Skip to main content
. 2020 Nov 3;10:18951. doi: 10.1038/s41598-020-76025-1

Table 2.

Predictive performance for DFS and OS using various features based on C-index and IBS.

Features C-index IBS
OS DFS OS DFS
Clinical 0.7955±0.04 0.7894±0.04 0.338 0.319
KG+Clinical 0.8019±0.04 0.7937±0.04 0.349 0.317
KG+Sub+Clinical 0.8057±0.04 0.8363±0.03 0.326 0.283
HR+Clinical 0.8152±0.04 0.8125±0.04 0.329 0.308
Sub+Clinical 0.8026±0.04 0.8361±0.03 0.329 0.286
HR+Sub+Clinical 0.8157±0.04 0.8388±0.03 0.318 0.265

Logistic regression was used as a prediction model. Clinical, nine clinical data; KG, known cancer driver genes (KRAS, CDKN2A, TP53, and SMAD4); HR, a high-risk group of patients harboring mutations in five genes with high CP values; Sub, a feature representing subgroups generated by integrating mRNA, miRNA, and DNA methylation subtypes.