Skip to main content
. 2020 Nov 4;51(5):2727–2739. doi: 10.1007/s10489-020-01997-6

Table 3.

Overall performance of GBM in training using the combined dataset of all states of India

S. No Distribution Performance measures of GBM
Active cases modeling Recovered cases modeling
R2 MSE RMSE MAE MRD R2 MSE RMSE MAE MRD
1 Gaussian 0.97 2.13 86.07 61.29 0.97 0.94 535.41 23.14 15.92 535.41
2 Tweedie 0.98 4805.18 69.32 38.73 2.13 0.97 232.60 15.25 8.61 1.87
3 Huber 0.85 20,673.86 143.78 60.49 0.91 0.68 26.53 57.99 19.37 642.39
4 Laplace 0.72 74,248.96 272.49 104.08 0.67 0.48 6228.91 78.92 26.53 26.53
5 Poisson 0.99 3075.37 55.46 35.89 −2846.53 0.99 94.35 9.71 6.63 −357.78
6 Quantile 0.70 69,855.46 264.30 113.82 56.91 0.50 6614.20 81.33 26.37 13.18
7 Gamma 0.85 27,019.53 164.38 70.78 10.21 0.83 1682.18 41.01 16.92 6.05

Note: R2 (coefficient of determination), MSE (mean square error), RMSE (root mean square error), MAE (mean average error), and MRD (mean residual deviance)