Skip to main content
. 2020 Nov 4;7(1):94. doi: 10.1186/s40537-020-00369-8

Table 2.

Machine learning

Title CatBoost: unbiased boosting with categorical features
Description Paper introducing CatBoost algorithm
Performance metric logloss, zero-one loss
Winner CatBoost
Reference [2]
Title Benchmarking and optimization of gradient boosting decision tree algorithms
Description Compare CatBoost, LightGBM, and XGBoost run on GPU’s, using four benchmark tasks
Performance metric AUC ROC and Normalized discounted cumulative gain (NDCG)
Winner CatBoost wins AUC for Epsilon DataSet, LightGBM wins AUC for the Higgs dataset, XGBoost wins (NDCG) for Microsoft and Yahoo Datasets
Reference [8]