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Introduction
The relationship between ambient temperature and acute mor-
tality risk is well-documented. Results from communities around 
the globe consistently describe a nonlinear relationship in which 
temperatures of either extreme are associated with a higher risk of 
death.1–3 The studies giving rise to these findings often relate daily 
values of temperature observed at a single weather station (often 
located at an airport) to the daily number of deaths occurring 
within a city, county, or similar unit of geographic aggregation 
using a time series or case-crossover design. In such designs, tem-
perature measurements from local weather stations are used as 
a proxy for the average exposure of the population of interest.4,5

Given that weather stations are often located at airports and 
that airports are often located towards the periphery of popula-
tion centers, it is plausible that observed temperatures could sys-
tematically differ from the true population-average temperature 
in any given area. For example, residents of cities where weather 
stations are located near the coast while the majority of people 
live farther inland (e.g., Boston, Massachusetts; Los Angeles, 
California) may on average experience more extreme tempera-
tures than those recorded at the station due to the moderating 
influence of the ocean. The use of spatially refined temperature 
estimates (such as those developed by Shi et al., Thornton et 
al., and the PRISM Climate Group6–8) may reduce measurement 
error resulting from systematic differences between weather 
station observations and population average temperatures. For 
example, gridded temperature estimates can be used to assign 
exposure on a finer spatial scale (e.g., at the postal code or 
county level) or can be used in combination with census data 
to estimate population-weighted daily average exposures. Of 
course, the degree to which such products reduce measurement 
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Background: Studies of the short-term association between ambient temperature and mortality often use temperature obser-
vations from a single monitoring station, frequently located at the nearest airport, to represent the exposure of individuals living 
across large areas. Population-weighted temperature estimates constructed from gridded meteorological data may offer an op-
portunity to improve exposure assessment in locations where station observations do not fully capture the average exposure of the 
population of interest.
Methods: We compared the association between daily mean temperature and mortality in each of 113 United States counties using 
(1) temperature observations from a single weather station and (2) population-weighted temperature estimates constructed from a 
gridded meteorological dataset. We used distributed lag nonlinear models to estimate the 21-day cumulative association between 
temperature and mortality in each county, 1987–2006, adjusting for seasonal and long-term trends, day of week, and holidays.
Results: In the majority (73.4%) of counties, the relative risk of death on extremely hot days (99th percentile of weather station tem-
perature) versus the minimum mortality temperature was larger when generated from the population-weighted estimates. In con-
trast, relative risks on extremely cold days (first percentile of weather station temperature) were often larger when generated from the 
weather station observations. In most counties, the difference in associations estimated from the two temperature metrics was small.
Conclusions: In a large, multi-site analysis, temperature-mortality associations were largely similar when estimated from weather 
station observations versus population-weighted temperature estimates. However, spatially refined exposure data may be more ap-
propriate for analyses seeking to elucidate local health effects.
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What this study adds
Studies of the short-term association between temperature and 
mortality often use temperature observations taken at a weather 
station to represent the average exposure of individuals living 
across large geographic areas. In this study, we compared tem-
perature–mortality associations estimated with daily tempera-
ture observations from a single weather station to associations 
estimated with daily population-weighted temperature esti-
mates in each of 113 populous US counties. In most counties, 
we found little difference between associations estimated from 
these two exposure metrics, suggesting that the use of weather 
station observations has not led to systematic under or overes-
timation of the relationship between temperature and mortality. 
However, spatially refined exposure data may be more appro-
priate for analyses seeking to inform local adaptation efforts or 
in locations far away from weather stations.
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error depends on the quality of the underlying prediction mod-
els, with results from gridded datasets yielding potentially more 
or less systematic error compared with station data, which re-
flect actual measurements.

In addition to systematic measurement error as described 
above, the use of both station observations and gridded esti-
mates can lead to random measurement error. For example, the 
use of an unbiased but imperfect temperature measurement as 
a proxy for the true temperature at a weather station is sub-
ject to classical measurement error, which is expected to atten-
uate effect sizes.9 Berkson error—which is expected to lead to 
decreased precision but not otherwise bias effect estimates—may 
arise from the use of a single value of temperature to represent 
the exposure of many individuals living across municipalities 
in which there is spatial variability in daily temperatures.10,11 
Results from studies using information from gridded weather 
datasets may have more or less random measurement error 
compared with station observations.

Several recent studies suggest that the magnitude of the tem-
perature–mortality association is either similar12,13 or larger14 
when assessed using spatially refined exposure estimates versus 
weather station measurements. However, these studies were 
conducted in relatively limited geographic areas, leaving open 
the question of whether their findings are specific to these loca-
tions or more broadly generalizable. In this study of >100 coun-
ties in the contiguous United States, we evaluated whether the 
use of weather station temperature measurements leads to dif-
ferent inferences about the association between temperature and 
mortality when compared with the use of population-weighted 
temperature estimates, which are assumed to be a more accu-
rate proxy for population average exposure. Specifically, we 
modeled the association between daily mean temperature and 
mortality in each county using (1) a daily time series of tem-
perature observations from a single first-order weather station 
within the county boundaries and (2) a daily time series of 

population-weighted temperature estimates constructed from 
the PRISM. PRISM is a publicly available, gridded dataset de-
veloped for the contiguous United States by spatially interpolat-
ing meteorological observations from a variety of observatory 
networks using a multivariate regression model accounting for 
elevation, topography, and other geophysical characteristics.7,15

Methods

Data sources

We obtained individual-level data on all deaths occurring in US 
counties with a population >100,000 from the National Center 
for Health Statistics. From these data, we constructed a time 
series of the daily number of deaths (excluding those due to 
external causes) in each county for which we had continuous 
mortality data during a 20-year study period of 1987–2006.

We obtained observations of daily mean temperature at 
all first-order weather stations in the United States from the 
Integrated Surface Database Lite.16 We obtained gridded esti-
mates for daily mean temperature for the contiguous United 
States at a 4-km resolution from PRISM.7,15 We used these grid-
ded estimates to create a time series of population-weighted 
daily mean temperature estimates for each county in the contig-
uous United States, as previously described.17

Site selection

From the 297 US counties in the contiguous United States for 
which we had mortality data in every year, we selected 113 coun-
ties in 42 states (Fig. 1) that met the following criteria throughout 
the study period of 1987–2006: (1) at least one first-order 
weather station reporting to the Integrated Surface Database 
Lite database located within the county boundaries, (2) temper-
ature data reported from the weather station in every year, (3) 

Figure 1. Location of the 113 study counties within the contiguous United States.
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no change in the weather station identifier, and (4) <1% of days 
missing temperature values at the weather station. We classified 
days as missing if that day’s value of daily mean temperature 
was calculated from fewer than 18 hourly temperature mea-
surements. Two of the selected counties—Los Angeles County in 
California and Queens County in New York—contained more 
than one first-order weather station. We used temperature obser-
vations from Los Angeles International Airport and LaGuardia 
Airport for Los Angeles and Queens, respectively.

Statistical analysis

In each county, we began by modeling the association between 
daily mean temperature observed at the county’s first-order 
weather station (hereafter, “station temperature”) and daily 
counts of mortality. Specifically, we used distributed lag nonlinear 
models18 with a quasi-Poisson distribution to model the cumula-
tive association between station temperature and mortality over 
21 days of lag. We modeled the temperature–response curve with 
a quadratic B-spline and three internal knots at the 10th, 75th, 
and 90th percentiles of county-specific temperature, and the 
lag-response curve with a natural cubic B-spline with three knots 
at equally spaced values on the log scale (i.e., at values of approx-
imately 1, 3, and 8). We adjusted each county-specific model for 
seasonal and long-term time trends (natural cubic B-spline with 
8 degrees of freedom per year), day of week, and federal holidays. 
We then used the cumulative association between temperature 
and mortality in each county to fit a multivariate meta-analytic 
model, including the mean and range of the county-specific tem-
perature distribution as observed at the weather station over the 
20-year study period as predictors. From this model, we extracted 
the best linear unbiased prediction of the temperature–mortality 
association for each county, centering the spline of temperature at 
the county-specific temperature of minimum mortality. This mod-
eling strategy is consistent with a previous large, multi-country 
study of temperature and mortality.2

Next, we repeated these steps, but using the daily popula-
tion-weighted temperature estimates from PRISM (hereafter, 
“PRISM temperature”) for each county in place of station tem-
perature. While in some counties there were a very small number 
of days missing values of station temperature, there were no 
days with missing values of PRISM temperature. As the pri-
mary analysis, we used data from every single day in the PRISM 
temperature time series to estimate the temperature–mortality 
association. However, in sensitivity analysis, we additionally 
explored the impact of excluding days from the PRISM temper-
ature time series that had a missing value in the station temper-
ature time series.

For each county, the process described above yielded two 
exposure–response curves describing the nonlinear associa-
tion between temperature and mortality, one constructed from 
station temperature and the other constructed from PRISM tem-
perature. Hereafter, we refer to the exposure–response curves 
generated using the weather station temperature observations as 
“station curves” and the population-weighted temperature esti-
mates as “PRISM curves.” Both the shape and the temperature 
at which mortality risk is lowest (i.e., the minimum mortality 
temperature) may vary between the station and PRISM curves 
within a county.

To quantitatively assess differences between station and 
PRISM curves, we compared the relative risk (RR) for the tem-
perature–mortality association generated from each county’s 
station and PRISM curves at four values of temperature, using 
the county- and curve-specific minimum mortality temperature 
as the reference. Specifically, for each county, we made these 
comparisons at the 1st, 2.5th, 97.5th, and 99th percentiles of 
the station temperature distribution. For example, if the 99th 
percentile of the station temperature distribution in a given 
county was 35°C, we would compare the RR at 35°C on the 

station curve to the RR at 35°C on the PRISM curve in that 
county. In a different county where the 99th percentile of station 
temperature was 30°C, we would compare RRs from the two 
curves at 30°C. Thus, within each county, we made compari-
sons between the two exposure–response curves at a constant 
value of temperature, but allowed the temperature at which this 
comparison was made to vary across counties to accommodate 
different climates.

In secondary analysis, we instead compared the RR for each 
county’s station and PRISM curves at a constant percentile of 
the temperature distribution, rather than at a county-specific 
constant value of temperature. For example, in each county, 
we compared the RR at the 99th percentile of station temper-
ature on the station curve to the RR at the 99th percentile of 
PRISM temperature on the PRISM curve. This approach differs 
from our main analysis, in which we made comparisons in each 
county at a constant value of temperature (i.e., at the 99th per-
centile of station temperature).

Lastly, we computed the fraction of deaths (and 95% empir-
ical confidence intervals [eCI]) attributable to heat and cold for 
each curve in each county and across all counties.19 For each 
exposure–response curve in each county, we defined heat as all 
temperatures above the county-specific minimum mortality tem-
perature and cold as all temperatures below the county-specific 
minimum mortality temperature.

Analyses were carried out in R version 3.3.320 using packages 
“dlnm”21 and “mvmeta.”22

Results

In the year 2000, ~82.2 million people—or about 29% of the US 
population—lived in the 113 study counties. Between 1987 and 
2006, a total of 11,761,285 deaths occurred in these counties. 
The distribution of daily mean temperature varied substantially 
across counties, with the median value observed at first-order 
weather stations ranging from 5.6°C in Saint Louis County, 
Minnesota to 24.8°C in Palm Beach County, Florida (eTable 1; 
http://links.lww.com/EE/A61). The correlation between daily 
temperature values observed at weather stations and daily 
population-weighted temperature estimates constructed from 
PRISM in each county was generally high (eTable 1; http://links.
lww.com/EE/A61).

Figure  2 superimposes exposure–response curves and tem-
perature distributions derived from station observations versus 
PRISM estimates for three example counties: Marion County, 
Indiana (largest city: Indianapolis), El Paso County, Colorado 
(largest city: Colorado Springs), and Los Angeles County, 
California (largest city: Los Angeles). To facilitate compari-
sons of the magnitude of the temperature-mortality association 
on very cold and very hot days across temperature metrics, a 
dashed line is plotted at the 1st and 99th percentiles of the tem-
perature distribution observed at each county’s weather station. 
The RR for the 99th percentile of station temperature versus the 
minimum mortality temperature as estimated from the station 
curve was similar to the RR from the PRISM curve in Marion 
county, smaller than the RR from the PRISM curve in El Paso 
county, and larger than the RR from the PRISM curve in Los 
Angeles county (Table 1). Notably, in Los Angeles, the PRISM 
curve is characterized by a substantially higher minimum mor-
tality temperature compared to the station curve (25.3°C vs. 
21.9°C). Consequently, the value of temperature intended to 
represent extreme heat in Los Angeles (i.e., the 99th percentile 
of the station temperature distribution, which falls at 24.2°C) is 
below the minimum mortality temperature on the PRISM curve.

The station and PRISM curves for all 113 counties are shown 
in eFigure 1; http://links.lww.com/EE/A61. In most counties, the 
shape of the exposure–response curve was similar when esti-
mated with station versus PRISM temperatures, with both very 
hot and very cold temperatures giving rise to an elevated risk 
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of death. In the majority of counties (73.4%), we found that 
the PRISM curve yielded a larger estimate of the RR than the 
station curve at the 99th percentile of the station temperature 
distribution (Fig.  3). However, in many counties, the magni-
tude of the difference between RRs was small. Indeed, Figure 3 
demonstrates that two of the counties shown in Figure 2—El 
Paso and Los Angeles—give rise to some of the most pro-
nounced differences in RRs, while Marion County represents a 
more typical case where RRs are fairly similar across tempera-
ture metrics. Los Angeles was the only county in which the tem-
peratures selected to represent very hot days (i.e., the 99th and 
97.5th percentiles of the station temperature distribution) were 
cooler than the minimum mortality temperature as estimated on 
the PRISM curve.

Figure 4 shows the difference in the log(RR) estimated from 
each of the two curves at four values of temperature. Whether the 
association estimated from the PRISM curve is larger or smaller 
than the association estimated from the station curve depends 
on what point on the curve is considered. Specifically, when con-
sidering hot values of temperature (99th and 97.5th percentiles 
of the station temperature distribution) associations tended to 
be larger when estimated from the PRISM curve, but when con-
sidering cold values of temperature (1st and 2.5th percentiles 
of the station temperature distribution) associations tended be 

larger when estimated from the station curve. Results were sim-
ilar when excluding from analysis any days with a missing value 
in the station temperature time series (eFigure 2; http://links.
lww.com/EE/A61). In secondary analyses, we observed that the 
magnitude of the difference in associations was smaller when 
comparisons were made at a constant percentile of the tempera-
ture distribution within counties rather than a constant value of 
temperature (eFigures 3, 4; http://links.lww.com/EE/A61).

The fraction of deaths across the study counties attributable 
to heat, cold, and all temperatures was similar when estimated 
using station versus PRISM temperature (Table 2). For example, 
we estimate that 0.27% (95% eCI = 0.24, 0.29) and 0.31% 
(95% eCI = 0.26, 0.34) of deaths in the study counties were 
attributable to heat when estimated using station and PRISM 
temperatures, respectively.

Discussion
In this study of 113 counties representing more than a quarter 
of the US population at the time, we found that RRs for the 
association between very hot temperatures and mortality 
tended to be somewhat larger when estimated using popula-
tion-weighted temperature estimates constructed from a grid-
ded dataset (PRISM) than when estimated using temperature 

Figure 2. Exposure–response curves showing relative risks (RR) for the 21-day cumulative association between daily mean temperature and all-ages mortality in 
three counties modeled using temperature observations from weather stations (red) and population-weighted temperature estimates from PRISM (blue), 1987–2006. 
Vertical dashed lines are placed at the 1st and 99th percentile of the county-specific temperature distribution as observed at the weather station. RR, relative risk.
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observations from weather stations. In contrast, RRs for the as-
sociation between very cold temperatures and mortality tended 
to be somewhat smaller when estimated from PRISM versus 
station temperatures in the majority of counties. However, in 
most counties, the magnitude of the difference between the 
associations generated from each of the two exposure met-
rics was small for both very hot and very cold temperatures. 
Additionally, the shape of the exposure–response curve across 
the full range of temperatures was generally similar when esti-
mated with station versus PRISM temperatures.

Our results are broadly consistent with previous studies 
comparing temperature–mortality associations generated with 
weather station versus spatially refined exposure data in more 
limited geographic areas. In a study of three states in the eastern 
United States, Lee et al14 found a 2.05% increase (95% CI = 
0.52, 2.91) in mortality for every 1°C increase in temperature 
above 28°C when assigning temperature exposures at the zip 
code level using a spatiotemporal model. This estimate was 
reduced to a 1.14% increase (95% CI = 0.08, 1.57) when tem-
perature exposures were assigned based on the weather station 

Table 1

RR of death (95% CI) at the 99th percentile of the weather station temperature distribution versus the minimum mortality 
temperature, shown for both the station curve and the PRISM curve in each of three example counties

County

Station curve PRISM curve

Contrasta (°C) RR (95% CI) Contrastb (°C) RR (95% CI)

Marion (Indiana) 27.9 vs. 24.4 1.06 (1.02, 1.09) 27.9 vs. 24.3 1.07 (1.00, 1.15)
El Paso (Colorado) 25.4 vs. 21.7 1.16 (1.06, 1.26) 25.4 vs. 21.2 1.36 (1.09, 1.71)
Los Angeles (California) 24.2 vs. 21.9 1.05 (1.03, 1.08) 24.2 c vs. 25.3 1.01 (0.99, 1.02)

RR, relative risk.
a 99th percentile of the county-specific weather station temperature distribution versus the county-specific minimum mortality temperature from the station curve.
b 99th percentile of the county-specific weather station temperature distribution versus the county-specific minimum mortality temperature from the PRISM curve.
c Note that in Los Angeles county, the 99th percentile of the weather station temperature distribution is lower than the minimum mortality temperature from the PRISM curve.

Figure 3. Scatterplot of RRs for the 21-day cumulative association between 
daily mean temperature and mortality modeled using temperature observa-
tions from weather stations (x-axis) versus population-weighted tempera-
ture estimates from PRISM (y-axis) in each of 113 study counties. For each 
county, the value of temperature for which associations are plotted is held 
constant across datasets (i.e., at the 99th percentile of each county’s weather 
station temperature distribution). RR, relative risk.

Figure 4. Distribution of the difference between the log(RR) for the 21-day 
cumulative association between temperature and mortality as estimated 
using PRISM versus station temperature in each of 113 counties. In each 
county, differences are calculated for the log(RR) at four values of tempera-
ture (i.e., the 1st, 2.5th, 97.5th, and 99th percentile of that county’s weather 
station temperature distribution) versus the minimum mortality temperature. 
Differences are calculated such that counties where the PRISM curve yields 
a larger estimate of the temperature-mortality association receive a positive 
value.

Table 2

Fraction of deaths (95% eCI) attributable to temperature 
across all 113 counties generated using (1) the exposure-
response curves generated from weather station temperature 
observations and (2) the exposure-response curves generated 
from population-weighted PRISM temperature estimates

 

Attributable Fraction  
(95% eCI) (%)

Stationd PRISMe

Heata 0.27 (0.24, 0.29) 0.31 (0.26, 0.34)
Coldb 5.76 (5.44, 6.06) 5.51 (5.09, 5.88)
Total temperaturec 6.03 (5.70, 6.34) 5.82 (5.38, 6.20)

a Temperatures above the county-specific minimum mortality temperature.
b Temperatures below the county-specific minimum mortality temperature.
c All temperatures.
d Calculated using the exposure-response curve generated from weather station temperature 
observations in each county.
e Calculated using the exposure-response curve generated from population-weighted PRISM 
temperature estimates in each county.
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closest to the centroid of each zip code. Similarly, we found 
that population-weighted temperature estimates tended to yield 
slightly larger RRs for the association between extreme heat 
and mortality compared with station temperatures. However, 
the difference between estimates was small in the majority of 
locations, suggesting that on average across locations in the 
United States, weather station data likely provides a reasonable 
estimate of population average exposure.

Other studies have found little difference in effect estimates 
when employing exposure data sources with varying degrees of 
spatial information. For example, Guo et al12 estimated the as-
sociation between temperature and mortality in the large city of 
Brisbane, Australia using three exposure definitions: a single time 
series consisting of observations from a central weather station, a 
single time series consisting of daily values averaged across three 
weather stations, and spatially interpolated (via kriging) tem-
perature estimates for each of 163 administrative areas within 
Brisbane. Models fit using each of these three exposures yielded 
similar effect sizes for both hot and cold temperatures. In the 
Paris area, Schaeffer et al13 found little difference in tempera-
ture–mortality associations across a variety of exposure defini-
tions, including values from a single monitoring station as well 
as population-weighted daily estimates derived from multiple 
monitoring stations. Again, this is consistent with our results.

While in most counties we observed similar RRs using the 
station versus PRISM curves, in a small number of locations the 
degree to which the PRISM curve estimate was larger on very 
hot days was more substantial. In Colorado’s El Paso County, 
the RR comparing a 25.4°C day to the minimum mortality 
temperature was 1.16 (95% CI = 1.06, 1.26) for the station 
curve but 1.36 (95% CI = 1.09, 1.71) when based instead on 
the PRISM curve. Other counties with relatively large differ-
ences in the RR at the 99th percentile of the station temperature 
distribution include Maricopa County in Arizona (largest city: 
Phoenix), Union County in New Jersey (largest city: Elizabeth), 
and Madison County in Alabama (largest city: Huntsville). In 
these or other locations with more pronounced differences in 
RRs, our results may have implications for heat early warning 
and prevention activities that are triggered based on forecast 
temperatures for that location. For example, in some US com-
munities, the temperatures at which heat advisories and exces-
sive heat warnings are issued are based on epidemiologic studies 
that use exposure data from local weather stations.23–26 In com-
munities where risks are smaller when estimated using station 
temperatures, alert thresholds set based on studies using weather 
station measurements may be too low.

Studies of the association between temperature and mor-
bidity and/or mortality often report absolute measures of 
health impacts, such as the attributable fraction or attributable 
number.2,27–29 For example, in a study of 135 US communities 
in which community-specific associations were each estimated 
using a single monitoring station, Gasparrini et al estimated that 
0.25% (95% eCI = 0.30, 0.39) and 5.51% (95% eCI = 5.17, 
5.82) of deaths were attributable to hot and cold temperatures, 
respectively.2 Although our study did not include an identical set 
of locations, we estimated similar attributable fractions using 
station temperature across our 113 study counties (heat: 0.27% 
[95% eCI = 0.25, 0.29], cold: 5.76 [95% eCI = 5.44, 6.06]). 
Results were also quantitatively similar when using PRISM 
temperature.

Strengths of this study include the use of established statis-
tical methods commonly used in the temperature–mortality lit-
erature in order to provide evidence that is relevant to current 
practice, the comparison of RRs across temperature metrics for 
both hot and cold temperatures, and the inclusion of a large 
number of counties with diverse climates that encompass a 
large proportion of the US population. Specifically, we included 
in our study every populous county in the contiguous United 
States for which we had continuous mortality data and which 

included a first-order weather station within its borders. It is 
important to note that this selection strategy excludes less pop-
ulous counties, as well as those located farther from a first-order 
weather station. Thus, our results may not be generalizable to 
other counties.

Our study also has several other limitations. First, while we 
hypothesized that the population-weighted temperature esti-
mates constructed from PRISM are a better proxy for popu-
lation average exposure than weather station observations, 
we are not able to verify this assumption. However, in a pre-
vious validation study, we found that PRISM grid cell values 
exhibited a high degree of agreement with colocated weather 
station observations,17 suggesting that the PRISM model itself 
performs well. Second, we are unable to empirically determine 
whether station observations and PRISM estimates have sim-
ilar or different amounts of random measurement error, clas-
sical or Berkson. Third, information on24 daily deaths was not 
available at a spatial scale smaller than a county. As a result, we 
were unable to assess potential differences in risk when allowing 
daily temperature exposures to vary spatially within a county as 
some previous authors have done.12,14 Fourth, our results may 
not be applicable to other metrics of heat (e.g., heat index), 
other health outcomes (i.e., measures of morbidity), or more re-
cent years. Finally, we did not address the related question of 
whether different measures of heat or cold stress (e.g., minimum 
temperature, maximum temperature, heat index) differ in their 
ability to predict mortality.30 Instead, we assessed whether the 
source of the exposure estimates for a single measure (i.e., mean 
temperature) influenced the magnitude of our results.

In summary, we found that the overall association between 
temperature and mortality across a large number of US counties 
was similar when estimated based on two different exposure 
metrics. However, in a limited number of locations, popula-
tion-weighted temperature estimates yielded substantially larger 
associations for extreme heat versus observations from weather 
stations. These results suggest that the use of observed temper-
ature from first-order weather stations in prior studies of tem-
perature health effects across many US counties has not led 
to systematic under or overestimation of the adverse health 
impacts of temperatures. However, studies seeking to establish 
the health effects of specific temperature thresholds in specific 
locations may benefit from leveraging available spatially refined 
meteorological data. Moreover, such data allow the estimation 
of the health effects of temperature even in areas located far 
from weather stations.
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