Skip to main content
. 2020 Nov 4;51(5):2727–2739. doi: 10.1007/s10489-020-01997-6

Table 8.

Comparative performance of GBM, random forest, and deep neural network in the analysis of combined training dataset of all states of India

Approach Performance measures of random forest and deep neural network and GBM models
Active cases modeling Recovered cases modeling
R2 MSE RMSE MAE MRD R2 MSE RMSE MAE MRD
Random forest 0.59 136,919.20 370.02 187.02 136,919.20 0.33 6607.79 81.28 39.39 6607.79
Deep neural network 0.22 264,411.60 514.20 275.35 116,327.90 0.02 9628.01 98.12 42.31 3395.10
Gradient boosting machine 0.99 3075.37 55.46 35.89 −2846.53 0.99 94.35 9.71 6.63 −357.78

Note: R2 (coefficient of determination), MSE (mean square error), RMSE (root mean square error), MAE (mean average error), and MRD (mean residual deviance)