Table 2.
Accuracy of different methods in each functional module.
| Index | Fast-CNN | QRS based by P&T | ||||||
|---|---|---|---|---|---|---|---|---|
| Se | PPV | Acc | F1 | Se | PPV | Acc | F1 | |
| 1 | 0.9953 | 0.9908 | 0.9863 | 0.9931 | 0.9958 | 0.9922 | 0.9881 | 0.994 |
| 2 | 0.9716 | 0.9941 | 0.966 | 0.9845 | 0.9857 | 0.9834 | 0.9695 | 0.9827 |
| 3 | 0.9752 | 0.9857 | 0.9616 | 0.9804 | 0.9079 | 0.9128 | 0.8354 | 0.9103 |
| 4 | 0.9953 | 0.9995 | 0.9948 | 0.9974 | 0.9995 | 0.9991 | 0.9986 | 0.9993 |
| 5 | 0.986 | 0.9754 | 0.9621 | 0.9807 | 0.9808 | 0.9586 | 0.941 | 0.9696 |
| 6 | 0.9645 | 0.9828 | 0.9484 | 0.9735 | 0.9774 | 0.9738 | 0.9524 | 0.9756 |
| 7 | 0.9919 | 0.986 | 0.9781 | 0.9889 | 0.9953 | 0.979 | 0.9745 | 0.9871 |
| 8 | 0.9881 | 0.9851 | 0.9736 | 0.9866 | 0.9902 | 0.9868 | 0.9772 | 0.9885 |
| 9 | 0.9827 | 0.9596 | 0.9437 | 0.971 | 0.9637 | 0.9529 | 0.9199 | 0.9583 |
| 10 | 0.9592 | 0.9929 | 0.9526 | 0.9895 | 0.9865 | 0.9924 | 0.9791 | 0.9757 |
| 11 | 0.9939 | 0.9747 | 0.9688 | 0.9842 | 0.9898 | 0.9099 | 0.9015 | 0.9482 |
| 12 | 0.9978 | 0.9974 | 0.9952 | 0.9976 | 0.9958 | 0.9908 | 0.9866 | 0.9933 |
| 13 | 0.991 | 0.9959 | 0.9869 | 0.9934 | 0.9943 | 0.9762 | 0.9708 | 0.9852 |
| 14 | 0.983 | 0.9862 | 0.9697 | 0.9846 | 0.9898 | 0.9728 | 0.9631 | 0.9812 |
| 15 | 0.9796 | 0.9572 | 0.9384 | 0.9682 | 0.985 | 0.9806 | 0.9662 | 0.9828 |
| 16 | 0.9402 | 0.9461 | 0.8924 | 0.974 | 0.9749 | 0.9731 | 0.9493 | 0.9432 |
| 17 | 0.9844 | 0.9818 | 0.9668 | 0.9831 | 0.9757 | 0.9636 | 0.941 | 0.9696 |
| 18 | 0.9489 | 0.9644 | 0.9168 | 0.9566 | 0.9758 | 0.9634 | 0.9409 | 0.9696 |
| 19 | 0.9815 | 0.9923 | 0.974 | 0.9869 | 0.9834 | 0.9814 | 0.9654 | 0.9824 |
| 20 | 0.9811 | 0.9907 | 0.9721 | 0.9858 | 0.9814 | 0.9816 | 0.9637 | 0.9815 |
| AVR | 0.9796 | 0.9819 | 0.9624 | 0.9807 | 0.9814 | 0.971 | 0.9542 | 0.9762 |
Convolutional Neural Network, CNN. Sensitivity, Se. Positive predictive value, PPV. Accuracy, Acc. F1- measure, change the value of F function by adjusting alpha, F1 when alpha = 1.