017) that combined newly

analyzed data with previously published data

(Vaysse et al. 2011; Hayward et al. 2016), all of

which was collected using the Illumina CanineHD

bead array, supplemented with three publicly avail-

able genome sequences. The full genetic dataset

includes 150,067 SNPs from 1346 dogs representing

161 breeds.

Breed average similarity was calculated in an iden-

tical manner to Gnanadesikan et al. (2020), as an

identity-by-state (IBS) matrix: the proportion of

SNPs that were identical by state for each pair of

individuals was calculated using PLINK (Purcell

et al. 2015; Purcell and Chang 2018). These values

were then averaged for every pair of breeds to gen-

erate a breed-average IBS matrix. This breed-level

IBS matrix was extrapolated to an individual-level

IBS matrix by assuming breed-average similarity be-

tween each pair of individuals: for individuals of

different breeds, the IBS value was set to the average

similarity between those two breeds; for individuals

of the same breed, the average similarity of individ-

uals within that breed was used (supplementary

information).

Combined dataset

Our combined dataset included cognitive data on

1654 individuals; these individuals represented 49

breeds for which we had both cognitive data from

at least 10 individuals and breed-average genetic data

aggregated from Parker et al. (2017).

Analysis

Genome-wide association

The associations between SNPs and cognitive meas-

ures were modeled using an efficient mixed model

association approach (Kang et al. 2008), as imple-

mented in the EMMREML package (Akdemir and

Godfrey 2015) in R version 3.5.1 (R Core Team

2018). We modeled breed-average cognitive factor

scores as a function of breed-average allele frequency

while controlling for breed-average relatedness

(model details in the supplementary information).

We fit two models per factor: one while controlling

for breed-average body weight—using data from the

C-BARQ (Hsu and Serpell 2003; McGreevy et al.

2013)—and one without this covariate. We consid-

ered both models because (1) brain weight and vol-

ume covary strongly with body weight in dogs

(Jardim-Messeder et al. 2017; Horschler et al. 2019)

and brain size has repeatedly been suggested to affect

various cognitive processes (Deaner et al. 2007; Sol

et al. 2008; Kotrschal et al. 2013; MacLean et al.

2014; Benson-Amram et al. 2016); (2) Horschler

et al. (2019) found estimated brain weight was pos-

itively associated with some measures in the

Dognition.com test battery, namely those related to

executive functions, including short-term memory

and self-control; and (3) we previously found that

controlling for breed-average body weight reduced

the estimated among-breed heritability of the inhib-

itory control factor from 0.7 to 0.5 (Gnanadesikan

et al. 2020).

To avoid models on rare variants, the SNPs used

for GWAS modeling were further filtered to those

with a median minor allele frequency across breeds

of at least 0.05, resulting in 124,821 SNPs. Although

we control for breed-average relatedness, cryptic re-

latedness and population structure can lead to an

increased false-positive rate in genomic studies

(Devlin and Roeder 1999). The distributions of P-

values for the first three factors (inhibitory control,

communication, and memory) were found to be in-

flated (k> 1) both with breed-average weight as a

covariate (k1¼ 1.077, k2¼ 1.208, k3¼ 1.117,

k4¼ 0.941) and without (k1¼ 1.054, k2¼ 1.200,

k3¼ 1.135, k4¼ 0.998). This inflation may be due

in part to polygenicity (Yang et al. 2011), however,

we took a conservative approach and corrected the

inflated distributions using the genomic control

method (Devlin and Roeder 1999; Amin et al. 2007).

Results are reported (1) at the SNP level, with a

Bonferroni corrected threshold for genome-wide sig-

nificance (<4� 10�7; a/NSNP¼ 0.05/124,821) and

(2) at the gene level, by aggregating across all SNPs

in a given gene. In the latter, P-values were com-

bined across SNPs within a gene using Fisher’s

method and the Nyholt correction for multiple test-

ing of SNPs in linkage disequilibrium (Nyholt 2004),

as implemented in the R package poolr (Cinar and

Viechtbauer 2020). The Nyholt correction was

designed to correct for linkage disequilibrium and

the resultant nonindependence of SNPs (Nyholt

2004), and simulations have supported its ability to

control false positives under conditions of both

moderate and high linkage disequilibrium
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(Nicodemus et al. 2005). We implemented a false

discovery rate threshold for the number of genes

included (n¼ 14,442) when determining gene-level

significance (Benjamini and Hochberg 1995). Using

BEDtools (Quinlan and Hall 2010), SNPs were

mapped to their closest gene in the most recent

dog genome (CanFam 3.1 assembly [Hoeppner

et al. 2014], accessed [June 2020] through the

UCSC Table Browser [Karolchik 2004]). We only

considered SNPs that were found in genes (dis-

tance¼ 0), which includes both upstream (50) and

downstream (30) untranslated regions.

Enrichment analyses

To examine the biological functions of genes identi-

fied in the gene-level analyses described above, we

performed two types of gene set enrichment analysis

(Subramanian et al. 2005): gene ontology (GO) and

tissue-specific expression. GO analyses assessed

whether the set of genes identified in the GWAS

are disproportionately related to specific biological

functions, as annotated in the Gene Ontology knowl-

edgebase (The Gene Ontology Consortium 2000,

2019). GO analyses were conducted using the

topGO R package (Alexa and Rahnenfuhrer 2018),

using a Fisher exact test and the “weight01” algo-

rithm. ENSEMBL gene identifiers were associated

with GO terms using the biomaRt R package

(Durinck et al. 2005, 2009). The gene sets used for

enrichment analyses included all genes with an ag-

gregated gene-level P �0.05 after false discovery rate

correction (Benjamini and Hochberg 1995). Network

plots for enriched GO terms were made by calculat-

ing term similarities (Resnik score) with all enriched

terms using NaviGO (Wei et al. 2017) followed by

network visualization using the igraph R package

(Csardi and Nepusz 2006). For the no-covariates

analysis only, due to the larger number of enriched

terms, the plot was hand-curated to highlight terms

related to nervous system functions and genetic

regulation.

Tissue-specific enrichment analyses assessed

whether the genes identified in our gene-level anal-

ysis are biased toward expression in specific tissues,

controlling for background rates of tissue-specific

expression across all genes included in the analysis.

Statistical significance was assessed using hypergeo-

metric tests. For these analyses, we did not control

for multiple tests across different tissue types, as we

were most interested in relative patterns across tis-

sues and species-specific expression profiles (see be-

low). We compared the gene sets produced by our

analysis with data on tissue-specific gene expression

in both dogs (Briggs et al. 2011) and humans (Uhl�en

et al. 2015) using the TissueEnrich R package (Jain

and Tuteja 2019). The dog expression data come

from a study across 10 tissues from 4 dogs using a

microarray, from which the data has been averaged

across dogs (two beagles and two mixed-breed dogs)

(Briggs et al. 2011). Because tissue-specific expres-

sion is highly conserved for orthologous genes in

dog and humans (Briggs et al. 2011; Li et al.

2013), we also conducted analyses using human

gene-expression data, which have been measured in

a greater diversity of tissue types (ntissue¼ 35).

Enrichment analyses were performed separately for

the results of models with and without breed-

average body weight as a covariate.

Contextual analysis of candidate genes

In order to compare our results to previously iden-

tified candidate genes implicated in behavior and

domestication, we cross-referenced the combined

results of our gene-level analyses with a database

compiled from 13 canid behavioral genomics studies

(Saetre et al. 2004; Karlsson et al. 2007; Cadieu et al.

2009; Chase et al. 2009; VonHoldt et al. 2010; Vaysse

et al. 2011; Axelsson et al. 2013; Wang et al. 2013,

2018; Freedman et al. 2016; Hekman et al. 2018;

Kukekova et al. 2018; MacLean et al. 2019).

Results

Genome-wide association

Models not including body mass as a covariate

Without controlling for body mass, our breed-

average GWAS of cognitive traits revealed three

SNPs that reached genome-wide significance after a

Bonferroni correction (Fig. 1). Scores on the inhib-

itory control factor were associated with a SNP

(chromosome 8, position 68240759, and

rs24514902) in EML1 (P¼ 0.030); scores on the

memory factor were associated with a SNP (chromo-

some 13 and position 24968501) in

ENSCAFG00000026278, a U6 spliceosomal RNA

(P¼ 0.006); and scores on the physical reasoning

factor were associated with a SNP (chromosome

21, position 27540521, and rs851264582) in

OR52E2 (P¼ 0.043). No significant associations

were found for the communication factor (see

Supplementary Table S2 for all SNP-level results).

Allele frequencies at these SNPs accounted for 7–

34% of the variance in the inhibitory control

(34.2%), memory (9.88%), and physical reasoning

factor (7.31%) scores (Fig. 2).
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Fig. 1 Manhattan plots showing SNP-level associations with cognitive factors both (A) without covariates and (B) with weight as a

covariate. The dashed line represents the threshold for genome-wide significance after Bonferroni correction, and SNPs achieving

genome-wide statistical significance are color-coded for the associated cognitive factor.

Fig. 2 Breed-average trait scores or residuals by allele frequency for the SNPs that reached genome-wide significance. The top panel

(A) shows the no-covariates results, and the bottom panel (B) shows the weight-controlled results.
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Models including body mass as a covariate

Controlling for breed-average weight, three SNPs

were identified as significantly associated with a cog-

nitive phenotype, one of which was the same as in

the previous analysis (Fig. 1). As in the analyses

without the body weight covariate, we found that

breed-average allele frequency for one SNP in

ENSCAFG00000026278 (chromosome 13 and posi-

tion 24968501) was associated with breed differences

in memory (P¼ 0.025). Additionally, a SNP in

ENSCAFG00000044311 (chromosome 1 and position

120165275), a long noncoding RNA, was associated

with breed differences in inhibitory control

(P¼ 0.039). Lastly, breed differences on the physical

reasoning factor were associated with allele frequency

for a SNP in HS3ST5 (chromosome 12 and position

70158914; P¼ 0.014). Again, no significant associa-

tions were found for the communication factor. In

analyses controlling for body weight, the variance

explained by allele frequency at these SNPs was

28.9% for inhibitory control, 8.47% for memory,

and 6.74% for physical reasoning (Fig. 2).

Enrichment analyses

Models not including body mass as a covariate

Aggregating across SNPs within each gene, we identified

52 genes associated with inhibitory control, 32 genes

associated with communication, 27 genes associated

with memory, and 39 genes associated with physical

reasoning (Fig. 3 and Supplementary Table S3). In to-

tal, across these 4 phenotypes, 140 unique genes were

identified. Three of these genes were associated with

two traits: KLHL1 (communication and physical rea-

soning), WDR27 (inhibitory control and memory), and

KCNQ5 (inhibitory control and physical reasoning).

We conducted a GO analysis to assess whether this

combined geneset was enriched for specific biological

functions. This analysis identified 28 over-represented

GO terms, including neurological functions such as

peripheral nervous system development, presynapse

assembly, cerebellar Purkinje cell layer development,

negative regulation of canonical Wnt signaling path-

way, and synaptic vesicle exocytosis; regulation of

transcription, DNA templated was also enriched

(Fig. 4). A full list of enriched GO terms is provided

in Supplementary Table S4.

To explore the expression profiles of the collective

set of genes identified in our gene-level analysis, we

conducted tissue enrichment analyses using tissue-

specific gene expression data from published sources.

Using expression data from dogs (Briggs et al. 2011),

we found that this gene set included more genes that

are highly expressed in the brain (cerebrum) than are

expected by chance (P¼ 0.004), as well as in the

Fig. 3 Manhattan plots showing gene-level associations with cognitive factors both (A) without covariates and (B) with breed-average

body weight as a covariate. Gene-level associations were produced by aggregation of SNPs within each gene using Fisher’s method,

corrected for linkage disequilibrium by Nyholt’s method. The dashed line represents the threshold for genome-wide significance after

false discovery rate correction, and genes achieving genome-wide statistical significance are color-coded for the associated cognitive

factor.
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kidney (P¼ 0.048; Fig. 5A). Similarly, using expres-

sion data from humans (Uhl�en et al. 2015), this gene

set included more genes that are highly expressed in

the cerebral cortex (P¼ 1.19� 10�5; Fig. 5B) than

would be expected by chance.

Models including body mass as a covariate

Controlling for breed-average body weight, aggregation

at the gene level identified 32 genes implicated in in-

hibitory control, 33 genes implicated in communica-

tion, 39 genes implicated in memory, and 17 genes

implicated in physical reasoning (Fig. 3 and

Supplementary Table S6). In total across these four

phenotypes, 117 unique genes were identified. Three

of these genes were associated with two traits: CDH13,

NFIA (inhibitory control and communication) and

MCU (memory and physical reasoning). This gene

set was enriched for 13 GO terms, again including

synaptic vesicle exocytosis, negative regulation of ca-

nonical Wnt signaling pathway, and cerebellar Purkinje

cell layer development (Fig. 4 and Supplementary

Table S7). Using gene expression data from dogs, we

Fig. 4 Network plot of significantly enriched GO terms for the analyses (A) without covariates, limited to nervous system and genetic

regulation terms, and (B) with breed-average body weight as a covariate, showing all enriched terms. Line colors and widths represent

Resnik’s similarity scores between GO terms, with wider and redder lines reflecting greater similarity between terms. A complete list

of enriched GO terms is shown in Supplementary Tables S4 and S7, respectively.
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Fig. 5 Results of a tissue-enrichment analysis based on tissue expression data from (A) dogs and (B)humans, both with weight as a

covariate (right panels) and without (left panels). In all cases, a plurality of genes are more highly expressed in the brain or cerebral

cortex (purple bars). This was more than expected by chance using a hypergeometric test (dashed line, P ¼ 0.05, without correcting

for multiple comparisons) in all cases.
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found that the genes identified in our analysis include

more genes that are highly expressed in the brain than

would be expected by chance (P¼ 0.007; Fig. 5A).

Similarly, using expression data from humans, we

found an enrichment for genes that are highly

expressed in cerebral cortex (P¼ 0.007; Fig. 5B).

Out of these 117 genes identified after controlling

for breed-average body weight, 69 genes overlapped

with the gene set in our no-covariates analysis. This

overlap between the two analyses is significantly

more than expected by chance (hypergeometric

test, P¼ 2.66� 10�115). In total, 188 unique genes

were identified across both analyses. Of these, at least

69 genes have also been previously identified in pre-

vious association studies of canid behavior and do-

mestication (Supplementary Table S8), including 44

identified in a similar breed-average approach with

behavioral data from the C-BARQ (MacLean et al.

2019) and 22 identified through both genomic and

transcriptomic work in tame and aggressive foxes

(Hekman et al. 2018; Kukekova et al. 2018; Wang

et al. 2018).

Discussion

We used breed-average cognitive data from the cit-

izen science project Dognition.com and breed-average

allele frequencies across 124,821 SNPs from Parker

et al. (2017) to perform a GWAS on breed differ-

ences in dog cognition. We identified three SNPs

that reached genome-wide significance when not

controlling for breed-average weight, and three

SNPs—one of which was the same across analy-

ses—when we included breed-average weight as a

covariate. Using a meta-analytic approach to aggre-

gate results at the gene level (while controlling for

linkage disequilibrium), the genes identified in our

analysis tended to be highly expressed in brain tissue

and enriched for biological processes that include

nervous system functions and genetic regulation,

suggesting plausible mechanisms through which

these genes may influence breed differences in per-

formance on cognitive tasks.

The specific SNPs that reached genome-wide sig-

nificance are found in genes that also have known

roles in both neural functions and genetic regulation.

Specifically, a variant in EML1, also known as echi-

noderm microtubule-associated protein-like 1, was

associated with breed differences in inhibitory con-

trol. This gene is known to be involved in neuro-

genesis and neural organization, with variants in this

gene associated with neuronal heterotopia and con-

genital hydrocephalus (Kielar et al. 2014; Shaheen

et al. 2017). Intriguingly, in human studies, several

variants in this gene have been associated with brain

volume (Zhao et al. 2019). Given that comparative

studies across dog breeds (Horschler et al. 2019) and

other vertebrate taxa (MacLean et al. 2014) have

identified positive associations between total brain

volume and inhibitory control, EML1 is, therefore,

a particularly promising candidate gene for further

research in studies of both brain and cognitive

evolution.

The SNP associated with memory in both analyses

is located in a spliceosomal RNA in the U6 family,

which is evolutionarily highly conserved (Brow and

Guthrie 1988); variants in this gene could thus affect

splicing of pre-mRNA transcripts. Similarly, the SNP

associated with inhibitory control in the weight-

controlled analysis is in a long noncoding RNA

and therefore is likely to play a regulatory role

(Yao et al. 2019). The SNP associated with physical

reasoning in the no-covariate analysis is in OR52E2,

which codes for an olfactory receptor. This is partic-

ularly interesting since the physical reasoning factor

is positively loaded by a reliance on memory over

smell when the two cues are pitted against each other

(Table 1 and Supplementary Fig. S1); it is possible

that this reflects a genetic contribution to olfactory

salience that affects the ability of olfactory informa-

tion to compete with visual memory. Lastly, the SNP

associated with physical reasoning in the weight-

controlled analysis is in HS3ST5, heparan sulfate-

glucosamine 3-sulfotransferase 5, which is involved

in the synthesis of heparan sulfate (Duncan et al.

2004). In mice, both heparan sulfate itself and hep-

aran sulfate sulfotransferases generally have been

shown to affect neural development (Inatani et al.

2003; Yabe et al. 2005).

It may initially seem surprising that we identified

no SNPs that reached genome-wide significance for

the communication factor, especially given that this

was our second most heritable factor, with approxi-

mately 35% of the observed variation in this trait

explained by breed-average relatedness

(Gnanadesikan et al. 2020). However, this may be

primarily due to the conservative nature of our cor-

rection for multiple comparisons, which yielded a

small number of significant associations at the SNP

level. It should be noted that in the gene-level aggre-

gation analysis, we find a similar number of genes

implicated in communication as we do for the other

traits, although inhibitory control—our most herita-

ble factor—was associated with the largest number of

genes in our no-covariates analysis. It is also possible

that the communication factor reflects a particularly

polygenic trait, with many variants of small additive

effect contributing to the phenotype.
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Although we identified a limited set of SNPs that

reached genome-wide significance in this study, it is

important to note that the variance explained by al-

lele frequency at these loci was generally <10%, ex-

cept for the contribution to inhibitory control, which

was considerably higher (34% no covariates; 29%

controlling for weight). This finding is in stark con-

trast to the results of morphological trait-mapping

studies in dogs which often find that one, or a few

loci account for the majority of phenotypic variance

across breeds (Sutter et al. 2007; Parker et al. 2009;

Boyko et al. 2010). Nevertheless, compared to

GWASs of cognitive traits in humans (Davies et al.

2011), the associated SNPs in our analyses explain

significantly more variance, likely due to the effects

of artificial selection on the dog genome (Lindblad-

Toh et al. 2005; Ostrander and Wayne 2005;

VonHoldt et al. 2010; Parker et al. 2017). Our find-

ings echo those of MacLean et al. (2019) who con-

ducted a similar GWAS on behavioral traits among

breeds. For both cognitive and behavioral pheno-

types, among-breed heritability of these traits (vari-

ance attributable to additive variation across the

genome) can be high, yet there are only a few loci

of possibly large effect, suggesting that breed differ-

ences in cognitive and behavioral traits are highly

polygenic. Additionally, despite investigating only

four cognitive traits, we found repeated association

for a handful of genes across multiple traits. This

finding emphasizes the importance of pleiotropic

effects for complex traits (Visscher and Yang 2016),

the limitations of simple one-to-one genotype–phe-

notype associations and frameworks, and the need

for more integrative approaches (Solovieff et al.

2013).

Because our study took a breed-average approach

and analyzed a limited set of SNPs across the ge-

nome, we did not intend to identify causal variants

or to fine map any of the cognitive traits being stud-

ied. Rather, our principal aims were to identify a set

of genes associated with breed differences in cogni-

tion and to assess whether these genes could plausi-

bly influence breed differences in cognition through

known actions in the nervous system. Our gene-level

analyses identified 188 genes that were associated

with variation in at least one of the four cognitive

outcome measures, and enrichment analyses con-

firmed that these genes play important roles in di-

verse nervous system functions. First, the gene sets

from each analysis were enriched for a variety of GO

terms, many of which relate to neural functions, in-

cluding peripheral nervous system development, pre-

synapse assembly, cerebellar Purkinje cell layer

development, negative regulation of canonical Wnt

signaling pathway, and synaptic vesicle exocytosis. It

should be noted that the Wnt signaling pathway—

which was identified in both analyses—is known to

be involved in neural crest cell development (Makoto

et al. 1997; Dorsky et al. 1998), which may have been

important in domestication (Wilkins et al. 2014).

Second, through tissue-specific enrichment analyses,

we found that the collective set of genes identified

across our four phenotypes contained more genes

that are highly expressed in brain tissue than would

be expected by chance, controlling for background

rates of genomic expression. This pattern held across

analyses using tissue-specific gene expression data

from both dogs and humans, and regardless of

whether or not we controlled for breed-average

body weight in the GWAS. Third, our results overlap

considerably with previous association studies of ca-

nid behavior, including a recent study that took a

similar breed-average approach to studying dog be-

havior using the C-BARQ (MacLean et al. 2019) and

a variety of studies on experimentally bred tame and

aggressive fox strains (Hekman et al. 2018; Kukekova

et al. 2018; Wang et al. 2018). Thus, while we still

know little about the specific mechanisms through

which variants in these genes may influence cogni-

tion, the genes implicated in our analyses have

strong potential to influence developmental and neu-

robiological functions with relevance for cognitive

phenotypes. Future functional molecular work ex-

ploring variation in these genes could prove fruitful

in illuminating specific mechanisms through which

they may influence performance on cognitive tasks.

We also note that while the results of our analyses

did change when controlling for breed-average

weight, there was also considerable overlap in the

gene sets identified by each analysis (69 overlap/

188 total unique genes). Combined with previous

findings that certain cognitive and behavioral traits

(McGreevy et al. 2013; Horschler et al. 2019) and

their heritability estimates (Gnanadesikan et al.

2020) are more dependent on body weight than

others, this suggests that body or brain size might

contribute differentially to certain cognitive processes

(MacLean et al. 2012).

Our current design benefited from a large sample

size made possible by integrating data from the cit-

izen science project Dognition.com, with publicly

available genomic data on the breeds in the sample.

However, this design is also subject to a number of

important limitations that should be addressed in

future work. Most notably, all analyses were con-

ducted at the breed-average level, without paired ge-

netic and cognitive data on the same individuals.

Therefore, it will be critical for future association
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studies to build on this work through designs that

integrate genotypes and phenotypes from the same

individuals. Similarly, given that we used microarray

data with a limited number of SNPs across the ge-

nome, we did not perform an exhaustive search for

causal variants associated with cognitive phenotypes.

Thus, future studies may benefit from incorporating

greater coverage across the dog genome, for example

through low coverage whole genome sequencing and

imputation (Pasaniuc et al. 2012). Although the cit-

izen science approach used here has been validated

and implemented in several other studies of dog cog-

nition (Stewart et al. 2015; Horschler et al. 2019;

Watowich et al. 2020), it will be important for future

work to explore a range of additional cognitive

measures. With the recent establishment of several

neuropsychological canine cognition test batteries

(Wallis et al. 2014; Bray et al. 2017, 2020; MacLean

et al. 2017), researchers will be well positioned to

pursue these steps in the future. Lastly, although

there is increasing evidence that dogs experience cog-

nitive decline in middle to old age (Studzinski et al.

2006; Szab�o et al. 2016; Watowich et al. 2020), the

specific effects and progression—including variation

across breeds—are not well understood, and we did

not account for possible effects of age in our analy-

ses. Despite these limitations, our study highlights

how the remarkable phenotypic variation among

dogs can be used to gain insights into the genetic

factors contributing to cognitive variation among

taxa and identifies an initial set of genes and biolog-

ical processes to be considered in future research.
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