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Abstract

Neocortical Aβ-amyloid deposition, one of the hallmark pathologic features of Alzheimer’s 

disease (AD), begins decades prior to the presence of clinical symptoms. As clinical trials move to 

secondary and even primary prevention, understanding the rates of neocortical Aβ-amyloid 

deposition and the age at which Aβ-amyloid deposition becomes abnormal is crucial for 

optimising the timing of these trials. As APOE-ε4 carriage is thought to modulate the age of 

clinical onset, it is also important to understand the impact of APOE-ε4 carriage on the age at 

which neocortical Aβ-amyloid deposition becomes abnormal. Here, we show that, for 455 

participants with over three years of follow-up, abnormal levels of neocortical Aβ-amyloid were 

reached on average at age 72 (66.5-77.1). The APOE-ε4 carriers reached abnormal levels earlier at 

age 63 (59.6-70.3), however, non-carriers reached the threshold later at age 78 (76.1-84.4). No 

differences in rates of deposition were observed between APOE-ε4 carriers and non-carriers after 

abnormal Aβ-amyloid levels had been reached. These results suggest that primary and secondary 

prevention trials, looking to recruit at the earliest stages of disease, should target APOE-ε4 carriers 

between the ages of 60 and 66 and non-carriers between the ages of 76 and 84.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, is characterised 

pathologically by the extracellular accumulation of Aβ-amyloid and intracellular 

accumulation of tau in the neocortex (Jack et al., 2018). Neocortical accumulation of Aβ-

amyloid is a key part of the cascade of pathological changes leading to the onset of clinical 

symptoms in AD (Hardy and Selkoe, 2002; Karran et al., 2011) and is a process that initiates 

decades prior to clinical manifestation of the disease (Jack et al., 2013a; Villemagne et al., 

2013). Increased understanding of onset and rates of neocortical Aβ-amyloid deposition 

would provide improved disease staging criteria particularly for pre-clinical AD. This is 

increasingly important with clinical trials aimed at preventative treatment.

Carriage of an APOE-ε4 allele is a well-established risk factor for AD (Harold et al., 2009), 

reported to impact the levels of neocortical Aβ-amyloid (Liu et al., 2013; Reiman et al., 

2009; Rowe et al., 2010; Villemagne et al., 2011), however the nature of this impact is 

unclear. The literature appears to agree that APOE-ε4 carriage is associated with deposition 

of neocortical Aβ-amyloid at an earlier age (Bilgel et al., 2019; Fleisher et al., 2013; Mishra 

et al., 2018) as well as an earlier onset of disease (Corder et al., 1995). Some contributions 

report that APOE-ε4 carriage is associated with an increased rate of neocortical Aβ-amyloid 

deposition (Bilgel et al., 2019; Jack et al., 2013a; Mishra et al., 2018; Toledo et al., 2019), 

others only report a difference in those with low neocortical Aβ-amyloid burden (Lim et al., 

2017), whilst others report no difference in neocortical Aβ-amyloid accumulation rates 

between carriers and non-carriers (Corder et al., 1995; Resnick et al., 2015; Saunders, 2000). 

Accounting for the temporal relationship between neocortical Aβ-amyloid deposition and 

disease stage/progression may provide a clearer understanding of the impact of APOE-ε4 

carriage on neocortical Aβ-amyloid deposition.

In this study we evaluate the age at which abnormal levels of neocortical Aβ-amyloid 

deposition can be detected and test our hypotheses that carriage of an APOE-ε4 allele would 

be associated with a) a younger age of onset and b) faster rates of neocortical Aβ-amyloid 

deposition. For that purpose, natural history modelling in conjunction with survival analyses 

is employed to jointly consider onset and rates of neocortical Aβ-amyloid accumulation in 

reference to disease stage and progression.

2. Materials & Methods

2.1 AIBL Cohort

The Australian Imaging, Biomarker and Lifestyle (AIBL) cohort study of ageing combines 

data from neuroimaging, biomarkers, lifestyle, clinical, and neuropsychological assessments. 

Two study centres in Melbourne, VIC, and Perth, WA, Australia recruit mild cognitively 

impaired (MCI) individuals and individuals with Alzheimer’s disease from primary- care 

physicians or tertiary Memory Disorders Clinics. Cognitively healthy normal controls (NC) 

were recruited through advertisement or from spouses of participants in the study. Exclusion 

criteria were a history of non-Alzheimer’s disease dementia, Parkinson’s disease, 

schizophrenia, bipolar disorder, obstructive sleep apnoea, serious head injury, current 

depression (Geriatric Depression Score >5 out of 15), cancer in the past two years (with the 
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exception of basal-cell skin carcinoma), symptomatic stroke, uncontrolled diabetes, or 

current regular alcohol use. Between Nov 3, 2006, and Oct 30, 2008, AIBL recruited 1112 

eligible volunteers, who were aged 60 years or older and fluent in English. An enrichment 

cohort of 86 patients with Alzheimer’s disease (AD), 124 MCI and 389 NC were recruited 

by AIBL between March 30, 2011, and June 29, 2015. At baseline, the AIBL study 

participants were an average of 72 years of age, consisted of 58% women, and 36% were 

APOE-ε4 carriers. The institutional ethics committees of Austin Health, St Vincent’s 

Health, Hollywood Private Hospital, and Edith Cowan University approved the AIBL study, 

and all volunteers gave written informed consent before participating.

2.1.1 PET Aβ-Amyloid—AIBL Aβ-Amyloid positron emission tomography (PET) 

studies consisted of a 30-minute acquisition starting 40 minutes after injection of 370 MBq 

of 11C-Pittsburgh compound-B (11C-PiB). For semi-quantitative analysis, PET images were 

spatially normalised with CapAIBL® using an adaptive atlas (Bougeat et al., 2015). The 

summed and spatially normalised PET images were then scaled to the recommended 

reference region, cerebellar cortex, to generate a tissue ratio termed SUV ratio (SUVR), and 

sampled using a pre-set template of narrow cortical volumes of interest. A global measure of 

the Aβ-amyloid level was computed using the mean SUVR in the frontal, superior parietal, 

lateral temporal, lateral occipital, and anterior and posterior cingulate regions. The abnormal 

threshold for levels of Aβ-amyloid in AIBL participants was set as 1.4 SUVR (Jack et al., 

2013b).

2.1.2 Assessment of APOE genotype—APOE genotype was determined through 

TaqMan® genotyping assays (Life Technologies) for rs7412 (Assay ID: C____904973_10) 

and rs429358 (Assay ID: C____3084793_20). TaqMan® genotyping assays were performed 

on a QuantStudio 12K Flex™ Real-Time-PCR systems (Applied Biosystems, Foster City, 

CA) using the TaqMan® GTXpress™ Master Mix (Life Technologies) methodology as per 

manufacturer instructions. APOE carrier status was defined by the presence (1 or 2 copies) 

or absence (0 copies) of the APOE-ε4 allele.

2.2 ADNI Cohort

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), PET, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of MCI and early AD paticipants. Subjects were 

recruited from 57 sites across the United States and Canada and are followed-up annually. 

ADNI initially (ADNI 1) recruited 200 NC subjects, 400 MCI subjects and 200 subjects 

with early AD. In addition, ADNI GO, launched in 2009 included 200 subjects identified as 

having early mild cognitive impairment (EMCI). In 2011, ADNI 2 [11] recruited 150 NC, 

100 EMCI participants, 150 late mild cognitive impairment (LMCI) participants and 150 

AD participants. More recently, ADNI 3 was launched (September 2016) to recruit an 

additional 1,200 volunteers.
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2.2.1 PET Aβ-Amyloid—ADNI Aβ-Amyloid PET studies consisted of an acquisition of 

4 x 5-minute frames commencing 50-70 minutes after injection of 10 mCi of 18F Florbetapir 

(FBP). In the same manner as the AIBL images, the ADNI PET images were spatially 

normalised with CapAIBL® using an adaptive atlas (Bougeat et al., 2015). The summed and 

spatially normalised PET images were then scaled to a white matter reference region (a 

composite of the centrum semiovale and corpus callosum)(Chen et al., 2015) to generate a 

tissue ratio termed SUV ratio (SUVR), and sampled using the same pre-set template of 

narrow cortical volumes of interest as for the AIBL cohort. A global measure of the Aβ-

amyloid level was computed using the mean SUVR in the frontal, superior parietal, lateral 

temporal, lateral occipital, and anterior and posterior cingulate regions. The abnormal 

threshold for levels of Aβ-amyloid in ADNI participants was set as 0.61 SUVR (equivalent 

to 1.4 SUVR for 11C-PiB and 1.10 for FBP whole cerebellum correction (Clark et al., 

2012)).

2.2.2 Assessment of APOE genotype—A 3 mL aliquot of blood was taken in 

ethylenediaminetetraacetic acid (EDTA)-containing vacutainer tubes from ADNI 

participants, and genomic DNA was extracted at Cogenics (now Beckman Coulter 

Genomics) using the QIAamp DNA Blood Maxi Kit (Qiagen, Inc, Valencia, CA) following 

the manufacturer’s protocol. The two SNPs (rs429358, rs7412) that define the APOE epsilon 

2, 3, and 4 alleles were evaluated by polymerase chain reaction amplification, followed by 

HhaI restriction enzyme digestion, resolution on 4% Metaphor Gel, and visualization by 

ethidium bromide staining (Potkin et al., 2009; Saykin et al., 2010).

2.3 Statistical Analysis

AIBL (n=209) and ADNI participants (n=246) with at least three years of follow-up 

evaluations for Aβ-amyloid with 11C-PiB (AIBL) or 18F Florbetapir PET (ADNI), 

respectively, who were considered to be accumulating Aβ-Amyloid (rate of deposition > 0.0 

SUVR/year(Villemagne et al., 2013)), and had been genotyped for APOE were included in 

this study. The following analyses were produced in parallel for both the AIBL participants 

and the ADNI participants. Further, all analyses were again replicated for the NC 

participants (156 AIBL NC and 106 ADNI NC) in a sensitivity analysis. For comparison 

purposes, in ADNI, EMCI and LMCI participants were both considered as MCI to align 

with the classifications in AIBL. All analyses were performed in the R environment (R 

Development Core Team, 2017).

Demographics: Baseline differences between APOE-ε4 carriers and non-carriers were 

assessed with one-way t tests for continuous data (age), χ2 testing for categorised data (sex, 

years of education, disease classification), and Kruskal-Wallis testing for non- normally 

distributed data (length of follow-up). This was replicated for the individuals excluded from 

the study as they were not accumulating Aβ-Amyloid (46 AIBL and 14 ADNI participants).

The differences in rates of Aβ-amyloid deposition: Each individual’s rate of deposition 

(SUVR/year) was estimated using a linear model regressing their neocortical Aβ-amyloid 

levels (SUVR) against time since baseline evaluation (years). Differences in these rates 

between APOE-ε4 carriers and non-carriers, as well as between those above or below the 
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neocortical Aβ-amyloid threshold at baseline, were evaluated using one-way t tests, and 

presented using box and jitter plots. This analysis was also replicated for a combined cohort 

of those accumulating and not accumulating Aβ-Amyloid in a sensitivity analysis.

Natural history of deposition: Individual’s rates of Aβ-amyloid deposition, calculated above, 

were combined to estimate the overall natural history of Aβ-amyloid deposition using the 4-

step procedure described previously (Budgeon et al., 2017; Villemagne et al., 2013) and 

stratified by APOE-ε4 carriage. Briefly, the 4-step procedure comprises 1) estimating the 

mean and slope of each individuals’ Aβ-amyloid using linear models, 2) fitting a polynomial 

to the estimated means and slopes across all individuals, 3) integrating the reciprocal of the 

fitted polynomial, 4) inverting the function to obtain the natural history trajectory. 

Confidence intervals for the natural history curves were created using the bootstrapping 

procedure described previously (Budgeon et al., 2017). Note: this analysis was replicated 

with stratification by sex.

Age of Onset: Cox proportional hazards model of survival, corrected for sex, and years of 

education were utilised to estimate the age at which participants reached abnormal levels of 

neocortical Aβ-amyloid. This analysis was replicated with APOE-ε4 carriage stratification, 

to assess the effect of APOE-ε4 carriage on the age at which participants reached abnormal 

levels of Aβ-amyloid. Survival was defined as the time between birth and having a PET scan 

indicating abnormal levels of Aβ-Amyloid, withdrawal from the study, or the last completed 

follow-up examination. The event was classified as having a PET scan indicating abnormal 

levels of Aβ-amyloid. For some individuals the date at which their amyloid levels would 

have become abnormal was imputed, further details on the imputation are provided in 

supplementary material. The median age at which participants reached abnormal levels of 

Aβ-Amyloid, represented by the age at which 50% of the cohort reached abnormal levels of 

Aβ-Amyloid, was reported.

2.4 Data Availability

All ADNI and a subset of the AIBL data including images are shared through the LONI 

Image & Data Archive (http://adni.loni.usc.edu), a secure research data repository. 

Applications for access to the entirety of the AIBL data can be made via application through 

the AIBL website (https://aibl.csiro.au/).

3. Results

3.1 Demographics

There were a significantly higher proportion of NC participants in the AIBL APOE-ε4 non-

carriers compared to carriers (p=0.001), for the ADNI participants this relationship held as a 

trend (p=0.057). Within AIBL, there were significantly more Males among the APOE-ε4 

carriers compared to non-carriers (p=0.026), a finding not observed in the ADNI participants 

(p=0.683). The ADNI APOE-ε4 non-carriers were significantly older than carriers 

(p=0.005), no differences were observed for age between APOE-ε4 carriers and non-carriers 

in AIBL (p=0.196). No differences were observed between APOE-ε4 carriers and non-

carriers, in either AIBL or ADNI, for Years of Education, or length of follow-up (Table 1).
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There were no significant differences between the APOE-ε4 carriers and non-carriers for 

these demographic measures in the AIBL participants deemed to be non-accumulators 

(Supplementary Table 1), caution should be applied to these findings due to the small 

sample size however. Due to small the sample size comparisons could not be drawn for the 

ADNI non-accumulators (Supplementary Table 1). There appeared to be more Males and 

shorter follow-up in the non-accumulators compared to the accumulators, again the small 

sample size of the excluded non-accumulators should be noted.

3.2 Rates of Aβ-amyloid deposition

A one-way t-test comparison suggested that APOE-ε4 carriers and non-carriers did not have 

significantly (p=0.60) different rates of deposition in those above the threshold for Aβ-

amyloid at baseline (mean rates of deposition of 0.03±0.02 and 0.03±0.02 SUVR/year, 

respectively; equivalent to 1.7%/year), (Figure 1A). However, prior to reaching the abnormal 

threshold AIBL APOE-ε4 carriers appeared to have had significantly (p=0.005) faster rates 

of Aβ-amyloid deposition (0.02±0.02 SUVR/year; 2.1%/year) in comparison to AIBL 

APOE-ε4 non-carriers (0.01±0.01 SUVR/year; 1.1%/year), (Figure 1B).

A one-way t-test comparison of individual ADNI participants’ rate of deposition of Aβ-

amyloid suggest that APOE-ε4 carriers and non-carriers did not have significantly different 

rates of deposition either after or prior to reaching the abnormal threshold (p=0.99 and 

p=0.82, respectively). The mean rates of Aβ-amyloid deposition for ADNI participants 

beyond the abnormal threshold were 0.02±0.01 SUVR/year (2.2%/year) for both APOE-ε4 

carriers and non-carriers, (Figure 1C). Prior to reaching the abnormal threshold, ADNI 

APOE-ε4 carriers and non-carriers both had rates of Aβ-amyloid deposition of 0.01±0.005 

SUVR/year (1.3%/year; Figure 1D).

In a sensitivity analysis considering only the NC participants, the findings were equivalent 

with the only statistically significant difference (p=0.001) being found in the AIBL 

participants below the threshold (Supplementary Figure 1).

Including the non-accumulators to the full data set resulted in no significant differences 

between APOE-ε4 carriers and non-carriers either above or below the threshold, for AIBL 

or ADNI participants (Supplementary Figure 2).

3.3 Natural history of neocortical Aβ-amyloid deposition

Stratifying the natural history of neocortical Aβ-amyloid deposition by APOE-ε4 carriage 

indicated that on average AIBL APOE-ε4 carriers reached the abnormal threshold 14.9 

(0.3-35.2) years prior to AIBL non-carriers, (Figure 2A). Similarly, on average ADNI 

APOE-ε4 carriers reached the abnormal threshold 18.9 (CI: 3.5-40.1) years prior to ADNI 

non-carriers, (Figure 2B). Plots for individuals’ longitudinal data (Step 1 in the method) and 

slope vs mean plots (Step 2) stratified by APOE-ε4 carriage are provided in Supplementary 

Figure 3 for AIBL and Supplementary Figure 4 for ADNI. Note: when stratified by sex 

females appeared to reach the abnormal threshold 2 years prior to males but this was not 

statistically significant, results not presented.
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Replicating this in a sensitivity analysis of the NC, indicated that on average NC AIBL 

APOE-ε4 carriers reached the abnormal threshold 11.1 (−3.9-34.6) years prior to CN AIBL 

non-carriers, (Supplementary Figure 5). Please note that due to the small numbers of CN in 

the ADNI cohort, specifically APOE-ε4 carriers (N=37) the models did not converge, and 

results are not presented.

3.4 Age of onset using survival analysis

Survival analysis indicated that 50% of the AIBL and ADNI participants reached abnormal 

levels of Aβ-amyloid by ages of 69.3 (66.5-73.5) and 73.6 (CI: 71.2-77.1), respectively, 

(Figures 3A and B). Stratifying the participants by APOE-ε4 carriage and replicating the 

survival analysis indicated 50% of APOE ε4 carriers reached abnormal levels of Aβ-

amyloid by ages 62.0 (CI: 59.6-66.5) and 65.1 (CI: 62.0-70.3) in AIBL and ADNI, 

respectively. In contrast, 50% of the APOE-ε4 non-carriers reached abnormal levels of Aβ-

amyloid by ages 77.2 (CI 76.1-NA) and 79.3 (CI 75.9-84.4) in AIBL and ADNI, 

respectively. These findings suggest that on average APOE-ε4 carriers reached abnormal 

levels of Aβ-amyloid 15.2 years prior to APOE-ε4 non-carriers in AIBL and 14.2 (2.5-20.5) 

years in ADNI (Figures 3C and D).

In the CN sub-groups, 50% of CN APOE ε4 carriers reached abnormal levels of Aβ-

amyloid by ages 66.2 (CI: 63.6-76.1) and 66.4 (CI: 63.8-NA) in AIBL and ADNI, 

respectively. In contrast, 50% of the CN APOE-ε4 non-carriers reached abnormal levels of 

Aβ-amyloid by ages 77.6 (CI 71.6-NA) and 79.3 (CI 76.7-NA) in AIBL and ADNI, 

respectively (Supplementary Figure 6).

4. Discussion

Survival analyses indicated the average age that AIBL and ADNI participants reached 

abnormal levels of neocortical Aβ-amyloid was seventy years of age, with confidence 

intervals (CI) ranging from 66 to 77 years of age. Stratifying the survival analyses by APOE-

ε4 carriage suggested that on average APOE-ε4 carriers reached the abnormal threshold in 

their early sixties, 15 (CI: 6-24) years earlier than non-carriers who reached the threshold 

late in their seventies. Further, evaluation of the natural history of deposition of neocortical 

Aβ-amyloid also suggested that APOE-ε4 carriers reached the abnormal threshold of 

neocortical Aβ-amyloid deposition approximately 15-19 (CI: 4-40) years prior to non-

carriers, in line with previous findings (Bilgel et al., 2019; Fleisher et al., 2013; Mishra et 

al., 2018).

When restricting the analysis to only consider the cognitively normal participants, 

cognitively normal APOE-ε4 carriers reached the abnormal threshold in their mid-sixties, 12 

(CI: 0-24) years earlier than cognitively normal non-carriers who reached the threshold in 

their midseventies.

It is noted that whilst the age of onset and natural history analyses are not independent, there 

was exceptional consistency in the findings across the methods as well as across the two 

cohort studies, despite the use of different Aβ-amyloid tracers. The findings are also 

consistent with literature looking at the clinical onset of AD which reports APOE-ε4 
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carriage moves the age of clinical onset earlier by 10-20 years in comparison to non-carriers 

(Bilgel et al., 2016; Corder et al., 1993; Jack et al., 2014; Jansen et al., 2015).

Based on group comparisons, APOE-ε4 carriers and non-carriers appeared to have similar 

rates of neocortical Aβ-amyloid deposition, with the only exception being AIBL participants 

prior to reaching the threshold for neocortical Aβ-amyloid. In this group APOE-ε4 carriers 

appeared to have significantly faster rates of deposition than non-carriers.

Overall, the findings presented in this paper suggest that the natural history of neocortical 

Aβ-amyloid deposition in APOE-ε4 carriers starts approximately 15 years earlier but has a 

similar trajectory to that of APOE-ε4 non-carriers. For the same burden of neocortical Aβ-

amyloid, the rate of deposition is similar for both APOE-ε4 carriers and non-carriers 

(demonstrated by drawing horizontal lines through Figures 2 A and B). These findings fit 

with the previous literature that APOE-ε4 carriage is not associated with the rate of disease 

progression, only with earlier onset of disease (Corder et al., 1995; Resnick et al., 2015; 

Saunders, 2000). Further, they go some way to explaining the conflicting reports that APOE- 
ε4 carriage is also associated with rate of deposition and/or disease progression (Bilgel et 

al., 2019; Craft et al., 1998; Hoyt et al., 2005; Jack et al., 2013a; Lim et al., 2017; Mishra et 

al., 2018; Toledo et al., 2019; Villemagne et al., 2011): if an age matched population was 

considered (or age corrected modelling used) then the rate of deposition would appear to be 

higher in APOE-ε4 carriers versus non-carriers. This would be due to APOEεe4 carriers 

being 15 years further along in disease progression and having higher neocortical Aβ-

amyloid burden as well as potentially higher rates of deposition (demonstrated by drawing 

vertical lines through Figures 2 A and B). Therefore, the difference in rate of deposition 

between APOE-ε4 carriers and non-carriers previously reported in the literature may be a 

function of a difference in disease stage opposed to a difference in APOE-ε4 carriage. The 

temporal relationship between onset and rate is an important consideration and previous 

evaluations considering these as independent factors or not utilising longitudinal data may 

have limited their ability to draw valid conclusions.

When stratifying by sex, no significant differences between males and females were 

observed in the natural history evaluations. As the effect of sex was of a much smaller 

magnitude at 2 years than that of APOE-ε4 at 15 years, it is possible that this study was not 

powered to observe a statistically significant difference.

This study has a number of other limitations. Firstly, there were not enough APOE-ε4 

homozygotes to enable evaluations on the dose-effect of APOE-ε4 genotype to be 

undertaken. Secondly, a lack of APOE-ε2 carriers prevented further evaluations to 

understand the implications of APOE-ε2 carriage and its interplay with APOE-ε4 carriage. 

Thirdly, given the focus on rates of Aβ-amyloid deposition, only accumulators were 

included in most of this study which may contrast with other reports and might preclude the 

generalisability of the findings. Analysis of the small number of non-accumulators available 

resulted in loss of statistical significance of the difference in rates of change between AIBL 

APOE-ε4 carriers and non-carriers prior to reaching the threshold, no other differences were 

found. Fourthly, the analysis is restricted to the longitudinal evaluation of neocortical Aβ-

amyloid and it will be necessary to extrapolate this analysis to incorporate peripheral Aβ-
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amyloid and large longitudinal tau studies once they become available. The participants 

were volunteers who were not randomly selected from the community, and were generally 

well educated, thus these findings might only be valid in similar cohorts and this limitation 

precludes the generalisation of the findings to the general population. Also, in view of the 

stringent selection criteria in both AIBL and ADNI, which excluded individuals with 

cerebrovascular disease or other dementias, the effect of other comorbidities on the 

trajectories might be underestimated. Lastly, longitudinal Aβ-amyloid levels were obtained 

from 11C PiB PET imaging in AIBL and 18F Florbetapir PET imaging in ADNI and while 

both underwent the same CapAIBL normalisation, differences in PET scanner and tracer 

kinetics may contribute a somewhat larger variance in the results.

It has been established that rates of neocortical Aβ-amyloid deposition impact disease 

progression (Villemagne et al., 2013), earlier onset of Aβ-amyloid deposition may therefore 

lead to earlier disease onset. Therefore, understanding the age-related, temporal, deposition 

of neocortical Aβ-amyloid as well as the impact of APOE-ε4 carriage has essential 

implications for understanding disease mechanisms and informing the timing for 

therapeutics and diagnostics (Ungar et al., 2014). This is of paramount importance when 

considering disease staging and/or clinical trial inclusion criteria, for instance clinical trials 

will potentially need to consider alternative recruitment criteria such as younger age ranges 

for APOE-ε4 carriers in comparison to non-carriers. The ability to accurately target 

individuals at appropriate stages of the disease for inclusion in relevant clinical trials could 

afford such trials a better chance of success in the quest to delay and prevent AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

APOE-ε4 carriers reached abnormal levels of Aβ ~15 years earlier than non-carriers

APOE-ε4 carriers and non-carriers had no differences in Aβ deposition rates beyond the 

threshold

Primary and secondary prevention trials should target APOE-ε4 carriers aged between 60 

and 66

Primary and secondary prevention trials should target APOE-ε4 non-carriers aged 

between 76 and 84
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Figure 1A. 
Boxplots detailing the rates of Aβ-amyloid deposition for AIBL participants above the 

abnormal threshold for Aβ-amyloid at baseline (11C-PiB PET SUVR≥1.4) stratified by 

APOE-ε4 carriage
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Figure 1B. 
Boxplots detailing the rates of Aβ-amyloid deposition for AIBL participants below the 

abnormal threshold for Aβ-amyloid at baseline (11C-PiB PET SUVR≥1.4) stratified by 

APOE-ε4 carriage
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Figure 1C. 
Boxplots detailing the rates of Aβ-amyloid deposition for ADNI participants above the 

abnormal threshold for Aβ-amyloid at baseline (18F- Florbetapir SUVR≥0.61) stratified by 

APOE-ε4 carriage
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Figure 1D. 
Boxplots detailing the rates of Aβ-amyloid deposition for ADNI participants below the 

abnormal threshold for Aβ-amyloid at baseline (18F- Florbetapir SUVR≥0.61) stratified by 

APOE-ε4 carriage
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Figure 2A. 
The natural history of deposition of neocortical Aβ-amyloid in AIBL participants stratified 

by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals.
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Figure 2B. 
The natural history of deposition of neocortical Aβ-amyloid in ADNI participants stratified 

by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals.
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Figure 3A. 
Kaplan-Meier plot detailing, by age, the prevalence of AIBL participants with high levels of 

Aβ-amyloid at baseline (11C-PiB PET SUVR≥1.4). Shaded areas indicate 95% confidence 

intervals.
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Figure 3B. 
Kaplan-Meier plot detailing, by age, the prevalence of ADNI participants with high levels of 

Aβ-amyloid at baseline (18F-Florbetapir SUVR≥0.61). Shaded areas indicate 95% 

confidence intervals.
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Figure 3C. 
Kaplan-Meier plot detailing, by age, the prevalence of AIBL participants with high levels of 

Aβ-amyloid at baseline (11C-PiB PET SUVR≥1.4) stratified by APOE-ε4 carriage. Shaded 

areas indicate 95% confidence intervals.

Burnham et al. Page 24

Neurobiol Aging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3D. 
Kaplan-Meier plot detailing, by age, the prevalence of ADNI participants with high levels of 

Aβ-amyloid at baseline (18F-Florbetapir SUVR≥0.61) stratified by APOE-ε4 carriage. 

Shaded areas indicate 95% confidence intervals.
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