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Abstract
Numerous recent studies have sought to determine the developmental trajectories of motor-related oscillatory responses
from youth to adulthood. However, most of this work has relied on simple movements, and rarely have these studies linked
developmental neural changes with maturational improvements in motor performance. In this study, we recorded
magnetoencephalography during a complex finger-tapping task in a large sample of 107 healthy youth aged 9–15 years old.
The relationships between region-specific neural activity, age, and performance metrics were examined using structural
equation modeling. We found strong developmental effects on behavior and beta oscillatory activity during movement
planning, as well as associations between planning-related beta activity and activity within the same region during the
movement execution period. However, when all factors were tested, we found that only right parietal cortex beta dynamics
mediated the relationship between age and performance on the task. These data suggest that strong, sustained beta
activity within the right parietal cortex enhances motor performance, and that these sustained oscillations develop
through childhood into early adolescence. In sum, these are the first data to link developmental trajectories in beta
oscillatory dynamics with distinct motor performance metrics and implicate the right parietal cortex as a crucial hub in
movement execution.
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Introduction
The planning and execution of movements are known to be
served by a specific pattern of oscillatory activity throughout
the cortical motor network, particularly in the beta (∼15–30 Hz)
band. Specifically, there is a significant beta event-related
desynchronization (ERD) that occurs from about 1 s prior to
movement onset and persists until about 0.5 s after movement,

termed the peri-movement beta ERD (Pfurtscheller and Lopes
da Silva 1999; Kaiser et al. 2003; Doyle et al. 2005; Cheyne et al.
2006; Jurkiewicz et al. 2006; Gaetz et al. 2010; Tzagarakis et al.
2010; Wilson et al. 2010, 2011, 2014; Grent-’t-Jong et al. 2014;
Heinrichs-Graham et al. 2014, 2016, 2018b; Heinrichs-Graham
and Wilson 2015, 2016). The peri-movement beta ERD has been
widely studied and is associated with movement planning

https://academic.oup.com/
http://orcid.org/0000-0002-7914-5258
http://orcid.org/0000-0002-5053-8306


6406 Cerebral Cortex, 2020, Vol. 30, No. 12

and execution processes (Kaiser et al. 2001, 2003; Doyle et al.
2005; Gross et al. 2005; Jensen et al. 2005; Pogosyan et al. 2009;
Engel and Fries 2010; Tzagarakis et al. 2010; Park et al. 2013;
Grent-’t-Jong et al. 2014; Kurz et al. 2014; Heinrichs-Graham and
Wilson 2015, 2016; Heinrichs-Graham et al. 2016). For example,
the peri-movement beta ERD is known to be modulated by the
certainty of the pending movement (Kaiser et al. 2003; Doyle
et al. 2005; Tzagarakis et al. 2010; Heinrichs-Graham et al. 2016),
the similarity in potential movement options (Praamstra et al.
2009; Grent-’t-Jong et al. 2014), the complexity of the movement
to be performed (Heinrichs-Graham and Wilson 2015), and other
high-order movement planning-related factors. Interestingly,
beta ERD response amplitude does not seem to be impacted
by parameters of the movement itself (e.g., force or speed of the
muscles employed (Fry et al. 2016)), suggesting that the response
is much more sensitive to the goal of the movement than
actual motor output. Of note, other significant and robust motor
responses include a postmovement beta rebound (PMBR), which
occurs approximately 0.8 s after movement termination and
lasts for at least 1.0 s. The PMBR response has been less widely
studied but is generally thought to reflect sensory feedback to
the motor cortices and/or active inhibition following movement
(Pfurtscheller et al. 1996; Cassim et al. 2001; Alegre et al. 2008;
Reyns et al. 2008; Pfurtscheller and Solis-Escalante 2009; Fry et al.
2016; Tan et al. 2016; Heinrichs-Graham et al. 2017). There is also
a strong movement-related gamma synchronization (MRGS)
that occurs from approximately 50 ms before to 100 ms after
movement onset (Cheyne et al. 2008; Muthukumaraswamy 2010;
Wilson et al. 2010, 2011; Gaetz et al. 2011; Hall et al. 2011; Shaw
et al. 2015; Heinrichs-Graham et al. 2018a; Trevarrow et al. 2019;
Spooner et al. 2020).

A limited number of studies have sought to determine how
these motor-related oscillations change as a function of age.
A classic paper by Wilson and colleagues used magnetoen-
cephalography (MEG) and a simple finger tapping task and found
that beta ERD, PMBR, and MRGS amplitude all linearly increased
as a function of age (Wilson et al. 2010), though most of these
results were localized to secondary motor cortices (e.g., supple-
mentary motor area, cerebellum). A later study using a similar
movement paradigm showed that the peri-movement beta ERD
and PMBR were significantly stronger in the primary motor
cortices of older children (11–13 years) and adults relative to
younger children (4–6 years), with the youngest children show-
ing no significant PMBR response during a simple finger tapping
task (Gaetz et al. 2010). Such a developmental increase in beta
ERD amplitude was similarly found in a recent MEG investiga-
tion of knee movements (Kurz et al. 2016). Finally, another recent
developmental study characterized the beta ERD, PMBR, and
gamma ERS amplitude changes in the primary motor cortices
in a large sample of children and adolescents and found a
significant relationship between age and the PMBR and gamma
ERS, but no such relationship with the beta ERD (Trevarrow et al.
2019). Of note, there are also substantial changes in beta activity
during healthy aging, such that both baseline beta levels and
peri-movement beta ERD power have been shown to signifi-
cantly and dramatically increase with age (Rossiter et al. 2014;
Heinrichs-Graham and Wilson 2016; Heinrichs-Graham et al.
2018a).

While these studies have provided major insight on the age-
related trajectories of motor oscillations, they have also largely
relied on simple movements (e.g., single finger taps), which has
limited their ability to link developmental oscillatory changes to
behavioral performance. A benefit of more complex movement

paradigms is that they provide multiple behavioral output met-
rics, which can be critical for understanding responses like the
beta ERD, as it has been implicated in both motor planning and
execution. While a small number of studies have attempted to
dissociate these concepts in the context of movement inhibi-
tion (Maimon and Assad 2006; Liebrand et al. 2017; Kaiser and
Schutz-Bosbach 2019), there has only been one study to date
that investigated how cortical beta ERD dynamics change from
movement planning to execution during complex movements
(Heinrichs-Graham and Wilson 2015). In that study, three num-
bers were presented on the screen, each corresponding to a
finger on the hand, and healthy adults were instructed to tap the
sequence in order. While there were no neural differences during
the planning period, there were significant beta oscillatory and
connectivity differences in parietal and frontal regions during
complex movement execution (Heinrichs-Graham and Wilson
2015). This suggests that secondary motor regions, such as the
parietal cortices, may be especially pertinent to the execution of
complex movements in the healthy adult motor system.

The current study sought to determine the developmen-
tal trajectory of the motor-related oscillatory dynamics serving
complex movement processing in a large cohort of youth. We
hypothesized that there would be robust effects of age on motor
performance and that these differences would be reflected in
altered beta dynamics during motor planning and execution.
Further, we hypothesized that the most robust developmental
changes would occur in secondary motor regions such as the
parietal cortices.

Methods
Subject Selection

A total of 107 healthy youth (55 females, mean age: 11.74 years,
range 9–15 years, 8 left-handed) were recruited from the local
community. Exclusionary criteria, based on parent/guardian
report, included any diagnosed neurological or psychiatric
disorder, other illness affecting CNS function (e.g., HIV infection),
presence of a learning disability, history of head trauma, current
substance abuse, and the presence of any irremovable type
of ferromagnetic material. After complete description of the
study was given to participants, written informed consent was
obtained from the parent/guardian, and informed assent was
obtained from the participant, following the guidelines of the
University of Nebraska Medical Center’s Institutional Review
Board, which approved the study protocol.

Experimental Paradigm and Stimuli

During MEG recording, participants were seated in a nonmag-
netic chair within a magnetically shielded room. Each partici-
pant rested their right hand on a custom five-finger button pad
while fixating on a crosshair presented centrally. This response
pad was connected directly to the MEG system, and each but-
ton sent a TTL pulse to the acquisition computer in real-time.
Behavioral responses were thus temporally synced with the MEG
data, which allowed accuracy, reaction times, and movement
durations (in ms) to be computed offline. After an initial baseline
period of 3.75 s, a series of three numbers, each corresponding
to a finger on the right hand, were presented simultaneously in
black for 0.5 s. After 0.5 s, the numbers changed color, signaling
the participant to complete the motor sequence by pressing the
corresponding buttons as quickly and accurately as possible. The
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Figure 1. Task paradigm. Following a baseline period, three numbers correspond-

ing to fingers on the right hand were presented. After 0.5 s, the numbers changed
color, which prompted the participant to tap the sequence in order as quickly
and accurately as possible.

participant was given 2.25 s to complete the motor plan and
return to rest. Figure 1 depicts the slides constituting one trial. A
total of 160 trials were completed, making overall MEG recording
time about 16 minutes for the task.

MEG Data Acquisition & Coregistration with Structural
MRI

All recordings were conducted in a one-layer magnetically
shielded room with active shielding engaged. Neuromagnetic
responses were sampled continuously at 1 kHz with an
acquisition bandwidth of 0.1–330 Hz using an MEG system
with 306 magnetic sensors (Elekta, Helsinki, Finland). MEG
data from each subject were individually corrected for head
motion (MaxFilter v2.2; Elekta) and subjected to noise reduction
using the signal space separation method with a temporal
extension (Taulu et al. 2005; Taulu and Simola 2006). For motion
correction, the position of the head throughout the recording
was aligned to the individual’s head position at the start of
the MEG recording. Additionally, a high-resolution structural
T1-weighted MRI was collected from each participant using a
3 T Siemens Skyra scanner equipped with a 32-channel head
coil (TR: 24.0 ms; TE: 1.94 ms; field of view: 256 mm; slice
thickness: 1 mm with no gap; in-plane resolution: 1.0 × 1.0 mm).
The structural volumes were aligned parallel to the anterior
and posterior commissures and transformed into standardized
Talairach space. Each participant’s MEG data were coregistered
with their MRI data using BESA MRI (Version 2.0). After source
imaging (beamformer), each subject’s functional images were
also transformed into standardized space using the transform
that was previously applied to the structural MRI volume, and
spatially resampled.

MEG Time-Frequency Transformation and Statistics

Cardiac and ocular artifacts were removed from the data using
signal-space projection, which was accounted for during source
reconstruction (Uusitalo and Ilmoniemi 1997). The continuous
magnetic time series was divided into epochs of 6.4 s duration,
with 0.0 s defined as movement onset (i.e., first button press) and
the baseline defined as the −2.25 to −1.75 s time window (i.e.,
before movement onset; Fig. 1). Only correct trials were used for
analysis. Epochs containing artifacts were rejected based on a
fixed threshold method, supplemented with visual inspection.
There were an average of 119.71 (SD: 10.83) trials per person
included after artifact rejection.

Artifact-free epochs were then transformed into the time-
frequency domain using complex demodulation (resolution:
1.0 Hz, 50 ms; Papp and Ktonas 1977; Kovach and Gander
2016), whereby the single-trial data was subject to a discrete
Fourier decomposition to determine the signal power in each

1 Hz frequency bin in overlapping 50 ms time windows for the
length of the epoch. The resulting spectral power estimations
per sensor were averaged over trials to generate time-frequency
plots of mean spectral density. These sensor-level data were
normalized per frequency bin using the mean power during the
−2.25 to −1.75 s baseline period. The specific time-frequency
windows used for imaging were determined by statistical
analysis of the sensor-level spectrograms across the entire
array of gradiometers. Each data point in the spectrogram was
initially evaluated using a mass univariate approach based on
the general linear model. To reduce the risk of false positive
results while maintaining reasonable sensitivity, a two-stage
procedure was followed to control for Type 1 error. In the first
stage, paired-samples t-tests against baseline were conducted
on each data point and the output spectrogram of t-values
was thresholded at P < 0.05 to define time-frequency bins
containing potentially significant oscillatory deviations across
all participants. In stage two, time-frequency bins that survived
the threshold were clustered with temporally and/or spectrally
neighboring bins that were also below the (P < 0.05) threshold,
and a cluster value was derived by summing all of the t-values
of all data points in the cluster. Nonparametric permutation
testing was then used to derive a distribution of cluster-
values, and the significance level of the observed clusters (from
stage one) were tested directly using this distribution (Ernst
2004; Maris and Oostenveld 2007). For each comparison, 10 000
permutations were computed to build a distribution of cluster
values. Based on these analyses, time-frequency windows
that corresponded to events of a priori interest (i.e., the peri-
movement beta ERD) and contained a significant oscillatory
event across all participants were subjected to the beamforming
analysis. Further details of our analysis pipeline are available
(Wiesman and Wilson 2020).

MEG Imaging & Statistics

Cortical networks were imaged through an extension of the lin-
early constrained minimum variance vector beamformer (Gross
et al. 2001; Hillebrand et al. 2005) using the Brain Electrical
Source Analysis (BESA 7.0) software. Following convention, we
computed noise-normalized source power per voxel in each
participant using active (i.e., task) and passive (i.e., baseline)
periods of equal duration and bandwidth. These images are
typically referred to as pseudo-t maps, with units (pseudo-t)
that reflect noise-normalized power differences (i.e., active vs.
passive) per voxel. These maps were computed for the selected
time-frequency bands over the entire brain volume per par-
ticipant at 4.0 × 4.0 × 4.0 mm resolution. As stated above, the
maps were then transformed into standardized Talairach space
using the transform previously applied to the structural MRI
volume and spatially resampled. These images were then aver-
aged across participants, and source power from peak voxels
was identified and extracted per location, time bin (i.e., planning
vs. execution), and participant. These data were used for all
statistical modeling.

Our primary hypotheses were that beta oscillations during
the planning and execution periods would predict task perfor-
mance and that these dynamics would follow distinct devel-
opmental trends. This overall conceptual model is shown in
Figure 2. Specifically, we tested a multiple mediation model by
which beta oscillatory activity during motor planning predicted
reaction time and beta oscillatory activity during motor execu-
tion. All variables during planning and execution then predicted
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Figure 2. The conceptual mediation model tested. Execution variables (oscil-
latory activity and reaction time) were tested as potential mediators of the
effects of neural oscillatory planning mechanisms on behavioral performance

(i.e., successful movement completion). We also probed potential developmental
effects on the neural and behavioral measures of interest via chronological age.

movement duration (i.e., time to completion). Age served as a
control variable on all measures. All analyses were conducted
with and without full information maximum likelihood estima-
tion for missing data. Conclusions were the same, so we report
results using missing data estimation for increased statistical
power. Statistical significance was determined using the false-
discovery rate (FDR) to correct for multiple comparisons. All
statistical modeling was performed with MPlus (v.8.1).

Results
Behavioral Results

Eleven participants were excluded from all analyses: seven
were excluded for behavioral performance (i.e., < 70% accuracy
on the task), two participants for technical difficulties during
MEG acquisition, and two participants for excessive noise
in their MEG data. The remaining 96 participants performed
generally well, with an average accuracy of 92.12% (SD: 5.68%).
Average reaction time (i.e., first button press) was 786.31 ms
(SD: 242.54 ms), and average movement duration (i.e., how
long it took to complete the tapping sequence) was 963.77 ms
(SD: 220.76). To initially probe for developmental behavioral
effects, we computed correlations between age (calculated
to the hundredth of a year) and performance measures.
These revealed significant correlations between age and
accuracy, r(96) = 0.326, P = 0.001, reaction time, r(96) = −0.466,
P < 0.001, and movement duration, r(96) = −0.396, P < 0.001,
suggesting that with older age, participants were more accurate,
responded faster, and had shorter movement durations
(Fig. 3). We synced our MEG data analyses with movement
onset in each trial and focused all analyses on the time
windows preceding and during the early stages of movement
execution (i.e., before any participant completed the movement
sequence).

Identification of the Task-Induced Cortical Motor
Network

Sensor-level time–frequency spectrograms were statistically
examined to derive the time-frequency bins to be imaged.
Significant peri-movement beta ERD responses were found

across a large number of gradiometers near the sensorimotor
cortex in the 17–23 Hz range, and this response extended from
about 0.5 s before movement onset until about 0.75 s after
average movement offset (P < 0.0001, corrected). Of note, there
was also a significant alpha ERD and a small, yet significant
PMBR response found in the sensor-level data (both Ps < 0.0001,
corrected), but these responses were outside the scope of the
study and thus were not imaged. Sensor-level activity is shown
in Figure 4A.

In order to distinguish differences in beta activity related
to movement planning versus execution, the significant beta
ERD response period was divided into two temporally distinct
17–23 Hz windows (i.e., motor planning: −0.4 to 0.0 s; motor
execution: 0.0 to 0.4 s; 0.0 s defined as movement onset), and
these windows were independently imaged in each participant
using a baseline period of −2.15 to −1.75 s. We then aver-
aged the resulting images in each participant and then across
participants and determined the peak motor-related responses
induced by the task. This investigation yielded four distinct
peaks, including the left precentral gyrus (coordinates: −38,
−28, 49), right precentral gyrus (coordinates: 38, −28, 49), left
superior parietal cortex (coordinates: −18, −44, 65), and right
superior parietal cortex (coordinates: 18, −44, 65; Fig. 4B). Peak
voxel values (pseudo-t) were then extracted from each brain
region per time bin (i.e., planning and execution). Of note, we
also averaged the planning and execution windows individually,
and determined that the source peak locations were identical
across the two time windows.

Statistical Modeling of Developmental Effects on Motor
Network Dynamics

As described above, we tested a multiple mediation model by
which beta oscillatory activity during the planning period (−0.4
to 0.0 s, 0.0 s = movement onset) predicted reaction time, as
well as beta oscillatory activity during execution (0.0–0.4 s). All
variables during both planning and execution then predicted
movement duration (i.e., time to complete the movement). Age
served as a control variable on all measures. The full model
that was tested is shown in Figure 5. Briefly, planning variables
included beta ERD power (pseudo-t) during the planning period
(−0.4–0.0 s) in the left and right precentral gyri, as well as the left
and right parietal cortices. Execution variables included reaction
time (in ms) and beta ERD power (pseudo-t) during the execution
period (0.0–0.4 s) in the same four brain regions. Movement
duration (in ms) served as the completion variable.

Results of the final model are displayed in Figure 6. For
simplicity and visibility, only significant and trending asso-
ciations are reported in the figure. A full table of parameter
estimates from both significant and nonsignificant effects
can be found in Supplemental Table S1. In total, the model
accounted for a significant proportion of the variance in
movement duration (R2 = 0.42, P < 0.001). Beta ERD activity
was significantly correlated across the four neural regions
during the planning phase, with correlations ranging from
0.39 to 0.74. There were fewer significant correlations within
this motor circuit during the execution phase, though the
effects that did hold were moderate-to-strong (range: 0.42–
0.64). Beta ERD activity in each brain region during the planning
period strongly and significantly predicted activity during
execution within the same region, such that greater beta
ERD during planning predicted greater subsequent beta ERD
during execution (β’s = 0.78–0.93, Ps < 0.001). As shown, there

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa199#supplementary-data
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Figure 3. Behavioral results. Age (in years) is shown on the x axis, while accuracy (% correct) is shown on the left, reaction time (in ms) is shown in the middle, and
movement duration (in ms) is shown on the right. There were significant correlations between age and all behavioral metrics (all Ps < 0.001).

Figure 4. (A) Left: Grand-averaged time-frequency spectrogram from a sensor near the primary motor cortex. Time is denoted on the x-axis (0.0 s = movement onset),
while frequency (in Hz) is shown on the y-axis. The white box denotes the time-frequency window that was imaged using beamforming. The color bar shows change in

power (% change from baseline). Right: Sensor-level distribution of 17–23 Hz activity from −0.4 to 0.4 s (0.0 s = movement onset) across the entire array of gradiometers.
(B) Grand-averaged beamformer image of beta ERD activity (17–23 Hz, −0.4 to 0.4 s). Color bar represents source power (pseudo-t). Arrows denote neural peaks.

were additional significant network-level associations. Briefly,
greater planning-related beta activity within the left precentral
gyrus predicted greater execution-related activity in the right
precentral gyrus (β = 0.17, P = 0.007), as well as trended toward
predicting greater execution-related activity within the left
parietal cortex (β = 0.11, P = 0.054). Left parietal planning-related
activity similarly predicted execution-related beta ERD activity
within the left precentral gyrus (β = 0.12, P = 0.026), though
this effect did not survive after FDR correction. There was a
trend toward planning-related activity within the right parietal
cortex negatively predicting left precentral gyrus activity during
execution (β = −0.084, P = 0.075).

Considering task behavior, we did not detect any statistically
significant predictions from planning-related beta oscilla-
tory activity to reaction time. However, both planning- and
execution-related beta activity within the right parietal cortex
significantly predicted movement duration. Interestingly, these
predictions followed opposite patterns. Stronger planning-
related beta ERD in the right parietal cortex was associated
with longer overall movement duration (β = −0.67, P = 0.009).
Conversely, a greater execution-related beta ERD predicted
shorter movement durations (β = 0.70, P = 0.014). The only other
metric that significantly predicted movement duration was

reaction time; individuals with faster reaction times tended
to have shorter overall movement durations (β = 0.52, P < 0.001).

We detected several statistically significant developmental
effects within the model. Age was associated with planning-
related beta activity in bilateral parietal areas, indicating
that older participants exhibited stronger beta ERD activity
compared with younger participants (βleft = −0.26, P = 0.015;
βright = −0.23, P = 0.040), though the latter did not survive
following FDR correction. There was a similar trend with
respect to planning-related beta activity in the left precentral
gyrus (β = −0.20, P = 0.062). In addition, age was significantly
associated with reaction time, indicating that older participants
initiated the movement more quickly than their younger peers
(β = −0.50, P < 0.001).

Of note, we also tested a simplified model in which all
nonsignificant parameters were omitted from the model
estimation. Although our conclusions held in the simplified
model, fit statistics suggested that removing nonsignificant
parameters markedly harmed overall model fit (�AIC = 346.26;
�BIC = 287.28). Thus, the complete model (Figs 5 and 6,
Supplemental Table S1) provided a superior structure for
explaining variance in motor planning and execution in these
data.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa199#supplementary-data
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Figure 5. Full mediation model tested. Planning variables included source activity (pseudo-t) during the planning period (−0.4 to 0.0 s, 0.0 s = movement onset) for the
left and right precentral gyri and parietal cortices. Planning variables predicted execution variables, which included source activity (pseudo-t) during the execution
period (0.0 to 0.4 s) for the bilateral precentral and parietal cortices, as well as reaction time (in ms). Planning and execution variables predicted movement duration
(in ms). Age (in years) acted as a control variable.

Mediating Effects

We examined all potential mediating effects of age, planning-
related neural activity, reaction time, and execution-related
neural activity on movement duration. Statistical significance
of indirect effects was determined using bias-corrected boot-
strapped confidence intervals (Efron and Tibshirani 1986;
Fritz and MacKinnon, 2007) around all indirect effects using
1000 bootstrapped samples. Note that because of the use of
confidence intervals to determine significance, exact p-values
are not available for indirect effects. In total, we were able
to detect four statistically significant indirect effects at the
P < 0.05 level. These significant mediating effects are illustrated
in Figure 7.

There was a significant indirect effect of right parietal
planning-related activity on movement duration via right
parietal execution-related activity (β = 0.54, P < 0.05). Greater
beta ERD within the right parietal cortex during planning
predicted subsequent greater execution-related beta ERD in the
right parietal cortex, which ultimately predicted shorter overall
movement duration. The direct effect of right parietal planning-
related activity was statistically significant (β = −0.67, P = 0.033),
with greater planning-related ERD predicting longer movement
duration. The model suggests only a partial mediation via
execution-related parietal activity.

The total effect of age on movement duration was also
statistically significant (β = −0.40, P < 0.001). However, the direct
effect was not significant in the final model (β = −0.14, P = 0.18),

suggesting that the relationship was fully mediated. In fact,
there were three statistically significant mediating paths. First,
there was an overall negative indirect effect of age on movement
duration via reaction time (β = −0.25, P < 0.01); older participants
were faster to initiate a response, and faster initial responses
predicted shorter movement durations. Second, planning-
related beta oscillatory activity in the right parietal cortex
mediated the effect of age on movement duration (β = 0.16,
P < 0.01). Older participants exhibited stronger planning-related
beta ERD, which then predicted longer movement durations.
Finally, we detected a significant multiple mediation via
the path through planning-related right parietal activity to
execution-related right parietal activity (β = −0.13, P < 0.01).
Older participants had greater planning-related beta ERD in the
right parietal cortex, which predicted greater execution-related
beta ERD, and shorter subsequent movement durations.

Discussion
In this study, we investigated how the relationship between age
and motor performance was mediated by neural dynamics in
a large developmental sample of youth aged 9–15 years old.
Specifically, we sought to identify (a) how the neural dynamics
of the motor system change as a function of age, (b) how these
dynamics are altered between motor planning and execution,
and (c) which brain areas predict motor performance metrics
(i.e., reaction time and movement duration) that change as a
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Figure 6. Results of the full mediation model. Statistically significant estimates (P < 0.05) are denoted with a solid black line, while those that were approaching
significance (P < 0.10) are shown by dashed gray lines. Nonsignificant estimates are not shown. All listed parameters are standardized coefficients.

Figure 7. Statistically significant mediating effects. Significant estimates (P < 0.05) are denoted with a solid black line. Note that the total effect of age on movement
duration was significant (P < 0.001; shown in parentheses), but this relationship was fully mediated (dashed gray line denoting nonsignificance after taking into account

mediating factors). All listed parameters are standardized coefficients.

function of age. As expected, the degree of beta ERD activity
within a given region during the planning period predicted
beta ERD activity during execution. Additionally, activity in
each region was associated with activity in other regions
during the same time period (though less so during execution).

Surprisingly, we found no significant relationships between
beta oscillatory activity and reaction time, though execution-
related parietal and precentral activity showed positive trends.
In addition, a unique and interesting relationship between
age, right parietal dynamics, and movement duration emerged.
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We found that the relationship between age and movement
duration was fully mediated by beta oscillatory dynamics in
right parietal cortex, although planning and execution-related
activity showed distinct and opposite effects on movement
duration. Below we discuss the implications of these results
for our understanding of development in the human motor
system.

Within the entire model, we found a number of interesting
developmental relationships. Age significantly predicted beta
ERD power during the planning period in the parietal cortices but
not the primary motor cortices (though the left precentral gyrus
did show a trend toward significance). The lack of significant
age-related effects on activity in the primary motor cortex is not
entirely surprising. For example, Wilson and colleagues found
a trending relationship between beta ERD power and age in
the right but not left primary motor cortex during right finger
movements (Wilson et al. 2010). Gaetz and colleagues showed
a significant linear trend in left precentral beta ERD power
in 4–6 year-old children, but not 11–13 year-olds (Gaetz et al.
2010). Trevarrow et al. who used an overlapping study popula-
tion (though an entirely different task), found no relationship
between left precentral beta ERD activity and age (Trevarrow
et al. 2019). The variability of these findings, with a tendency
toward nonsignificance, is likely due to the fact that the primary
motor cortices mature relatively early. In fact, some structural
MRI research demonstrates maturation of the precentral gyri
by 9 years of age (Gogtay et al. 2004; Shaw et al. 2008), but
that other regions of the motor network, including the pari-
etal cortices, continue to develop into adolescence. Nonethe-
less, planning-related activity in the left precentral gyrus not
only predicted execution-related activity in the left precentral
gyrus, but was also the only region to affect execution-related
activity in other regions; namely in the right precentral gyrus,
with trending effects on the left parietal cortex. This suggests
a downstream effect whereby the left precentral gyrus guides
activity throughout the motor network. It was also particularly
interesting that there were no unique developmental effects on
execution-related beta activity, above and beyond those found
in the planning period. Much of this is likely due to the strong
relationship between planning and execution-related activity; in
other words, there was not much variance left over to be taken
into account. It should also be noted that in this particular study
sample, other common motor-related regions (e.g., the premotor
cortices, supplementary motor area, etc.) were not significantly
active. It is possible that these regions are not “tuned” to such
tasks at this age, or that this sequencing task does not require
these regions to be involved.

Perhaps most importantly, we found that right parietal cortex
dynamics uniquely mediated the relationship between age
and motor performance. Interestingly, our mediation analyses
showed that the developmental changes in planning and
execution-related activity had opposite effects on movement
duration. Age was positively associated with planning-related
beta oscillations, which negatively predicted movement dura-
tion, such that greater activity was associated with longer
movements. However, there was also a double mediation effect
by which age positively predicted planning-related activity,
which positively predicted execution-related beta activity, and
this pattern positively predicted movement duration; in other
words, stronger beta responses were associated with shorter
movement duration. While these effects may seem initially
counterintuitive, we posit that they emphasize the importance
of strong, sustained beta oscillatory activity in the right parietal

cortex during complex movement processing. Basically, in line
with previous research in adults (Heinrichs-Graham and Wilson
2015), we find that execution-related beta oscillations in the
right parietal cortex are crucial for proper complex movement
completion. If there is strong planning-related beta activity in
the right parietal cortex, but it is not sustained into movement
execution, it is detrimental to motor performance. However,
if robust activity during the planning period is sustained or
increases during execution in this region (i.e., does not decrease),
this pattern predicts better motor performance. The regional
specificity of these findings align with other studies that have
shown the importance of the parietal cortices in motor planning
and execution, especially in the context of sequence-related
movement and visuomotor transformations (Harrington et al.
2000; Thoenissen et al. 2002; Cui and Andersen 2011; Convento
et al. 2014; Battaglia-Mayer et al. 2015; Yokoi and Diedrichsen
2019), and solidify the right parietal cortex as an important
motor-network hub. Of note, none of the neural metrics in our
model predicted reaction time; however, reaction time mediated
the relationship between age and movement duration, such
that as youth get older, both reaction time and movement
duration become faster. Future studies should attempt to
clarify which neural regions best predict reaction time dif-
ferences throughout development, as this information could
be utilized for simpler motor tasks such as single movement
protocols.

In sum, we modeled the relationship between age, planning
and execution-related neural dynamics within the motor net-
work and task performance in a large developmental cohort of
healthy youth. We found that the relationship between age and
motor performance was uniquely mediated by neural dynam-
ics within the right parietal cortex. Importantly, our data sug-
gest that stronger beta oscillatory activity in the right parietal
cortex during movement execution, especially if preceded by
an increase in planning-related activity, is crucial to success-
ful motor performance, and these dynamics are developing
throughout childhood and adolescence. Future studies should
extend this investigation into late adolescence and adulthood to
identify when these developmental changes peak. Additionally,
future work could utilize neuromodulatory techniques to probe
whether execution-related parietal activity can be optimized
to maximize motor performance. Finally, given the data-driven
approach employed here, other studies should attempt to repro-
duce these findings in a larger sample and/or age range. Future
studies should also determine the impact of other oscillatory
responses (e.g., alpha ERD, PMBR, and gamma ERS), as well as
the interaction between these neural responses, on complex
movement metrics.
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