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Abstract

Problems related to unknown or imprecisely measured populations at risk are common in 

epidemiologic studies of disease frequency. The size of the population at risk is typically 

conceptualized as a denominator to be used in combination with a count of disease cases (a 

numerator) to calculate incidence or prevalence. However, the size of the population at risk can 

take other epidemiologic properties in relation to an exposure of interest and the count outcome, 

including confounding, modification, and mediation. Using spatial ecological studies of injury 

incidence as an example, we identify and evaluate five approaches that researchers have used to 

address “unknown denominator problems”: ignoring, controlling for a proxy, approximating, 

controlling by study design, and measuring the population at risk. We present a case example and 

recommendations for selecting a solution given the data and the hypothesized relationship between 

an exposure of interest, a count outcome, and the population at risk.
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1. INTRODUCTION

Precise measures of disease frequency are essential for researchers to accurately describe 

distributions of health and ill-health, to assess associations with putative causal drivers, and 

ultimately to develop interventions that affect these drivers in order to improve population 
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health (Keyes and Galea, 2014; Porta, 2008). Prevalence and incidence—the primary 

approaches to measure disease frequency—are calculated similarly, in that both denominate 

counts of disease cases by the size of population at risk. Researchers collectively invest a 

great deal of effort to ensure they use valid case counts (Lyons et al., 2008; O’Reilly et al., 

2016). Comparatively little attention is paid to measuring the size of the population at risk, 

yet there are many reasons why the size of the population at risk may be unknown or 

difficult to measure. Individuals can come and go from populations; precise records are not 

always available; delineation between populations may be unclear.

Problems related to unknown or imprecisely measured populations at risk can greatly affect 

researchers’ ability to assess causation. To illustrate this point, Garson (1976) used the 

simple example of two family physicians, the first of whom reported having seven patients 

with multiple sclerosis, and the second of whom reported having 25 such patients. 

Comparison of raw case counts suggests the prevalence of multiple sclerosis is around four-

fold greater at the second clinic compared to the first and could justify investigation of 

possible causes. However, if the first clinic had 1,000 patients and the second had 4,000 

patients, there would be no need for further inquiry. Several authors refer to this broad issue 

as the “denominator problem” and conceptualize the population at risk as a mathematical 

property of measures of disease frequency (Bartholomeeusen et al., 2005). From this 

perspective, the primary considerations are whether the population at risk can be defined 

clearly and measured validly. Once these conditions are met, the population at risk can be 

used as a denominator to calculate disease frequency or incorporated as an offset variable in 

a linear model.

1.1 An Epidemiologic Perspective

When the population at risk is conceptualized in epidemiologic terms, further essential 

considerations arise. Fig. 1 presents four possible associations between an exposure, an 

outcome, and the population at risk. In the simplest scenario (Fig. 1.1), the size of the 

population at risk is directly causally related to the number of cases (i.e. larger populations 

generate more outcomes) and is unrelated to the exposure of interest, in which case it is 

appropriate to use this value as a denominator. However, this approach is not always 

appropriate. If the size of the population at risk is associated with the exposure of interest 

and is causally related to the outcome (Fig. 1.2), it may be more useful to consider this value 

as a confounder. Alternatively, the size of the population at risk may change behavior in a 

way that modifies associations between the exposure of interest and the outcome (Fig 1.3). 

For example, studies of bicycle safety document a “safety in numbers” effect (Elvik and 

Bjørnskau, 2017; Thompson et al., 2015); routine activities theory predicts pedestrian 

volume will be non-linearly related to the incidence of violent crime (Cohen and Felson, 

1979). Studies of these phenomena must necessarily separate the numerator from the 

denominator to assess statistical interaction. Finally, if the size of the population at risk is on 

the causal path between the exposure and the outcome (i.e. a mediator), it should not be 

included in a statistical analysis (Fig 1.4).

Spatial ecological studies are particularly susceptible to variation in the population at risk 

due to routine human mobility. In this study design, populations are delineated 
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geographically and temporally, and researchers assess associations between social and 

physical environmental conditions (exposures) and aggregate measures of disease and injury 

(outcomes) within space-time units. Mobility—defined as the movement of people and 

resources through space over time—can cause the population at risk to vary considerably 

within and between units, and the smaller the spatial or temporal partitions, the greater this 

variation is likely to be. For example, the resident population accounted for 99.99% of 

pooled variance in the actual number of people present in Australian states and territories on 

the day of the 2016 Census. Within the much smaller Statistical Area level 2 units (“SA2” 

units; analogous to US Census tracts), the resident population accounted for 97.43% of 

variance. This proportion will continue to decrease as spatial units shrink (e.g. SA1 units, 

blocks, dwellings) and temporal units become briefer (e.g. hours, minutes).

1.2 Study Aims

The aim of this paper is to identify and evaluate methods used to account for the size of the 

population at risk in population studies of disease frequency in the presence of geographic 

mobility. For consistency with the extant literature we refer to this issue as the “unknown 

denominator problem”, though we take an epidemiologic perspective and assess available 

methods in light of four possible relationships: as a denominator, as a confounder, as an 

effect modifier, and as a mediator. We focus on studies of acute disease incidence because 

outcomes with brief induction periods—meaning the interval between an exposure and the 

first manifestation of a disease (Koepsell and Weiss, 2004)—are well suited to spatial 

ecological designs. We focus on injury because it is arguably has the most rapid onset of all 

acute outcomes, because smaller space-time units are often preferable to ensure that the 

exposure and the outcome are collocated, and because the unknown denominator problem 

affects smaller space-time units to a greater extent than larger space-time units.

To address our aim, we present a narrative review that identifies and groups the approaches 

that authors have used to address the unknown denominator problem in spatial ecological 

studies of injury incidence. We evaluate the strengths and weaknesses of each identified 

solution and include exemplar publications to illustrate our findings. We then present a guide 

to assist researchers to determine the best approach for addressing the unknown denominator 

problem given the available data and the hypothesized associations, and describe a case 

example in which we implement the available solutions and assess performance in light of 

the proposed decision tree.

2. NARRATIVE REVIEW

Researchers have used five approaches to address problems related to unknown 

denominators that arise in spatial ecological studies of injury incidence due to mobility: 

ignoring, controlling for a proxy, approximating the population at risk, controlling by study 

design, and measuring the population at risk.

2.1 Ignoring

In some spatial ecological studies of injury incidence, researchers do not attempt to address 

the unknown denominator problem or they include only the size of the local resident 

Morrison et al. Page 3

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population (Chapman et al., 2016; DiMaggio, 2015; Inada et al., 2020; Wheeler-Martin et 

al., 2019). These approaches collectively make no attempt to account for temporal and/or 

spatial variation in the population at risk beyond the number of local residents (Anselin, 

2006; Elliott and Wartenberg, 2004). For example, Fink et al. (2018) assessed suicides in the 

United States per month from 1999 to 2015 (i.e. within nation-months) before and after the 

suicide of Robin Williams, a well-known comedian. In seasonal time-series analyses, the 

outcome was undenominated counts of suicides and the exposure measure was a 

dichotomous variable indicating months before and months after Mr. Williams’ death.

Ignoring the unknown denominator problem is an attractive approach because it requires 

minimal effort on the part of researchers. The approach assumes that the population exposed 

is constant across space-time units, which is justifiable when space-time units are very large 

and variation in the size of the population at risk is likely to be very small compared to the 

estimated effects, because further efforts to address the problem will not materially enhance 

internal validity. For example, in the case of Fink et al. (2018), net changes in population 

due to migration (or births and deaths) will have negligible impact because the resident 

population is proportionally very large and the additional variation in the population exposed 

is unlikely to exceed the size of the detected effects. However, as space-time units become 

smaller, problems may arise if the unmeasured population at risk is unrelated to the exposure 

but causally related to the outcome (Fig. 1.1), because statistical noise will increase standard 

errors and thus increase the likelihood of false negative findings. Conversely, confounding 

by the unmeasured population at risk (Fig 1.2) will most likely increase the likelihood of 

false positive associations. Importantly, where outcomes reflect individuals’ places of 

residence rather than the location of the injury event—such as studies aggregating patients 

within residential ZIP codes based on hospital discharge data (Gruenewald and Remer, 

2006)—the residential population is the correct measure and no further adjustment is 

required.

2.2 Controlling for a Proxy

Another approach occasionally used to address the unknown denominator problem is adding 

controls to statistical models for proxy variables that are theoretically related to the size of 

the population exposed. For example, ecological studies commonly find positive 

associations between on-premise alcohol outlets (e.g. bars) and assault incidence (Campbell 

et al., 2009); however, alcohol outlets are commonly located in retail zones that attract 

additional temporary populations, thus the resident population is an inappropriate measure 

of the population at risk. Grubesic et al. (2013) attempted to address this problem in a cross-

sectional study of police-reported assaults within Philadelphia block groups by including 

statistical controls for other commercial outlets. This proxy measure accounted for retail 

activity that would inflate the population at risk within block groups.

Using theoretically relevant covariates to account for the unknown denominator problem is a 

straightforward approach because the requisite data are commonly available from archival 

sources and the parameter estimates for the covariates are often easy to interpret. One clear 

advantage is that it allows researchers to explicitly assess confounding (Fig. 1.2) and effect 

modification (Fig. 1.3). However, this approach assumes that changes in population across 
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space-time units are uniformly related to the control variables. Any residual variation can be 

conceptualized as measurement error, which implies that the adjusted parameter estimates 

may still be subject to residual confounding. In the case of alcohol outlets, some retail zones 

are more popular than others and attendance at retail zones varies seasonally, so the 

approach is unlikely to wholly account for variation in the population at risk.

2.3 Approximating the Population at Risk

A third approach is to approximate the size of the population at risk within space-time units 

(Jang et al., 2018; Nesoff et al., 2019). Available approaches include simulation (Løvås, 

1994), interpolation or extrapolation from available observations (Edwards et al., 2018; Xie 

et al., 2018), mathematical estimation based on one or more other factors (Cuthbert, 1994; 

Feehan and Salganik, 2016; Navin and Wheeler, 1969), and indirect standardization 

(Anselin, 2006; Elliott and Wartenberg, 2004). For instance, studies of motor vehicle crashes 

often denominate by the estimated number of vehicle miles travelled within space-time 

units. Public authorities typically develop these approximations using continuous 

observations of vehicle counts from carefully sampled roadway sections to extrapolate to 

larger space-time units (Garrett, 2014). Similarly, Mooney et al. (2016) used mathematical 

estimation of pedestrian activity for a cross-sectional study of pedestrian injury and roadway 

conditions at New York City intersections. Because pedestrian injury counts will be higher 

where there are more pedestrians, the authors estimated pedestrian volume across the city 

using a kernel density function based on theoretically relevant variables (residential 

population density, commercial zoning, public transit stops, and public transit ridership). 

The authors note that similar approximations of pedestrian volume have been validated 

against observed pedestrian counts (r = 0.62) (Purciel et al., 2009).

Approximations are a flexible approach to account for the population at risk. They allow 

researchers to incorporate multiple variables that are theoretically related to the population at 

risk without requiring precise or complete data for all such covariates within all space-time 

units. However, depending on the method used, approximations can be a time-consuming 

and computationally intensive to develop, and, importantly, approximations are not precise 

observations. An approximation that correlates with observed population counts at r = 0.7 

may be considered “validated”, but will explain only 49% of variance in the observed counts 

(Guilford, 1936). Further, when the population at risk is conceptualized as a confounder 

(Fig. 1.2) or effect modifier (Fig. 1.3) and is adjusted for in a regression model, 

measurement error in approximations of the population count will be affected by residual 

confounding. Knowledge of the reliability and validity of the approximation measure is 

critical because it allows for simulation and sensitivity analyses that can assess the extent of 

this problem.

2.4 Controlling by Study Design

Some studies address the unknown denominator problem through study design. The case-

crossover design (Maclure, 1991) is an efficient epidemiologic solution for studying rare, 

acute, conditions among individuals by comparing subjects at the time of the outcome to 

themselves at a different time. In ecological case-crossover studies, spatial units serve as 

their own controls (i.e. the same spatial unit at a different time). This design, and other 
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similar methods developed in the disciplines of economics and psychology (e.g. regression 

discontinuity; difference-in-difference) address the unknown denominator problem by 

comparing space-time units in which the population exposed is likely to vary only slightly 

(Ashenfelter and Card, 1985; Thistlethwaite and Campbell, 1960). For instance, Coren 

(1996) compared the incidence of motor vehicle crashes in Canada on Mondays immediately 

following daylight savings compared to control Mondays one week before and one week 

afterwards.

Using study designs to account for the unknown denominator problem is a strong approach 

that can be implemented simply, without the need for additional data to use as controls or to 

calibrate approximations (Branas et al., 2011). Despite this considerable strength, studies 

using design solutions may need to exclude many space-time units from the analytic sample, 

limiting statistical power. Coren (1996) excluded 362 days from each year. Including 

additional days (e.g. ± 2 Mondays from the case date) would increase the sample size but 

may introduce problems related to non-linear variation in the population at risk over time. 

Additionally, design solutions essentially match on the population at risk so it is not possible 

to assess confounding (Fig. 1.2) or effect modification (Fig. 1.3), which may be important 

aspects of building a causal narrative.

2.5 Measuring

In some circumstances, it is possible to solve the unknown denominator problem by making 

the denominator known. Complete population counts may be available from archival sources 

(e.g. stadium attendance records for a study of alcohol bans at football games; Spaite et al., 

1990). Alternatively, researchers can collect the data themselves, which is an approach best 

used when the population at risk can be observed unobtrusively and when the space-time 

units are few in number and are very small (Taylor et al., 2019). For example, bicycle traffic 

volume varies considerably over space (e.g. from street to street) and time (e.g. from hour to 

hour) (Liggett and Huff, 2016), and concerns related to unknown populations at risk are well 

documented in the bicycle safety literature (DiGioia et al., 2017; Strauss et al., 2013, 2015; 

Vanparijs et al., 2015). For a preliminary study of bicycle safety and roadway conditions, 

van der Horst et al. (2014) installed video cameras at two purposively selected bicycle path 

intersections in Amsterdam and Eindhoven, Netherlands, and coded 18 hours of film from 

both sites for traffic volume and near-misses between cyclists within 15-minute units.

Researchers make clear trade-offs when electing to measure the population exposed within 

space-time units. Notwithstanding problems related to measurement error, the approach 

wholly eliminates variation in the denominator as a source of bias, and allows researchers to 

consider the population at risk as a true denominator (Fig. 1.1), a confounder (Fig. 1.2), or 

an effect modifier (Fig 1.3). However, this prospective design is poorly suited to statistically 

rare events such as injury. van der Horst et al.’s (2014) solution was to use near-misses as a 

proxy for injury outcomes; others use events that lie on the causal path between the exposure 

and the outcome (Thompson et al., 2018). In either case, the outcome is an event other than 

the injury itself. Furthermore, a complete census covering the study universe is rarely 

feasible so a sample of space-time units is often necessary, but non-random samples can 

impede generalizability (Ebrahim and Davey Smith, 2013). van der Horst et al.’s (2014) 
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findings from just two sites are unlikely to generalize even to other sites within these Dutch 

cities.

3. SELECTING A SOLUTION

We identified five solutions to the unknown denominator problem that researchers have used 

to account for unknown denominators that arise due to mobility in spatial ecological studies 

of injury incidence: ignoring, controlling for a proxy, approximating the population count, 

controlling by study design, and measuring the population. Fig. 2 suggests an approach for 

selecting the best solution given the available data and the hypothesized associations 

between the population at risk and the exposure and outcome of interest. Conceptualized as 

a mediator, the population at risk should be ignored. Considered as an effect modifier, it 

should be handled as a controlled proxy, approximated, or directly measured variable. Other 

approaches mean the assessed associations between the exposure and the outcome reflect the 

weighted pooled effect across strata. Where the population at risk is thought to be a 

confounder, a design solution may also be appropriate but the extent of the possible 

confounding is not measurable. If considered simply to be a denominator, any approach is 

acceptable, but ignoring the problem is only acceptable if the space-time units are very large. 

Importantly, the population at risk can have multiple epidemiologic properties at once. 

Explicitly stating how this variable is conceptualized is critical for understanding the 

implications of each approach to addressing the unknown denominator problem and in 

interpreting analytical results. Finally, if none of the five available solutions to the unknown 

denominator problem are justifiable given the available data and the hypothesized 

relationships, the best approach is not to proceed with the research effort, lest the analyses 

yield biased estimates.

A further essential consideration is the impact of measurement error, which will also depend 

on how the population at risk is conceptualized in relation to the exposure and outcome 

variable (Fig. 1). If the population at risk is conceptualized as a denominator unrelated to the 

exposure and is used to estimate a rate or risk (Fig 1.1), random measurement error in the 

size of the population at risk (or simply ignoring it) will most likely induce bias to the null. 

If the population at risk is conceptualized as a confounder, the impact of measurement error 

will depend on whether this error is differential or non-differential in relation to the 

outcome. Non-differential error almost always attenuates associations towards null, but 

differential error can bias associations in either direction (Morgenstern, 1995). If the 

population at risk is conceptualized as an effect modifier and is explicitly analyzed as such, 

measurement error can cause the appearance of effect modification where none actually 

exists or can obscure true effect modification.

4. CASE EXAMPLE: RIDESHARING AND MOTOR VEHICLE CRASHES

To further illustrate the possible solutions to the unknown denominator problem and to 

demonstrate an application of the proposed decision tree, we now present a case example 

examining associations between ridesharing services (e.g., Uber, Lyft) and motor vehicle 

crashes. Previous studies emphasize that ridesharing is associated with fewer alcohol-

involved motor vehicle crashes in some municipalities (Brazil and Kirk, 2016; Dills and 
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Mulholland, 2018; Greenwood and Wattal, 2019; Morrison et al., 2018), perhaps because 

ridesharing replaces some drunk driver trips. However, rideshare services connect owner-

operator drivers with prospective passengers through a mobile application using continuous 

GPS, and distraction due to cell phones is associated with increased crash risks for drivers 

(Klauer et al., 2010; Harbluk et al., 2007) and pedestrians (Hamann et al., 2017; Stavrinos et 

al., 2011). Ridesharing may therefore increase motor vehicle crash incidence at trip origins 

(i.e. pick-up locations) and trip destinations (i.e. drop-off locations). We tested this 

hypothesis in a recent paper using rideshare trip and motor vehicle crash data for New York 

City (NYC), aggregated within small space-time areas ( Morrison et al.,2020 ). The 

unknown denominator problem was an important consideration for these analyses because 

overall vehicular traffic (the population at risk) will covary with rideshare trip volume and is 

causally related to crash incidence. Vehicular traffic volume can thus be conceptualized as a 

confounder. Our published analysis solved the problem using study design solution—

specifically, a case-crossover design—whereas here we report the results of statistical 

analyses that implement all five available solutions. We consider these results in light of the 

proposed decision tree, the hypothesis, and the available data.

4.1 Method

For a detailed explanation of the methods used for these analyses we refer the reader to our 

recent publication ( Morrison et al.,2020 ). Briefly, the NYC Taxi and Limousine 

Commission (2019) provided trip-level rideshare data, including the date, time, trip origin, 

and trip destination for all rideshare trips in the city. Origins and destinations are masked 

within NYC Taxi and Limousine Commission taxi zones (n = 258) to protect driver and 

passenger confidentiality. The New York Police Department provided data for motor vehicle 

crashes, including the date, time, count of injury victims (motorists, pedestrians, cyclists), 

and point location (latitude, longitude) for all crashes in which a person was injured and 

required medical treatment or there was > $1000 of property damage (National Highway 

Traffic Safety Administration, 2017). We aggregated rideshare trips and injury crashes for 

2017 and 2018 within the 258 taxi zones and 17,520 hours; creating a study universe of 

4,520,160 taxi zone-hours.

Fixed effects logistic regression models were specified with the space-time units of analysis 

as taxi zone i at hour t. The outcome Y was a dichotomous indicator for the presence or 

absence of an injury crash. We modelled the predicted probability (π) of observing outcome 

Y in unit t as:

ln
πit

1 − πit
= α + χ′itβ + μi + eit

where α was an overall constant term, μi were fixed effects for each taxi zone, and eit was an 

error term that captured residual variation. The term χit′  was a vector of exposure variables 

that included the exposure of interest (the count of rideshare trip origins) and other variables 

that accounted for the unknown denominator problem in different ways. Model 1 was an 

unadjusted analysis implemented on the full sample of taxi zone-hours that ignored the 

unknown denominator problem. Model 2 controlled for a proxy by including time varying 
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environmental conditions that will affect motor vehicle use (temperature, precipitation, 

holidays, school days, hour of day, day of week, month-year). Model 3 approximated overall 

motor vehicle traffic using taxi trip volume. Model 4 was the previously published case 

crossover analysis that controlled by study design. This approach only included “case” units 

(taxi zone-hours in which a crash occurred) and matched control units (the same taxi zone 

precisely 1 week earlier (−168 hours) and 1 week later (+168 hours)) selected with 

replacement (n = 245,148). Model 5 measured vehicular traffic using data from 14 

continuous count stations positioned at fixed sites around NYC. We included taxi zone-hours 

that contained a continuous count station data (n = 89,384).

The case-crossover design for Model 4 inherently accounted for spatial and temporal 

dependencies by omitting most units that were adjacent to one another in space and time. We 

additionally conditioned upon spatial location using a fixed effect for taxi zones because the 

panel was unbalanced (Greene, 2003) and used robust standard errors to account for nesting 

within taxi zones. For this demonstration, we used fixed effects for taxi zones and robust 

standard errors in all five models to ensure consistency and enable comparison of the 

parameter estimates. This approach is unlikely to fully account for spatial or temporal 

dependencies when using the full balanced panel of 4,520,160 taxi zone-hours, but the very 

large number of units meant it was prohibitively computationally intensive to add statistical 

controls (e.g. in an intrinsically conditional autoregressive [ICAR] model; Besag and 

Kooperberg, 1995). Therefore, we conducted a simple sensitivity analysis in which we 

added a spatial autoregressive term (ρWYt), where W is a weights matrix for taxi zones 

based on queen’s contiguity, such that WYt denotes the row standardized mean odds of 

injury crashes occurring per hour in adjacent taxi zones (Belotti et al., 2017). Parameter ρ 
was positive in all models except Model 4. The parameter estimate for the exposure of 

interest (rideshare trip counts) did not change materially in any of the five models, so we 

report results for the more parsimonious spatially unstructured models. Nevertheless, results 

for Models 1, 2, 3 and 5 should be interpreted with caution, due to the potential for false 

positive findings due to spatial and temporal dependencies. We also report the global 

Moran’s I for the mean of the residuals.

4.2 Results

There were 83,753 injury crashes that occurred in NYC in 2017–2018. There was a total of 

372,957,845 rideshare trips during that period, and on average, there were 81.3 rideshare 

trips per taxi-zone hour. Table 1 presents the results of the 5 conditional logistic regression 

models. In Model 1 (ignoring) each 100 additional rideshare trips was associated with 31% 

increased odds of observing an injury crash (e.g. Model 1: OR = 1.31; 95%CI: 1.30, 1.33). 

In Model 2 (controlling for a proxy) and Model 3 (approximating) 100 additional rideshare 

trips was associated with 17% increase in injury crash odds. In Model 4 (controlling by 

study design) the association of interest was further attenuated (OR = 1.05; 95%CI: 1.03, 

1.06). In Model 5 (measuring), the association moved very strongly away from null, 

indicating that 100 additional rideshare trips was associated with 39.7% increase in injury 

crash odds (OR = 1.40; 95%CI: 1.24, 1.57). Moran coefficients indicate moderate 

autocorrelation in Models 1, 2 and 3 (0.281 ≥ I ≥ 0.320) and weak autocorrelation in Model 
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4 (I = 0.162). Moran’s I was not calculated for Model 5 because the included spatial units 

were non-contiguous.

4.2 Interpretation

For this analysis, the population at risk can be conceptualized as a confounder. According to 

the decision tree in Fig. 2, we cannot ignore motor vehicle traffic, so we should next 

consider measuring vehicular traffic within taxi zone-hours. The continuous count stations 

are a valuable archival source, but variation in traffic volume counts per hour at a single 

point is unlikely to fully capture variation in traffic volume across the extent of a taxi zone-

hour. The decision tree suggests a study design solution is the next best approach to account 

for confounding by the population at risk. This is a practicable solution for these data. There 

is a sufficiently large number of crashes, rideshare trips, and space-time units to implement a 

case-crossover design comparing rideshare trips at taxi zone-hours in which an injury crash 

occurred to the same taxi zone ± 168 hours. Controlling for a proxy and approximating the 

population at risk may also be acceptable solutions, but they may be subject to residual 

confounding.

Results of the five statistical models support the suggestions from the decision tree. The 

association between rideshare trips and injury crashes estimated in Model 1 (ignoring) is 

very likely biased away from null. The estimates for Model 2 (controlling for a proxy) and 

Model 3 (approximating the population count) are attenuated compared to Model 1, 

suggesting they account for some confounding. However, the estimates for Model 4 

(controlling by study design) are further attenuated, indicating that the results for Models 2 

and 3 fail to capture some variation in the population at risk. Finally, the estimates for Model 

5 (measuring the population) are the furthest from null from among all 5 models. Measuring 

vehicular traffic flow at a single point appears to capture very little variation in the 

population at risk across taxi zone-hours, and the smaller sample size yields very wide 

standard errors. Thus, parameter estimates for ridesharing for Model 4 are most heavily 

attenuated and this solution likely accounts for confounding by vehicular traffic flow better 

than the other available methods,

Importantly, it is unclear whether a study design solution fully addresses the unknown 

denominator problem in this case example. We lack a gold standard against which to 

validate these results because full observations of vehicular traffic are not available for the 

full universe of space-time units. Therefore, although we can assert that a study design 

solution is the best of the five available solutions for this particular research question; we do 

not know for certain that the parameter estimates from Model 4 are unbiased.

5. CONCLUSIONS

This paper presents five possible solutions available to researchers to address the unknown 

denominator problem and a decision tree to assist researchers to select the best approach 

given the available data. We focused specifically on unknown denominators that arise in 

spatial ecological studies due to geographic mobility. There are other reasons why 

denominators might be unknown, and there are many other solutions to denominator 

problems that are not relevant to the current review (e.g. Kreif et al., 2016). For example, 
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denominator problems occur when the population at risk is an unknown subset of the 

resident population, and indirect standardization—which involves the calculation of adjusted 

rate ratios comparing incidence in the known population to the incidence in a reference 

population (Anselin, 2006; Elliott and Wartenberg, 2004)—is a possible solution in such 

circumstances. Chan et al. (2012) related falls among elderly people to social environmental 

conditions in Canadian census units, while accounting for the expected incidence given the 

age and sex distribution of each unit. Identifying and evaluating such methods to address 

other facets of the unknown denominator problem is an important area for future research.

The unknown denominator problem is frequently an issue for population-level studies of 

disease frequency. We argue that the relative merits of each approach can be best understood 

when investigators first articulate the effects of the population at risk within an 

epidemiological framework. When the causal role of this variable is clearly presented, the 

results of analyzes that utilize one (or more) of these approaches can be rigorously 

interpreted.
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Figure 1. 
Directed acyclical graphs describing theoretical causal links between an exposure of interest 

(E), an outcome of interest (D), and the population at risk (P).
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Figure 2. 
Decision tree for determining the best solution to the unknown denominator problem based 

on available data and hypothesized relationships between the exposure, the population at 

risk, and the outcome.
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Figure 3. 
Mean rideshare trip origins per hour for New York City taxi zones (n=261), 2017–2018.
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Table 1.

Logistic regression models for the odds of observing an injury crash within taxi zone-hours.

Model 1: Ignore Model 2: Control* Model 3: 
Approximate*

Model 4: Design Model 5: Measure*

(n=4,520,160) (n=4,520,160) (n=4,520,160) (n=245,148) (n=89,384)

OR 95% CI OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Rideshare trips (per 100 
increase)

1.315 (1.306, 
1.325)

1.169 (1.156, 
1.181)

1.174 (1.159, 
1.189)

1.046 (1.032, 
1.060)

1.397 (1.241, 
1.574)

Temperature (per 10 
degree increase)

0.880 (0.845, 
0.916)

1.057 (1.048, 
1.065)

1.010 (1.006, 
1.015)

1.069 (1.017, 
1.123)

Precipitation (per 0.1 
inch increase)

0.884 (0.857, 
0.913)

1.110 (1.092, 
1.128)

1.155 (1.121, 
1.190)

1.044 (0.896, 
1.217)

Any holiday 1.057 (1.048, 
1.065)

0.879 (0.845, 
0.916)

0.872 (0.833, 
0.913)

0.776 (0.596, 
1.011)

School not in session, 
not holiday

1.110 (1.092, 
1.128)

0.884 (0.856, 
0.913)

0.933 (0.900, 
0.967)

0.882 (0.734, 
1.060)

Taxi trips (per 100 
increase)

0.991 (0.975, 
1.007)

0.994 (0.977, 
1.011)

0.639 (0.530, 
0.771)

Traffic volume count 
(per 1,000 increase)

1.008 (0.979, 
1.038)

Local Moran’s I (mean 
of residuals per taxi 
zone)

0.281 0.320 0.317 0.162 n/a

*
Model includes fixed effects for hour of day, day of week, and month-year (parameter estimates suppressed)
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