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Abstract

Allogeneic hematopoietic stem cell transplantation (HCT) remains the only potentially curative 

option for myelodysplastic syndromes (MDS). Mortality after HCT is high, with deaths related to 

relapse or transplant-related complications. Thus, identifying patients who may or may not benefit 

from HCT is clinically important. We identified 1514 patients with MDS enrolled in the Center for 

International Blood and Marrow Transplant Research Registry and had their peripheral blood 

samples sequenced for the presence of 129 commonly mutated genes in myeloid malignancies. A 

random survival forest algorithm was used to build the model, and the accuracy of the proposed 

model was assessed by concordance index. The median age of the entire cohort was 59 years. The 

most commonly mutated genes were ASXL1(20%), TP53 (19%), DNMT3A (15%), and TET2 
(12%). The algorithm identified the following variables prior to HCT that impacted overall 

survival: age, TP53 mutations, absolute neutrophils count, cytogenetics per International 

Prognostic Scoring System–Revised, Karnofsky performance status, conditioning regimen, donor 

age, WBC count, hemoglobin, diagnosis of therapy-related MDS, peripheral blast percentage, 

mutations in RAS pathway, JAK2 mutation, number of mutations/sample, ZRSR2, and CUX1 
mutations. Different variables impacted the risk of relapse post-transplant. The new model can 

provide survival probability at different time points that are specific (personalized) for a given 

patient based on the clinical and mutational variables that are listed above. The outcomes’ 

probability at different time points may aid physicians and patients in their decision regarding 

HCT.
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INTRODUCTION

The myelodysplastic syndromes (MDS) are clonal disorders characterized by the 

accumulation of complex molecular alterations and dysplastic features that yield to 

ineffective hematopoiesis, increased blasts presence, and risk of progression to acute 

myeloid leukemia [1–3]. The outcomes of patients with MDS are very heterogeneous and 

vary depending on each patient’s risk category and therapy. Allogeneic stem cell transplant 

(HCT) is the only potentially curative option for patients with MDS, although only 10% to 

15% of patients with MDS undergo transplant [4]. This low number of patients undergoing 

HCT is due to several factors that include patient-related factors such as age and 

comorbidities and concerns regarding the higher risk of transplant-related morbidity and 

mortality.

The National Comprehensive Network Guidelines and other consensus guidelines 

recommend HCT for patients with MDS early in their disease if they have intermediate 2 or 

high-risk category per the International Prognostic Scoring System (IPSS) and later during 

their disease course (prior to acute myeloid leukemia progression) if they have lower-risk 

disease [5,6]. The rationale behind these recommendations is based on analyses that use 

Markov decision modeling to predict the benefit from transplants in patients with MDS 

receiving myeloablative and reduced-intensity transplant [5,6]. This type of modeling does 

not consider the extensive heterogeneity of patients with MDS and the inherent biases in our 

current prognostic scoring systems that overestimate or underestimate the actual risk of 

individual patients.

Several small- and large-scale genomic studies have shown that somatic mutations may have 

an impact on outcomes after HCT, although the prognostic impact of some of these 

mutations remained controversial except for TP53 mutations [7–9]. The differences in the 

results of these studies are likely related to differences in the patient cohort, sample size, 

number of mutations included in the genomic panel, and the statistical methods [7–9]. 

Although the outcomes of patients with MDS with TP53 mutations after HCT remain poor, 

with a median overall survival (OS) of 6 months, approximately 20% to 25% of these 

patients are alive at 24 months after transplant, suggesting that a small percentage of these 

patients still derives benefit from HCT compared to other available therapies [7–9]. 

Identifying these patients prior to HCT remains clinically important but a challenging task.

In this study, we took advantage of a large MDS cohort with fully annotated clinical and 

genomic data from the Center for Blood and Marrow Transplant Research (CIBMTR) 

registry and, using machine learning algorithms, built a personalized prediction model that 

can predict patient-specific outcomes after HCT.
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METHODS

Patient Cohort

Patients with MDS diagnosed according to 2008 World Health Organization criteria and 

enrolled in the CIBMTR research database from 2004 to 2015 were included. Patients 

underwent HLA-matched, mismatched-donor, or umbilical cord transplant. Patients were 

excluded if blast percentage was >20% or had a diagnosis of overlap myelodysplastic-

myeloproliferative neoplasms. IPSS, IPSS–Revised (IPSS-R), and CIBMTR MDS risk 

scores were calculated as described previously [10–12]. Cytogenetic karyotyping was 

stratified based on MDS Comprehensive Cytogenetic Scoring System and grouped based on 

IPSS and IPSS-R criteria [10,11,13].

All the patients provided written informed consent to participate in the CIBMTR research 

database and repository. Observational studies conducted by the CIBMTR are performed in 

compliance with all applicable federal regulations pertaining to the protection of human 

research participants. Protected health information used in the performance of such research 

is collected and maintained in the capacity of the CIBMTR as a public health authority 

under the Health Insurance Portability and Accountability Act Privacy Rule. More details 

regarding the data source and participating centers are described elsewhere [14].

DNA Sequencing Studies

Next-generation targeted deep sequencing of 129 genes that are known or suspected to be 

involved in myeloid malignancies was included. Annotation of the mutations was blinded in 

regard to clinical data [7]. The method of sequencing has been described previously [7]. 

Briefly, patient peripheral blood samples were collected prior to initiation of the preparative 

conditioning regimen and stored at the CIBMTR registry. Native genomic DNA was sheared 

and library constructed per manufacturer protocol (Agilent). Libraries were then quantified 

and pooled up to 24 samples per lane in equimolar amounts totaling 500 ng DNA. Fastq files 

were aligned to the hg19 version of the human genome with BWA 0.6.2. Single nucleotide 

and small insertion and deletion calling were performed with samtools-0.1.18 mpileup and 

Varscan 2.2.3. Variants were annotated to include information about cDNA and amino acid 

changes, sequence depth, number and percentage of reads supporting the variant allele, 

population allele frequency in 1000 Genomes release 2.2.2, the Exome Sequencing Project, 

Exome Aggregation Consortium, and presence in Catalogue of Somatic Mutations in Cancer 

(COSMIC), version 64.6. Variants were excluded if they had fewer than 15 total reads at the 

position, had fewer than 5 alternate reads, had variant allele fraction <2%, fell outside of the 

target coordinates, had excessive read strand bias, had an excessive number of calls in the 

local region, caused synonymous changes, or were recurrent small insertions/deletions at 

low variant allele fraction adjacent to homopolymer repeat regions. All clinical and genetic 

data are available for request through CIBMTR: https://www.cibmtr.org/Studies/

Observational/ProposeStudy/pages/index.aspx.

Statistical Analysis

A total of 1514 patients were included in the final analysis and divided randomly into a 

training cohort comprising 70% (n = 1059) and a validation cohort including the remaining 
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30% (n = 455). These patients were treated at 130 different transplant centers that participate 

in the CIBMTR database and provide a very diverse patient cohort, including different 

institutional treatment practices. The training cohort was used to build the new model, and 

the validation set was used to assess the prognostic accuracy of the proposed model. Overall 

survival was defined as the time from date of transplant to date of death from any cause or 

until censoring at the last date of follow-up.

To build the model in the training cohort, a random survival forest (RSF) algorithm was 

used. This algorithm allows an efficient nonparametric analysis of time-to-event data. The 

algorithm randomly chooses variables to produce the desired outcome, thus overcoming the 

shortcoming of the stepwise selection approach using Cox regression models. Further details 

regarding the application of this algorithm for survival analysis are summarized in the 

supplementary materials. To identify the most important variables that impacted the 

algorithm decisions, a variable importance analysis was used, and variables were ranked 

from the most important to the least important. The final proposed model was then rebuilt 

using only the variables that were included in the variable importance analysis. Concordance 

indices were calculated for the proposed prognostic scoring system, IPSS, IPSS-R, and the 

CIBMTR MDS risk score models using the validation cohort as previously described [12–

14]. All analyses were conducted using R statistical environment version 3.3.

RESULTS

Patient Cohort

A total of 1514 patients with MDS were included. The clinical characteristics are 

summarized in Table 1 and were described previously [7]. The median follow-up of 

survivors was 47 months. The percentage of patients for whom complete follow-up data was 

available at 1, 3, and 5 years was 98%, 90%, and 88%, respectively. The median age of the 

entire cohort was 59 years (range, 0.4 to 77). Donors were 8/8 HLA-matched unrelated 

donors (n = 863, 57%), HLA-identical siblings (n = 181, 12%), <8/8 HLA-matched 

unrelated donors (n = 296, 20%), or umbilical cord blood (n = 174, 11%). Conditioning 

regimens included myeloablative (n = 789, 52%), reduced intensity (n = 582, 38%), and 

nonmyeloablative (n = 130, 9%). Hematopoietic stem cell sources included 221 (15%) from 

bone marrow, 1114 (74%) from peripheral blood, 168 (11%) from umbilical cord, and 11 

(1%) from combined sources. For cytogenetic analysis by IPSS-R criteria, 579 (38%) were 

very good/ good, 269 (18%) were intermediate, 287 (19%) were poor, 125 (8%) were very 

poor, and 254 (17%) were missing (Table 1). Seventy-nine percent of the patient cohort had 

primary MDS and 21% had therapy-related MDS (t-MDS) (Table 1). Risk stratification per 

IPSS-R at HCT included 26% with very low/low risk, 22% intermediate risk, 14% high risk, 

11% very high risk, and 24% missing (unable to calculate due to missing data).

A total of 168 patients in our patient cohort received a transplant from a cord graft. 

Compared to other graft types, the median OS for patients who received cord graft was 13.2 

months (range, 8.9 to 23.6) compared to bone marrow graft (19.8; range, 15.3 to 35.1) and 

peripheral blood graft (21.9; range, 17.9 to 26.6), P= .64, Supplementary Figure S1. The 

median relapse-free survival was 8.8 months (range, 5.8 to 12.9), 12 months (range, 8.5 to 

19.3), and 12.9 months (range, 10.9 to 17.5), respectively, P= .95, Supplementary Figure S2.
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Genetic Characteristics and Mutational Landscape

At least 1196 patients (79%) had 1 or more mutations in their blood samples prior to 

transplant with a median of 2 mutations per sample (range, 0 to 15). Only 31 mutated genes 

were present in at least 20 patients in the study cohort (Figure 1). The prognostic impact of 

each of these mutations on OS and relapse-free survival in univariate and multivariate 

analysis was reported previously [7]. Briefly, only mutations in TP53 (hazard ratio [HR] for 

death, 1.96), PPM1D (HR, 1.64), and JAK2 mutations (HR, 1.77) were associated with 

shorter OS, while no mutations predicted prolonged survival. In multivariate analyses and 

after adjustment for recipient age, donor group, IPSS-R score prior to HCT, Karnofsky 

score, t-MDS status, donor-recipient sex match, and year of HCT, mutations in TP53 (HR, 

1.72), JAK 2 (HR, 1.67), and RAS pathway mutations (HR, 1.25) independently impacted 

OS15. In multivariate analyses, TP53 mutations and RAS pathway mutations were 

associated with an increased risk of relapse [7].

Number of Mutated Genes per Sample as a Prognostic Marker

Mutation number per sample can carry important prognostic value, although the actual 

number can vary depending on the number of genes included in the sequencing panel and 

the level of detection. Overall, the median number of mutations per sample was 2 (range, 0 

to 15) when 129 genes were considered, and it was 2 (range, 0 to 8) when the analysis was 

focused only on the 31 mutations in >20 patients (Figure 1). When 129 genes were 

considered, the median OS for patients with zero mutations was 43.2 months, compared to 

20, 15, 14, 25, and 19 months for patients with 1, 2, 3, 4, and ≥5 mutations per sample, P 

< .001, Figure 2A. Similar median OS was observed when the analysis was restricted to 31 

commonly mutated genes with a median OS of 42.3 months for patients with zero mutations 

compared to 18, 13, 24, 27, and 13 months, respectively, P < .001, Figure 2B. In univariate 

analysis, mutation number/sample impacted OS when all mutations were accounted for (HR, 

1.07; 95% confidence interval, 1.03 to 1.11; P < .001) and when the analysis was restricted 

to 31 genes (HR, 1.08; 95% CI, 1.03 to 1.13; P < .001). However, this significant impact was 

lost after adjustment for other clinical variables such as age, donor group, t-MDS versus de 

novo, IPSS-R prior to transplant, conditioning regimen, and year of transplant 

(Supplementary Tables S1 and S2). We also observed a statistically significant but weak 

correlation between the number of mutations/sample and the bone marrow blasts percentage 

(correlation coefficient for number of mutations versus bone marrow percentage is 0.19; P 
< .001), Supplementary Figure S1.

Machine Learning Model Building and Validation

The new model was built in the training cohort using the RSF algorithm by introducing all 

variables (clinical, transplant related, and molecular data). The algorithm randomly choses 

variables to produce the desired outcomes (OS and time to relapse), thus overcoming the 

shortcoming of the stepwise selection approach using Cox regression models. After building 

the model, a variable importance analysis was conducted to extract the most important 

variables that affected the outcome. The variables are summarized from the most important 

to the least important for OS and time to relapse in Figure 3. As expected, age and TP53 
mutations were very important variables for OS while TP53 was the most important variable 
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for relapse. Mutation number along with CUX-1 mutations and PPM1D mutation was also 

important for OS and time to leukemia transformation while TET2 mutation and mutations 

in the RAS pathway were among important variables for time to relapse (Figure 3). When 

mutation characteristics such as variant allele frequency were added to the random survival 

algorithm, no improvement in the performance of the model was observed. Thus, we 

focused the analysis on whether the mutations were present or absent. The final model was 

developed using variables highlighted in Figure 3.

To further understand the prognostic impact of the clinical and transplant-related variables 

on outcomes among patients with higher-risk disease such as older age and patients with 

TP53 mutations, we reran the RSF algorithm in each subgroup and then highlighted the most 

important variables (ranked from the most to the least important) using variable importance 

analysis. A total of 289 patients had TP53 mutations in our patient cohort. When we focused 

the analysis on these patients only, the clinical and transplant-related factors impact changed 

for OS time to relapse, as shown in Supplementary Figures S4 and S5. Interestingly, some of 

the transplant-related variables such as graft type and the graft-versus-host disease (GVHD) 

prophylaxis did not impact OS while graft type, conditioning regimen, donor age, Karnofsky 

performance status, and GVHD prophylaxis did not impact time to relapse (Supplementary 

Figures S4 and S5).

We also identified 730 patients in our patient cohort who were ≥60 years old. When we 

focused the analysis on this patient subgroup, the clinical and transplant-related factors 

impact changed for OS and time to relapse as shown in Supplementary Figures S6 and S7. 

Interestingly, transplant year, graft type, and the GVHD prophylaxis did not impact OS 

while only graft type did not impact time to relapse (Supplementary Figures S6 and S7).

Predictability of the Proposed Model Compared to IPSS-R and CIBMTR MDS Models and 
Its Clinical Application

To investigate whether the proposed system was superior compared to IPSS-R and CIBMTR 

model, concordance indices were measured for each model prior to transplant. The C-index 

for the proposed model was .62 for OS and .68 for time to relapse compared to .55/.58 for 

IPSS-R and .57/.61 for the CIBMTR MDS model, respectively (Figure 4). When we built 

the model based only on the top 4 variables that impacted the OS and time to relapse 

outcomes (age, TP53 mutations, conditioning regimen, and donor group), we observed a 

significant drop in the c-index for OS (.57) and time to relapse (.58) outcomes, suggesting 

that all variables that were included in our final model are needed to boost the model 

performance. Although a simpler model is always preferred to ease the implementation and 

adaptation of any model in clinical practice, the performance of the final model should be at 

least comparable to a more complex model.

The modest improvement in c-index could be related to the sample size. When our patient 

cohort was oversampled to a larger number, a significant increase in the c-index was 

observed (Figure 4).

Further, our model can provide survival probability at 6, 12, and 24 months after transplant 

that is specific for a given patient based on his or her clinical and mutational data. These 
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probabilities can aid physicians and patients in their decision whether to proceed or not with 

the transplant (Figure 5). To ease the translation of this model into the clinic, a web 

application that input the patient clinical and mutational data and output the survival 

probability at different time points is currently under construction on the CIBMTR public 

portal (Figure 5). A preliminary version of the web application can be accessed at https://

azizn38.shinyapps.io/aziz/ (please copy the link to your web browser or hold the control key 

to open the link and refresh the website every time you change the variables).

DISCUSSION

Outcomes of patients with MDS who undergo HCT are very heterogeneous, and our current 

models do not provide risk prediction tailored to each patient’s characteristics.

In this study, we took advantage of a large registry-based fully annotated cohort of patients 

with MDS to develop a personalized prediction model that uses clinical and mutational data 

and predicts OS and relapse risk that is specific to each patient. We found that a panel of 31 

most commonly mutated genes in our cohort showed a similar impact on outcomes 

compared to the whole panel of 129 genes, suggesting that only a panel of approximately 25 

to 30 genes is needed to improve risk stratification prior to transplant.

Our machine learning algorithm identified several clinical factors that impacted OS and risk 

of relapse after HCT along with 3 mutations (TP53, CUX-1, and PP1MD) for OS and (RAS 

pathway and TET2 mutations) for relapse risk. The differences between the variables 

included in our final model and the clinical and mutational variables that have been shown to 

impact survival in prior studies are related to the differences in the analytic approach. The 

traditional model building typically starts with univariate analyses of variables and then 

stepwise multivariate analyses that include only significant variables. Such an approach can 

ignore the significance of some variables that are significant only in the context of other 

variables. Further, risk stratification tools that divide the patient cohort into 4 or 5 risk 

categories undermine the significant heterogeneity in outcomes of patients in the same risk 

category.

Several studies have investigated the impact of somatic mutations on transplant outcomes 

with some conflicting results [7,9]. In a large cohort of 1514 patients with MDS who were 

reported in the CIBMTR Repository between 2005 and 2014, TP53 mutations independently 

predicted shorter OS and a higher risk of relapse even after adjustment for known clinical 

risk factors [7]. In another study from the Japanese bone marrow transplant registry, 

mutations in TP53, NRAS, CBL, and complex karyotype were independently associated 

with shorter OS after adjusting for clinical variables [9]. More important, the negative 

impact of TP53 mutations was mainly seen in patients who had a complex karyotype [9]. 

Patients with TP53 mutations without complex karyotype (CK) had a significantly better 

survival post-transplant (73% were alive at 60 months) [9]. The differences in the results of 

these studies and others are mainly related to differences in the patient cohorts, different 

analytic methods, and the clinical and mutational variables that were included in the final 

model. Most important, these studies did not compare the impact of mutations on the 

outcome in patients who did not receive a transplant and treated with other available 
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therapies alone such as hypomethylating agents. Such analysis is important as it is evident 

that a subset of patients with TP53 mutations can have prolonged OS with HCT that cannot 

be achieved by other therapies.

Our study also has some limitations. Although the study cohort is relatively large, a larger 

number is needed to improve the c-index of the model. In an attempt to oversample our 

patient cohort using the machine learning algorithm, a cohort of approximately 5000 patients 

can potentially improve the accuracy of the model. Although our model was built on data 

from patients with MDS from different transplant centers across the United States and 

validated in a randomly selected patient cohort from the same database, an independent 

validation from an external cohort is still needed to ensure the reproducibility of the model.

In conclusion, we built a personalized prediction model that uses clinical, molecular, and 

transplant-related data and can provide MDS patient-specific survival outcomes post-

transplant. The new model identified several clinical and molecular variables that impacted 

OS and the cause-specific hazard of relapse. The OS probability at different time points may 

aid physicians and patients in their decision of whether to proceed to HCT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Most commonly mutated genes in the study cohort. (A) Frequency of mutations in the study 

cohort included the 31 genes that are present in 20 or more patients. The panel also shows 

the number of mutations per sample using all genes (129 genes) in orange and the 31 

commonly mutated genes in yellow. Mut, mutations. Panel B numbr of mutations per sample 

given all mutations versus the 31 genes included in the final analysis.

Nazha et al. Page 12

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Kaplan-Meier curves for overall survival according to mutation number per sample. (A) The 

survival curves based on 129 genes included. (B) The overall survival curves based on 31 

(commonly mutated) genes.
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Figure 3. 
Important variables that impacted overall survival and risk of relapse based on the machine 

learning algorithm. The variables are ranked from the most important to the least important 

and excluded variables with no impact on either endpoint. (More details regarding variable 

importance analysis are included in supplementary materials.) KPS indicates Karnofsky 

performance score; Conditioning, transplant conditioning regimen; ANC, absolute 

neutrophil count; MK, monosomal karyotype; hb, hemoglobin; BMB %, bone marrow blast 

percentage; proph, prophylaxis; MUT #, mutation number.
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Figure 4. 
Summary of the c-index of the proposed model compared to IPSS-R and CIBMTR models. 

The panel on the right shows the increase in the correlation between c-index and sample 

size. This suggests that increasing our patient cohort could improve the c-index of the 

proposed model.
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Figure 5. 
A snapshot from the web application for 2 different patients. The patients (A and B) have 

different clinical and mutational variables. On the right is the survival curve that is 

personalized for the patient with survival probability at different time points post-transplant. 

Please note that the variables are not included.
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Table 1

Patient Characteristics

Variable No. (%)

Number of patients 1514

Number of centers 130

HLA matching out of 8 loci

 < or = 6/8 116 (10)

 7/8 177 (15)

 8/8 870 (75)

 Unknown 351 (N/A)

Cytogenetic category per IPSS system criteria

 Favorable 471 (31)

 Intermediate 215 (14)

 Poor 504 (33)

 Unknown 324 (21)

Cytogenetic category for IPSS-R system criteria

 Very good 9 (1)

 Good 542 (36)

 Intermediate 253 (17)

 Poor 265 (18)

 Very poor 121 (8)

 Unknown 324 (21)

Recipient age at transplant, yr

 0–39 241 (16)

 40–49 167 (11)

 50–59 387 (26)

 60 and older 719 (47)

 Median (range) 59 (0–77)

Ethnicity

 Caucasian 1397 (93)

 African American 57 (4)

 Asian 37 (2)

 Other 16 (1)

 Unknown 25 (N/A)

Recipient sex

 Male 912 (60)

 Female 602 (40)

Karnofsky performance score

 10–80 419(28)

 90–100 817(54)
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Variable No. (%)

 Missing 278(18)

Disease status at transplant

 Early 576 (38)

 Advanced 796 (53)

 Other 142 (9)

Stem cell source

 Marrow 221 (15)

 PBSC 1114 (74)

 UCB 168 (11)

 Other 11 (<1)

Donor source

 Unrelated donor 1165 (77)

 Related donor 181 (12)

 Cord blood 168 (11)

Donor group

BM 221 (15)

Unrelated 209 (14)

Related 12 (1)

PBSC 1114 (74)

Unrelated 947 (63)

Related 167 (11)

UCB 168 (11)

Missing 11 (1)

Conditioning regimen intensity

 Myeloablative 789 (52)

 RIC 582 (38)

 Nonmyeloablative 130 (9)

 Unknown 13 (1)

In vivo T cell depletion

 No 843 (56)

 Yes 605 (40)

 Unknown 66 (4)

Donor/recipient sex matching

 Male/male 610 (43)

 Male/female 362 (25)

 Female/male 250 (18)

 Female/female 204 (14)

 Unknown 88 (N/A)

Donor/recipient CMV matching
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Variable No. (%)

 Negative/negative 439 (29)

 Negative/positive 459 (30)

 Positive/negative 162 (11)

 Positive/positive 379 (25)

 Unknown 75 (5)

Donor age at donation, yr

 Median (range) 29 (0–77)

Year of transplant

 2004–2007 300 (20)

 2008–2011 652 (43)

 2012–2015 562 (37)

PBSC indicates peripheral blood stem cell; UCB, umbilical cord blood; BM, bone marrow; RIC, reduced-intensity conditioning; N/A, not 
applicable; CMV, cytomegalovirus.
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