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Abstract

Retrieval of everyday experiences is fundamental for informing our future decisions. The fine-

grained neurophysiological mechanisms that support such memory retrieval are largely unknown. 

We studied participants who first experienced, without repetition, unique multi-component 40-80 s 

episodes. One day later, they engaged in cued retrieval of these episodes whilst undergoing 

magnetoencephalography. By decoding individual episode elements, we found that trial-by-trial 

successful retrieval was supported by sequential replay of episode elements, with a temporal 

compression factor >60. The direction of replay supporting this retrieval, either backward or 

forward, depended on whether a participant’s goal was to retrieve elements of an episode that 

followed or preceded a retrieval cue, respectively. This sequential replay was weaker in very high 

performing participants, where instead we found evidence for simultaneous clustered reactivation. 

Our results demonstrate that memory-mediated decisions are supported by a rapid replay 

mechanism that can flexibly shift in direction in response to task goals.

Introduction

Although a subject of intense study, the fine-grained mechanisms underlying how we 

retrieve episodes of experience are unknown (1). Understanding the supporting 

neurophysiological processes can reveal how episodes are represented in memory, and how 

they are subsequently retrieved to guide behavior (2, 3). Here we investigate whether 

extended episodes of experience are represented in a way that yields compressed sequential 
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replay at retrieval, whether such replay supports successful retrieval, and whether the 

directionality of replay is flexibly tuned by internal goals.

Observations from animal studies have identified offline reactivation of sequences of 

hippocampal place cells that reflect past and future trajectories, thought to support memory 

consolidation, retrieval, and planning (4–6). Recently, animal studies have established a 

relationship between such replay strength and successful performance on spatial navigation 

tasks (4, 5). It has also been speculated that compressed replay might support episodic 

memory retrieval in humans (7).

Human neuroimaging studies provide evidence for rapid cue-elicited reactivation of stimulus 

associations at retrieval (8–17) including overlapping replay of episode elements (18). A 

limitation of these studies is their inability to probe mechanisms supporting structured and 

temporally compressed reactivation, i.e. replay that proceeds at a rate faster than the original 

experience. An advance in human neuroimaging research has been a recent identification of 

rapid sequential replay of internal state representations (19, 20). Here, we leverage these 

same methods to ask whether sequential replay supports memory based decisions in humans.

We tested a hypothesis that episodic memory retrieval depends on rapid compressed replay 

of memory elements. Previous research demonstrating replay, which did not link replay to 

behavior, identified a short 40-50 ms lag between states (elements of a sequence) either 

during tasks involving lengthy planning periods or during undemanding rest periods (19, 

20). Under similar conditions in rodents replay is known to preferentially occur during brief 

high-frequency sharp-wave ripple (SWR) events in the hippocampus (21-23). In contrast, 

theta-related sequence events are observed during active navigation and decision making 

(21, 22, 24, 25). The latter led us to expect that, during active memory retrieval, performance 

would be supported by replay events with a different and potentially longer lag between 

states.

Replay direction, forward or backward, is not always associated with particular task features 

in rodent research, though some studies show it is influenced by conditions such as active 

movement and reward receipt (20, 26, 27), potentially serving different computational 

functions (28). Recent MEG studies in humans have found reverse direction replay (19), or 

both forward and reverse replay (20). Based on these observations we expected that replay 

direction would change flexibly based on internal states or task demands. In relation to our 

study design, we predicted replay would switch direction depending on whether the current 

goal was to retrieve memory components that followed a cued element, compared to having 

to retrieve memory components that preceded a cued element. In humans, replay onset has 

been associated with high-frequency power increases in the medial temporal lobe (MTL) 

(MTL) (20), and while we did not necessarily expect similar high-frequency changes, we 

nevertheless expected that the onset of memory replay events, irrespective of directionality, 

would be coupled to increased power in the medial temporal lobe (MTL).

Further, we reasoned that the strength of encoding, as reflected in better memory 

performance, would relate to enhanced memory consolidation (1, 7). Greater experience is 

associated with less marked replay in rodents (25, 29), and this predicts a less dominant 
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expression of replay in participants who show near-ceiling memory performance. In these 

participants, theoretical proposals suggest a form of clustered pattern completion for episode 

elements (9, 30, 31). Importantly, this predicts that, within participants, trial-by-trial 

sequenceness strength should relate positively to trial-by-trial retrieval success. At the same 

time, if very high performing participants do not rely to the same degree on a replay 

mechanism for retrieval, then across participants this entails that mean sequenceness 

strength could be negatively related to mean memory performance.

We designed a novel episodic memory task and combined this with our recently-developed 

MEG analytic methods (19, 20). In brief, on day 1 participants experienced temporally 

extended self-oriented episodes, where each single-exposure episode was itself composed of 

five discrete and unique picture stimuli that were assembled into a narrative story (Fig. 1a; 

Extended Data Fig. 1 and Supplementary Table 1). Following an overnight consolidation 

period, we then elicited cued retrieval of these episodes whilst obtaining MEG data to index 

fast neural dynamics supporting retrieval (Fig. 1b).

Results

As a first step we confirmed we could reliably identify neural patterns associated with 

individual episode elements, each drawn from one of six different stimulus categories. Note 

that the final element of each episode was not taken from a decoded category. A classifier 

trained on the localizer phase showed successful discrimination of the categories that made 

up the episodes with peak decoding at 200 ms after stimulus onset (Fig. 1d-e; Extended Data 

Fig. 2-3), in line with previous reports (19, 20). In an exploratory low-powered analysis of 

single stimuli, we found that these categories were also evident as clusters of similarity in 

trained sensor weights (Extended Data Fig. 2). The trained classifier generalized to the 

memory retrieval phase, showing significant across-phase classification of cue category 

(peaking at 210 ms after the cue; compared to chance at 200 ± 10 ms (the peak timepoint in 

localizer phase), one-sample two-sided t-test t(24) = 9.80, p < 0.001; Fig. 1f).

To test specific predictions of a replay mechanism underlying episodic retrieval, we next 

sought evidence for compressed sequential reactivation of episode elements during the 

retrieval period. In this analysis, we first derived measures of category evidence – 

representing reactivation of memory elements – at each timepoint by applying the trained 

classifiers to retrieval period MEG data. We then tested for lagged cross-correlations 

between episode element reactivations across the retrieval period, yielding a measure of 

‘sequenceness’ in both forward and backward directions (19, 20) (Extended Data Fig. 4; 

Methods). Following an approach used in previous reports, to identify time lags showing 

potential sequenceness and examine a relationship to individual differences in memory 

performance, we tested for a difference between forward and reverse direction components 

(19, 20). Our initial analyses focused on memory retrieval in the after condition. Here 

participants are asked to identify whether a probe element came sequentially after the cue 

element, a condition we considered would be easier and more naturalistic than the before 
condition.

Wimmer et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



For the individual differences analysis, we identified a state-to-state time lag of interest by 

focusing on correct trials, where we expected stronger sequenceness. In the after condition, 

we identified an overall dominance of reverse replay (backwards > forwards sequenceness) 

during correct trials, peaking between 100-120 ms (Fig. 2a). The peak lag at 110 ms 

exceeded the across-lag maximum of a between-subject signflip permutation test. To provide 

an initial test of an association between replay and episodic retrieval, we examined the 

relationship between replay strength in correct trials and mean memory performance in the 

after condition (Fig. 1c). We found that differential sequenceness correlated with mean 

memory performance (100-120 ms lag; two-sided Pearson’s r = 0.4254, p = 0.034; Fig. 2b). 

We examined the strength of these correlations using a permutation approach, based on 

shuffling the correct and incorrect trial labels (see Methods; Extended Data Fig. 5). The 

strength of the correlation fell below the permutation-derived adjusted 5% threshold (p = 

0.0399, versus the observed p = 0.0340).

As sequenceness was on average negative – showing predominantly a reverse direction of 

replay – this suggests that stronger reverse replay is a characteristic of individuals with 

weaker performance. Notably, this relationship between replay and memory strength is in 

line with the findings in rodents showing stronger sequenceness during initial acquisition 

compared to later high performance (25, 29). Of interest, this time window for rapid online 

retrieval represents a longer state-to-state time lag than the 40-50 ms lag found in other 

experiments reporting replay during extended planning or rest (19, 20). As in rodents, these 

fast resting replay events (with 40-50 ms state-to-state time lag) have been associated with 

sharp-wave ripples in humans (20). However, rodents also show sequence events during 

ongoing behaviour that are associated with ongoing hippocampal theta rhythms (24, 25), 

though heretofore such online sequence events have not yet been identified in humans.

As an initial test of our prediction that internal goals – whether looking forward or backward 

in time through an experience – are important for retrieval and replay, we examined whether 

the relationship between replay and individual differences in performance changed from the 

after compared to the before condition. If task goal affected replay, we would expect 

stronger forward sequenceness to be related to weaker performance. Indeed, in the before 

condition we found the degree of dominantly forward sequenceness correlated negatively 

with mean memory performance (100-120 ms lag; two-sided Pearson’s r = -0.4077; p = 

0.0431; Fig. 2c). The strength of the correlation fell below the permutation-derived adjusted 

5 % threshold (0.0507, versus the observed p = 0.0431).

Comparing the after and before results, we found that the correlation between sequenceness 

and performance in the after condition differed significantly from that in the before 

condition (z = 2.411; p = 0.0159; two-tailed, conservatively using the test for dependent 

correlations). In permutation tests, the probability of finding such a large difference in 

correlation values (Pearson’s r > 0.8) was 0.0076, suggesting a strong effect. This provides 

initial support for our prediction that retrieval orientation influences the characteristics of 

replay that support behaviour. Importantly, the results in the after and before conditions both 

indicated that replay was stronger in participants with lower overall performance, with 

replay playing a lesser role in retrieval for participants with near-ceiling levels of 

Wimmer et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



performance. However, these results do not indicate per se whether sequenceness is 

positively or negatively related to trial-by-trial retrieval success.

We found no across-participant relationship between mean sequenceness and behavior in the 

shorter 40-50 ms state-to-state time lag as identified in previous studies (Extended Data Fig. 

6). In control analyses that examined evidence for sequences of episode elements present in 

any of the other 7 episodes (but not present in the current episode), we found a numerically 

negative sequenceness effect at 40-50 ms as well as a peak at 190-210 ms but again found no 

relationship to memory performance (Extended Data Fig. 6).

Memory retrieval and forward and backward sequenceness

We next exploited analytic techniques that simultaneously examined the influence of 

forward and backward sequenceness on memory performance. First, we examined the 

relationship between sequenceness and individual differences in performance. This 

confirmed the above results, namely that weaker memory performance related to stronger 

reverse replay in the after condition, and to stronger forward replay in the before condition 

(Extended Data Fig. 5).

To examine whether trial-by-trial forward and reverse sequenceness related positively or 

negatively to retrieval success, we utilized multi-level regression analyses. These analyses 

include more than a hundred datapoints per participant and are thus the most highly powered 

analyses in the current experiment. For these analyses we excluded very high performing 

participants, as they have too few incorrect trials to support reliable estimates. We first 

independently localized a time lag of interest using a leave-one-participant-out cross-

validation procedure, which again identified a peak time lag of 110 ms in all participants 

except one very high performing participant (who showed a lag of 170 ms); thus, we used a 

110 ± 10 ms lag for all regular performance participants with sufficient incorrect trials for 

analysis.

In the after condition, we found that reverse sequenceness from 100-120 ms related 

positively to trial-by-trial retrieval success (multi-level regression in n = 17 participants with 

sufficient incorrect trials; forward β = -0.1336 [-0.299 -0.020]; z = -1.714; p = 0.0920; 

reverse β 0.1881 [0.042 0.338]; z = 2.416; p = 0.0176; two-sided p-values determined via 

bootstrapping; Fig. 3a). The backward sequenceness relationship with retrieval also passed a 

permutation-derived adjusted 5% threshold (0.0335 versus the observed p = 0.0176). An 

example of a reverse sequence in the after condition for a single participant is shown in Fig. 

3c (see also Supplementary Figure 1).

By contrast, in the before condition forward, but not reverse, sequenceness related positively 

to accuracy (multi-level regression in n = 18 participants with sufficient incorrect trials; 

forward β = 0.160 [0.014 0.305]; z = 2.202; p = 0.0264; reverse β = -0.0564 [-0.207 0.091]; 

z = -0.763; p = 0.470; two-sided p-values determined via bootstrapping; Fig. 3a). The 

forward sequenceness relationship with retrieval also passed a permutation-derived adjusted 

5% threshold (0.0602 versus the observed p = 0.0264). An example of a forward sequence in 

the before condition for a single participant is shown in Fig. 3d (see also Supplementary 

Figure 2). In permutation tests, the probability of a significant positive relationship between 
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memory and sequenceness in the after and before manipulations that differed in direction 

across conditions, was 0.0016. Importantly, we found a significant interaction between both 

forward and reverse replay and the after versus before goal condition (condition by forward 

replay β = -0.1608 [-0.271 -0.049]; z = -2.865; p = 0.0032; condition by reverse replay β = 

0.1408 [0.029 0.250]; z = 2.499; p = 0.0096; two-sided p-values determined via 

bootstrapping; Fig. 3b; n = 15 participants with sufficient incorrect trials in both the after 

and before conditions).

In the after and before conditions, the forward or reverse direction of sequenceness that 

related to trial-by-trial retrieval success was the same as the direction identified in the 

individual difference analyses. The same relationships between sequenceness and retrieval 

success were also found in models where we included all participants (Supplementary Table 

2). We also found some evidence that engagement of replay in a different direction may 

impair retrieval success. Specifically, greater forward replay – associated with retrieval 

success in the before condition – was numerically negatively associated with retrieval 

success in the after condition (Supplementary Table 2).

As in the individual differences analyses, in the trial-by-trial analyses we did not find any 

relationship between the sequenceness measure derived from the alternative 7 episodes 

(‘other episode’ sequenceness) and retrieval success at a 40-50 ms lag or the lag determined 

by the leave-one-subject out procedure (Extended Data Fig. 7; Supplementary Tables 3-4), 

while sequenceness derived from the current episode transitions remained significant. 

Additionally, we found that for backward sequenceness in the after condition and forward 

sequenceness in the before condition, current episode sequenceness had a significantly 

stronger relationship to successful retrieval than to other episode sequenceness (after β = 

0.200 [0.053 0.349]; z = 2.688; p = 0.003 (one-sided p-values determined via 

bootstrapping); before β = 0.140 [0.003 0.280]; z = 2.009; p = 0.022 (one-sided); Extended 

Data Fig. 7; Supplementary Tables 3-4).

It is possible that the underlying representations of episodes may change across the many 

cued retrieval events, despite the original episodes not being actually reexperienced. To 

investigate this possibility, and in particular whether our results were driven by effects that 

appear after extensive practice, we examined whether the sequenceness-accuracy 

relationship changed over the course of the retrieval task. We found, if anything, a tendency 

for a numerical decrease in the sequenceness-accuracy relationship over the course of the 

experiment, and this was true for both the after and before conditions (Supplementary Table 

2). Participants may have also developed strategies to sequentially reactivate items in 

different orders with respect to the after and before conditions. We found no evidence for 

this in participant self-reports (Supplementary Table 5). However, as participants 

experienced a small number of test questions on the day before scanning, we cannot rule out 

changes in memory retrieval behavior due to initial test experience.

The relationship between sequenceness and successful memory retrieval in both the after 

and before conditions provides a clear link between sequenceness and behavior. While the 

initial individual differences analyses found relatively stronger sequenceness in regular 

performing participants, these trial-by-trial results demonstrate that within regular 
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performance participants, sequenceness strength was positively related to retrieval success. 

Incorporating the results of the individual difference analyses and the trial-by-trial analyses, 

we establish a double dissociation between replay direction and a participant’s internal goal 

condition during retrieval.

Beamforming and time-frequency analyses

Inspired by neurophysiological studies showing that the hippocampus is a source for replay 

events, we next examined whether replay event onset related to power increases within the 

medial temporal lobe (20). Candidate replay onsets were identified by locating sequential 

reactivation events showing a 110 ms lag, applying a stringent threshold to these events, and 

using beamforming analysis to localize broadband 1-45 Hz power changes related to replay 

event onsets. For reverse replay events (in the after condition) and for forward replay events 

(in the before condition), this analysis localized activity at replay onset to a region of right 

anterior MTL, encompassing the hippocampus and entorhinal cortex (after: z = 3.72, p 

<0.001 whole-brain FWE; before: z = 3.73, p < 0.001 whole-brain FWE; Fig. 4a-b; 

Supplementary Table 6), consistent with human fMRI results during rest in a cognitive 

paradigm (32). The increase in MTL power was selective to replay onset, with an additional 

secondary peak in the after condition 1 lag later at 110 ms (Extended Data Fig. 8). In the 

after condition, replay onset also related to activity in two significant clusters in the occipital 

and parietal cortex (Extended Data Fig. 8; Supplementary Table 6). Finally, in the after 

condition we found evidence for stronger power immediately preceding replay onset in the 

left anterior MTL in participants with lower performance (z = 3.82, p = 0.003 whole-brain 

FWE; Extended Data Fig. 8).

Replay onset was associated with broadband power increases from approximately 8 Hz up to 

45 Hz in across the after and before conditions (Fig. 4c and Extended Data Fig. 9). In the 

frequency range of our element-to-element lag (8-12 Hz, approximately human alpha), we 

found an increase in power at replay onset (one-sample two-sided t-test t(24) = 4.267 [0.003 

0.008], p < 0.001). However, in additional analyses we found no significant evidence for 

power increases in the high gamma frequency range that have been associated with replay 

events during rest (events that may be related to sharp-wave-ripple events; 120-150 Hz; one-

sample two-sided t-test t(24) = 1.150 [-0.001 0.005], p = 0.262) (20) (Fig. 4d and Extended 

Data Fig. 9).

Retrieval and non-sequential patterns of activity

Finally, as very high performing participants did not show any relationship between replay 

and performance, we examined the hypothesis that retrieval for strongly encoded memories 

is based on clustered pattern completion. Across all participants, with a rapid appearance 

following cue onset, we found significant evidence for reactivation of within-episode 

elements compared to other-episode elements, none of which were displayed on the screen 

(average across timepoints showing the strongest classification of on-screen cues, 210 ±10 

ms post-cue, one-sample two-sided t-test t(24) = 3.978, p < 0.001; Fig. 5a). A cue-triggered 

reactivation example from a single participant is shown in Fig. 5b.
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To examine the relationship between the cue-evoked reactivation effect and memory in very 

high performance participants, instead of a contrast of correct versus incorrect trials, we 

used a measure of mean performance for the episode cued on the current trial (a graded 

measure from 0 to 1). The cue-evoked reactivation difference between within-and other-

episode elements was averaged across the 200-250 ms peak difference of current versus 

other episode elements. Differential reactivation positively related to performance on a given 

episode in very high performing participants (n = 10 participants; multi-level regression β = 

0.0795 [0.0321 0.1250]; t = 3.442; p = 0.0008; Fig. 5c), an effect stronger in high compared 

to regular performance participants (regular participants, β = -0.0440 [-0.1387 0.0512]; t = 

-0.918; p = 0.3568; difference β = 0.1250 [0.0058 0.2442]; t = 2.035; p = 0.0376; Fig. 5c). 

In a follow-up analysis, we found that the effect in very high performance participants 

related positively to evidence for within-episode elements (p < 0.04) and related negatively 

to evidence for other-episode elements (p < 0.06); neither measure related to accuracy in the 

regular performing participants (p-values > 0.29).

Additionally, although based on a very low number of trials, in very high performing 

participants we found that correct trials related to higher cue-evoked reactivation as 

compared to incorrect trials (β = 2.497 [0.401 4.444]; t = 2.409; p = 0.024; Extended Data 

Fig. 10). We found no significant relationship between cue-evoked responses and accuracy 

in regular performance participants (regular β = 0.6291 [-0.3483 1.6681]; t = 1.281; p = 

0.2072; difference β = 1.872 [-0.052 4.385]; t = 1.633; p = 0.116). Importantly, in regular 

performing participants, the trial-by-trial relationship between sequenceness and accuracy in 

both the after and before conditions remained significant when including cue-evoked 

reactivation in the same model while the cue-evoked reactivation measure was not 

significant (Extended Data Fig. 10; Supplementary Table 7).

In additional control analyses, we examined the relationship between memory and responses 

to the cued category itself as well as overall classifier strength throughout the remainder of 

the retrieval period. First, responses to the cued element on the screen did not relate to mean 

episode performance or accuracy across conditions (from 200-250 ms; two-sided multi-level 

regression p-values > 0.13). However, in regular performing participants in the after 

condition (where all cues are decodable) a positive relationship was evident between 

accuracy and cue responses (two-sided multi-level regression p = 0.0016; Extended Data 

Fig. 10; Supplementary Table 7). Importantly, however, the relationship between backward 

sequenceness and memory remained significant in a model that included cued category 

responses, suggesting potential independent mechanisms contributing to performance. We 

found no relationship between responses to the cued category and forward or backward 

sequenceness itself in either the after or before conditions (two-sided multi-level regression 

p-values > 0.42).

In the post-cue retrieval period (following the initial 200-250 ms cue-evoked response 

period), we found no relationship between successful retrieval and classifier evidence for the 

on-screen cue stimulus, the within-episode categories, or the other episode categories (on 

average across the remaining 250 – 3670 ms time window, twosided multi-level regression 

p-values > 0.19). The classifier results also did not show differential evidence for the fading 

visual cue: we found no overall difference in classifier evidence between the cued on-screen 
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stimulus, the within-episode categories, and other episode categories (one-sample two-sided 

t-test p-values > 0.83). Although we found no evidence for the presented stimulus category 

later in the retrieval period, it is possible that phase differences evoked by the visual stimulus 

could persist and relate to sequenceness. In control analyses, we found no differences in 

power spectral density or phase between the presented category and other categories in 

frequencies from 2 to 20 Hz. Finally, in an exploratory analysis of simultaneous (zero-lag) 

reactivation of different categories, while we could identify putative simultaneous 

reactivation events during the retrieval period, we found no relationship between these 

events and performance in regular performance participants (Extended Data Fig. 10), 

supporting the importance of sequential reactivation for successful episodic memory 

retrieval.

Discussion

During episodic memory retrieval in humans, we show that a rapid sequential replay of 

episode elements relates to differences in memory performance. Our primary finding is a 

demonstration that stronger trial-by-trial sequenceness relates to retrieval success across 

conditions. Across-participants, we found that regular performance participants exhibited 

stronger sequenceness than high performance participants. As illustrated in the memory 

retrieval schematic (Fig. 5d), these results are complementary and a seeming contradiction is 

a reflection of Simpson’s paradox (33). Given the dominance of replay in regular performing 

participants, replay may play a functional role in “piecing together” individual retrieved 

elements. Intriguingly, we find that replay proceeds in the opposite direction to what might 

be expected: replay flows from distal episode elements to the proximal cued element (34). 

These findings demonstrate a flexibility in replay directionality that goes beyond previously 

reported effects of external events such as reward receipt (20, 27). While the results of 

individual analyses alone are not statistically overwhelming, when combined with our other 

analyses they are consistent with an important role for replay in online memory retrieval, 

with an element-to-element lag of 100-120 ms, establishing a novel connection between 

replay and ongoing behaviour in humans that has only recently been demonstrated in animal 

research (4, 5, 29).

Replay events spanned a temporal horizon of seconds during retrieval, in contrast to a single 

instance of clustered pattern completion (9, 30). The latter pattern characterised very high 

performing participants alone, where cue-evoked reactivation closely resembled pattern 

completion. We cannot exclude a possibility that an absence of sequential replay in very 

high performing participants might reflect a difficulty in detection, perhaps due to a sparse 

distribution or rapid decay of replay event frequency. Similarly, our results could be biased 

towards detecting stronger sequenceness in regular performing participants, who exhibit a 

stronger engagement of retrieval processes, which in turn could provide greater evidence for 

classification of sequential activation. Alternatively, when episodes are strongly encoded 

during an experience itself, different representations might begin to form, where retrieved 

order information is no longer represented by sequential replay but instead by the clustered 

reactivation pattern we observed. A potentially related finding of a decreasing expression of 

replay with increasing experience has been reported in rodents (25, 29). Here we speculate 

that in high performing participants, episodes are more strongly encoded and potentially 
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enhanced by spontaneous reactivation and replay during post-learning rest and sleep (6, 35–

38), and these representations may be differentially supported by cortical systems (30, 31, 

39).

Replay in the current experiment showed an element-to-element lag of approximately 110 

ms, representing a temporal compression factor of 60 to 150. This compression is in line 

with, or exceeds, the degree reported in offline place cell sequences in rodents (40, 41). 

Previous MEG research examining replay in humans report a shorter 40-50 ms lag between 

replayed elements for very well-learned sequences (19, 20). These studies allowed for tens 

of seconds of planning or involved acquisition over minutes of rest; further, replay during 

rest was related to putative SWR events (20). This contrasts with our current experiment 

where there was a requirement for relatively rapid ‘online’ decisions.

These different effects, influenced by task demands, parallel well-established results in 

animals. Thus, theta-related sequence events are found predominantly during active 

navigation, while replay events during high-frequency SWRs are found during rest and sleep 

(21-25). Based on a close association between animal and human replay during putative 

SWR events, as demonstrated recently (20), and the important distinction between the 

previous results pertaining to rest and current results that reflect active behavior, it is 

instructive to speculate on connections between our current findings and an expression of 

sequenceness observed in rodents, specifically that which relates to theta sequences. 

However, any suggested connection needs to be tempered by substantial differences between 

animal spatial navigation and human episodic memory, which itself can manifest in multiple 

forms. More extensive research is needed to fully explore any potential connection.

Episodic memory experimental designs utilizing actual extended sequences of experiences 

as episodes, instead of a more traditional use of multiple different static images or words, 

trade off benefits of increased ecological validity against a potential disadvantage of 

necessitating repeated testing of episodes. The use of repeated probes of episodes is often 

necessary when using decoding approaches, where well-powered analyses require data from 

many retrieval trials. In some cases, experiments include reexposures to the original episodes 

(18). As in real-life experiences outside of the lab, memory episodes in our experiment were 

experienced only a single time at encoding. Repeated testing on the other hand may alter the 

underlying memory trace or lead to increasing reliance on retrieval strategies, and we 

acknowledge this as an important caveat to studies of this type. Importantly, we found no 

change in the positive trial-bytrial sequenceness-memory relationship over the course of the 

experiment. Another limitation to note is that our experiment utilized category-level 

decoding, with episodeunique exemplars. It will be necessary in future research to confirm 

that these results hold when decoding individual stimuli and we acknowledge an important 

goal for future studies will be to replicate the full pattern of findings.

Individual episodes of experience are important building blocks for creating a representation 

of the structure of the world (2). Episodic representations that support replay are likely to be 

important for how we successfully navigate spatial, social, and abstract environments (3, 6, 

42–44). In turn, memory closely interacts with decision making (e.g. 10, 45, 46). The ability 

to reactivate episodes in a highly compressed manner provides a novel mechanism for very 
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rapid retrieval and replay of previous experiences during choice (15, 47, 48), and our 

findings can motivate new directions of research into the relationships between memory 

encoding, consolidation and decision making. Further, the flexible direction of episodic 

retrieval replay events that we identify may affect choice dynamics. We speculate that 

sequential replay flexibility and strength might serve as markers for an impaired associative 

binding between memory elements caused by negative emotional events. Impaired, or 

pathologically disturbed, memory organization has a strong negative impact on well-being 

and behaviour, and future human research into memory replay might also provide novel 

insights into memory disturbances seen in psychiatric disorders such as post-traumatic stress 

disorder and schizophrenia (49, 50).

Methods

Twenty-eight healthy volunteers participated and completed both sessions of the experiment. 

Participants were recruited from the UCL Institute of Cognitive Neuroscience Subject 

Database. Data from three participants were excluded due to poor memory performance 

(described below) leaving data from 25 participants for analyses (14 female; mean age 24 

(range 18-32). No statistical methods were used to pre-determine sample sizes but our 

sample size meets or exceeds those reported in previous related publications (12, 19, 20). 

Participants were required to meet the following criteria: age between 18-35, fluent English 

speaker, normal or corrected-to-normal vision, without current neurological or psychiatric 

disorders, no non-removable metal, and no participation in an MRI scan in the two days 

preceding the MEG session. The study was approved by the University College London 

Research Ethics Committee (Approval ID Number: 9929/002). All participants provided 

written informed consent before the experiment. Participants were paid for their time, for 

memory performance (up to £10 based on percent correct performance above chance), in 

addition to a bonus for localizer phase target detection performance (up to £2).

Participants were excluded from analysis if two of the following three criteria were met: (1) 

accuracy below 50 % on the cued retrieval task on the second day, (2) accuracy below 50 % 

in the episode component re-ordering task on the second day, and (3) indication on the post-

experiment questionnaire that the participant had mentally reordered the episodes from their 

original day 1 order. As the MEG analyses tested for reactivation of sequences of episode 

elements based on the original order, relatively poor memory for the order of episode 

elements (in the post-test) and/or a report of re-ordering the episodes (in the post-

questionnaire) were part of the exclusion criteria. As noted above, 3 participants from the 

initial 28 were excluded based on these criteria. In the current sample, no participants were 

excluded based on MEG decoding performance, specifically, the classification of the 6 

categories in the MEG localizer phase data.

Experimental Task

We designed our memory experiment to investigate the neural processes supporting retrieval 

of episodic experiences where the original episodes were only experienced once, similar to 

many experiences outside the lab; this is in explicit contrast to paradigms with many 

repetitions of the same (sequence of) stimuli. Retrieval was also separated from encoding by 
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approximately 24 hours, again to increase ecological validity. Episodes were designed such 

that they were made up of elements from 6 different categories. In order to be able to 

classify many varying episode elements, without pushing the limits of pattern classification 

or participant alertness for long-duration scans, we designed our experiment using well-

identified categories deployed in previous fMRI and MEG studies of memory and 

perception (e.g. 10, 12, 15, 52). Participants were explicitly instructed that memory episodes 

were made up of 6 categories of stimuli (faces, buildings, body parts, objects, animals, and 

cars), and then shown examples of these categories. Note that we did not expect participants 

to think of abstract category-level information during retrieval but instead expected 

participants to retrieve individual elements, without explicitly categorizing the items. We 

utilized categories of stimuli because we predicted that category-level information would 

provide the largest source of across-stimulus variability in neural responses.

On the first day of the experiment, in a testing room environment participants experienced 8 

different temporally extended episodes with one single exposure per episode (Fig. 1a). 

Participants were told their performance on memory questions that tested their knowledge of 

the correct sequential order of stimuli would influence the amount of a monetary bonus. 

Episodes were composed of 5 discrete picture elements and an accompanying story written 

from a first-person perspective. On the second day, participants returned for an MEG 

scanning session where they completed a cued retrieval phase and a category localizer phase 

during the acquisition of MEG data (Fig. 1b). Behavioral piloting in a separate sample of 

participants was used to optimize the design and ensure that memory retrieval performance 

on day 2 was both reliably above chance but below ceiling in the majority of participants.

Episodic encoding session procedure—On the first day, participants completed the 

episodic encoding phase. This phase presented eight episodes each composed of five unique 

sequential picture components. Episode components were accompanied with a text segment 

of a story to encourage the maintenance of the true episode order in memory. The story was 

written in first-person perspective to better align with veridical personal episodic memories. 

The first four elements of each episode were taken from 6 potential categories of stimuli: 

faces, buildings, body parts, objects, animals, and cars. The final element in each episode 

was not taken from these categories; instead, it represented a unique ending element. 

Participants were instructed to try to remember the order of the episodes and informed that a 

bonus would be tied to their performance on questions which tested their memory for the 

sequential order of the episode elements. A practice episode was presented in the first 

instance, after which participants were asked to type in the name of the 1st stimulus element 

presented in an episode, then the 2nd, 3rd, 4th, and 5th elements.

In each episode, participants were presented with the initial picture element along with a 

segment of story text shown below (Fig. 1a; Supplementary Table 1). A grey screen 

background was used for all experimental phases. The stimulus faded in over 0.5 sec and 

was then presented with the story text for 2 sec. The text then disappeared and for the 

remaining 2.5 sec, participants performed a target detection task, pressing the ‘1’ key 

whenever they saw a small grey square appear at any location over the stimulus (mean of 1 

target per stimulus). The stimulus then faded out for 0.5 sec. Total stimulus duration, 

including fade-in and fade-out, was ~ 5.5 sec. A grey ‘bokeh’ image faded in as the stimulus 
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faded out. After the stimulus disappeared, participants responded with the ‘up arrow’ key to 

a series of 1-3 arrow indicators (‘^ ^ ^’) in order to progress to the next element of the 

episode. If participants did not respond to an arrow within 6 sec, a warning appeared 

instructing the participant to respond faster. The mean inter-stimulus interval was 6.5 sec (1 

sec for short duration episodes; 12 sec for long duration episodes). For the final component 

of the episode, a white square initially occluded the stimulus and participants then pressed 

the ‘space’ key to reveal the stimulus and associated story text. After the final component of 

the episode, a delay of 2 sec was followed by text “Positive ending: you won +£1.00!” or 

“Negative ending: you lost - £0.50!” depending on whether the story ended in a positive or 

negative way. Participants were then presented with a probe requiring them to type in the 

name of a particular episode element (selected pseudo-randomly from elements 1-4). A 30 

sec rest period followed each episode. After the completion of the 8 episodes, participants 

were instructed not to rehearse the episodes or to record the episodes in any way.

Episodes were constructed from a pseudo-random combination of category elements in 

addition to a final component that was not taken from any of these categories. A brief story 

text connected the sequence of stimuli into a short story (Supplementary Table 1). The 

stimuli consisted 40 photographs, taken either from the internet or previous studies from our 

group, encompassing the following categories: human faces (6), buildings (6), body parts 

(5), objects (5), animals (5), automobiles (5), and eight final component pictures (4 negative 

and 4 positive). As noted above, half of the episodes were of a longer duration, achieved via 

manipulating the inter-stimulusinterval (1 sec or 12 sec). The story in half of the episodes 

ended in a positive element and half ended in a negative element. The ordering of long 

versus short and positive versus non-positive episodes was pseudo-randomized in two 

counterbalanced orders.

After a 5 min break to obviate a potential influence of temporal proximity on performance 

for the last episodes, participants completed a short cued retrieval phase that tested recall of 

the order of the elements presented in each episode. The memory test was brief to minimize 

additional ‘exposure’ to episode stimuli. Following a practice trial (using stimuli from the 

practice episode), participants completed 8 trials in the “after” condition and then 8 trials in 

the “before” condition. Each mini-block of 8 trials was preceded by text indicating the 

current condition. Participants were shown a picture cue and instructed to retrieve the 

associated episode in order to make a response about the sequential order of the subsequent 

answer stimulus. In the after condition, participants attempted to remember what came after 

(at any point) the cue in the same episode (Fig. 1b). In the example after condition trial in 

Fig. 1b, the participant is cued with the mini car from the above episode. The presented 

answer, the pastel hotel, indeed followed the mini car in the episode, so if the participant 

remembered the episode and order, she should respond with ‘Correct.’ If the birthday cake 

was presented as the answer, the participant should also responds with ‘Correct.’ If the 

answer was scissors, man, or a stimulus from any other episode, the participant should 

respond with ‘Incorrect.’ Answers were ‘correct’ for any position after the cue, not just 

immediately after it. In the before condition, participants attempted to remember what came 

before (at any point) the cue in the same episode. In both conditions, when the answer 

picture was presented, participants were shown the response options “Correct” and 

“Incorrect” in text below the picture. Cues in this memory test were only taken from the 
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second state 2 (of 5 total episode states) in the after condition or the fourth state in the before 

condition. The answer on half of the trials was correct.

On each cued retrieval trial, the cue picture was presented in full opacity for 0.5 sec and then 

faded to 0 % opacity across the remaining 5 sec of the retrieval period (Fig. 1). Then the 

response picture was presented. The answer text indicated the mapping between key 

responses and answers, e.g. “Correct (1)” and “Incorrect (2)”; the left and right text locations 

were randomly selected on each trial. There was no time constraint on the answer period. 

After an answer was recorded, following a brief 0.1 sec pause, a 2-level confidence scale 

(“High” and “Low”) was presented, with the left and right location of options randomized. 

After a 0.1 sec pause, a fixation period of mean 1.5 sec followed (randomly sampled from 

the values [1.0, 1.5, 2.0]).

MEG session procedure—Participants returned for the MEG scan on the following day. 

After initial setup in the MEG room, participants were reminded of the instructions for the 

cued memory phase and completed 4 practice questions (based on the practice episode from 

the previous day). During scanning, the memory response period was time-constrained. This 

limit was added to encourage participants to retrieve as much information from memory as 

possible during the cue period and to facilitate later MEG analysis of neural processes 

underlying successful retrieval. Participants were instructed to retrieve as best as possible the 

episodes during the presentation of the cue picture, and in this way they could respond faster 

(and avoid missed responses) when the answer appeared. Participants were again reminded 

of the performance bonus based on memory accuracy.

As described above for the memory test on the first day, on each cued retrieval trial, the cue 

picture was presented in full opacity for 0.5 sec and then faded to 0 % opacity across the 

remaining 5 sec of the retrieval period (Fig. 1). The gradual fade of the cue across the 

retrieval period was designed to avoid any sharp stimulus offset effects which could 

negatively affect MEG decoding. Then the answer stimulus was displayed. The text 

indicating the key response, e.g. “Correct (1)” and “Incorrect (2)”, was randomly presented 

on the left and right of the screen. If a response was not made in this time period, the 

warning “Please try to respond more quickly!” was presented for 2 sec. The response picture 

was presented for 1-3 sec with the duration based on the recent rate of missed trials in the 

past 20 trials. If participants made no response on more than 14 % of recent trials, the 

response period was increased in duration by 0.25 sec (with a ceiling of 3 sec). If 

participants made no response on less than 5 % of recent trials, the answer period was 

decreased in duration by 0.25 sec (with a floor of 1 sec). After the answer period, following 

a brief 0.1 sec pause, a 2-level confidence scale (“High” and “Low”) was presented, with the 

left and right location of options randomized. If a response was not made in time, the 

warning “Please try to respond more quickly!” was presented for 2 sec. After a 0.1 sec 

pause, a fixation period of mean 1.5 sec followed (randomly sampled from the values [1.0, 

1.5, 2.0]).

In each of 5 blocks in the cued retrieval phase, trials of after and before conditions were 

separated into mini-blocks of 10-12 trials. Each mini-block was preceded by an instruction 

screen: “Next: What picture came after (before)?” along with the instruction to press the ‘1’ 
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key to continue. At the mid-point of each block, participants were given a 30 sec pause, 

followed by a reminder of the current condition and an instruction to press the ‘1’ key to 

continue. Each of the five blocks of cued retrieval included 43 trials and lasted for 

approximately 8 minutes. Brief rest breaks were inserted between blocks. In the cued 

retrieval phase, we collected ~ 27 trials per episode and ~ 43 trials per state (episode 

positions 1 to 5) for a total of 215 trials. For one participant, MEG data were lost for the 

final memory retrieval block; the remaining 172 trials were analyzed. All trials with a cue 

from state 1 were after condition trials. All trials with a cue from state 5 were before 

condition trials. Trials with a cue from state 3 were composed of equal numbers of after and 

before condition trials, while trials with a cue from state 2 and state 4 were a weighted 

mixture of after and before condition trials.

The presented answer was correct on ~ 39 % of trials. The remaining 61 % of trials were 

incorrect: on 52 % of total trials, the incorrect answer came from another episode and on the 

remaining ~ 9 % of total trials, a ‘lure’ answer was presented that was from the same 

episode but in the incorrect direction as the current condition. For example, in an after 

condition trial where the cue was from state 3, a picture from that episode in state 1 was 

presented as the answer. Note that on the first day participants are exposed to the complete 

episode only one single time. During the memory test, participants see all episode elements 

again, but at this stage they are provided in an order that mixes elements between different 

episodes, or elements within the same episode that are out of the true order, and only very 

rarely are pairs of elements presented in the original order. Trials were presented in a 

pseudo-random order with the constraint that no episode was queried on sequential trials.

The cued retrieval phase was followed by a functional localizer to derive participant-specific 

sensor patterns that discriminated each of the 6 categories that made up the episodes by 

repeatedly presenting each of the 32 unique stimuli. The localizer design was based on 

previous studies (19, 20). In brief, participants were instructed to read a word shown on the 

screen, pay attention to the picture that followed, and respond if any grey square targets 

appeared superimposed over the picture. The instructions were followed by 4 practice trials.

In detail, in a localizer trial, participants were presented with a brief name corresponding to 

one of the pictures, presented in text on the center of the screen for 2 sec. Participants were 

instructed to imagine the corresponding picture. The text then disappeared and the named 

picture appeared on the screen for 0.75 sec. During picture presentation, participants 

performed a target detection task, responding with a ‘1’ button press if the picture contained 

a small grey square. Targets were rare events, appearing on 15.4 % of trials. A mean 0.75 sec 

fixation ITI followed (range 0.25 – 1.25) during which responses were still recorded. If 

performance on the target detection task fell below 70 % correct (across missed responses 

and false alarms), a warning was presented: “Please improve your detection of the grey 

squares!” Finally, as in the cued retrieval phase, a mid-block rest of 30 sec was inserted 

during each block. After each localizer block, participants were shown yellow ‘stars’ on the 

screen, ranging from 0-4, depending on their target detection accuracy in the preceding 

block.
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The stimulus pictures were presented in a pseudo-random order, with the constraint that no 

category repeat in subsequent trials. Each picture from a given category was presented an 

equivalent number of times, with 78 repetitions per picture category. The localizer was 

presented in 5 blocks, with 94 trials in the first four blocks and 92 trials in the last block for 

a total of 468 trials.

Following scanning, participants completed a post-experiment questionnaire that assessed 

memory strategy and potential mental reordering of the episodes, and also asked participants 

to try to write down a brief version of each story. The re-ordering question asked “Did you 

change the order of the stories to make your own story order? 1= never, 5=always”. 

Participants who responded with a 4 or 5 were considered for exclusion, in conjunction with 

performance on the memory and sequence memory test. We observed a negative correlation 

in the full group (prior to exclusions) between response to this question and memory 

performance in the MEG session.

Finally, participants completed a computerized sequence memory test where they attempted 

to place the stimuli from a given episode in the correct order. In this phase, stimuli from an 

episode were presented in a random order on the left side of the computer screen. 

Participants then moved each stimulus from the left side (starting from the top) into one of 5 

empty boxes spread from the left to the right across the screen. Stimuli were moved using 

the left and right arrow keys and the space bar was used to confirm placement. Accuracy was 

measured as the mean rate of correct replacement across each location across all episodes.

MEG acquisition

Participants were scanned while sitting upright inside an MEG scanner located at the 

Wellcome Centre for Human Neuroimaging, at UCL. A whole-head axial gradiometer MEG 

system (CTF Omega, VSM MedTech) recorded data continuously at 600 samples per 

second, utilizing 273 channels (2 original channels of the 275 channels are not operational). 

Three head position indicator coils were used to locate the position of participant’s head in 

the three-dimensional space with respect to the MEG sensor array. They were placed on the 

three fiducial points: the nasion and left and right pre-auricular areas. The coils generate a 

small magnetic field used to localize the head and enable continuous movement tracking. We 

also used an Eyelink eye-tracking system to monitor participant’s eye movements and 

blinks. The task was projected onto a screen suspended in front of the participants. The 

participants responded during the task using a 4-button response pad to provide their 

answers (Current Designs), responding with self-selected digits to the first and second 

buttons.

MEG Pre-processing

MEG data were processed using MATLAB packages SPM12 (Wellcome Trust Centre for 

Neuroimaging) and FieldTrip. The CTF data were imported using OSL (the OHBA Software 

Library, from OHBA Analysis Group, OHBA, Oxford, UK) and downsampled from 600 Hz 

to 100 Hz (yielding 10 ms per sample) for improved signal to noise ratio and to conserve 

processing time. Slow drift was removed by applying a first order IIR high-pass filter at 0.5 

Hz.
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Preprocessing was conducted separately for each block. An initial preprocessing step in OSL 

identified potential bad channels whose characteristics fell outside the normal distribution of 

values for all sensors. Then independent component analysis (FastICA, http://

research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data for each session into 

150 temporally independent components and associated sensor topographies. Artifact 

components were classified by automated inspection of the combined spatial topography, 

time course, kurtosis of the time course, and frequency spectrum for all components. For 

example, eye-blink artifacts exhibited high kurtosis (>20), a repeated pattern in the time 

course and consistent spatial topographies. Mains interference had extremely low kurtosis 

and a frequency spectrum dominated by 50 Hz line noise. The maximum number of 

potential excluded components was set to 20. Artifacts were then rejected by subtracting 

them out of the data. All subsequent analyses were performed directly on the filtered, 

cleaned MEG signal, in units of femtotesla.

In the cued retrieval blocks, an 8.5 second epoch was extracted for potential analysis for 

each trial, encompassing 500 ms preceding cue onset and continuing past the answer 

response. In the analyses below, we analyzed the first two-thirds of the cued retrieval period. 

Given the speeded response demands to the response stimulus, the end of the period is likely 

to involve increasing response preparation that could decrease the ability to detect 

sequenceness events. We excluded also the initial 160 ms following cue presentation to 

allow time for early stimulus processing. Thus, our retrieval period analysis window focused 

on 160 - 3667 ms of the full 5500 ms period. In the localizer blocks, a 4.5 second epoch was 

extracted for potential analysis for each trial, encompassing 500 ms preceding text onset 

through the end of the picture presentation period. In both the retrieval and localizer blocks, 

preceding the analysis steps described below, we excluded time periods within individual 

channels that exhibited extreme outlier events (determined by values > 7x the mean absolute 

deviation).

MEG data decoding and cross-validation

Lasso-regularized logistic regression models were trained for each category. Methods 

followed those used in previous studies (19, 20). Only the sensors that were not rejected 

across all scanning sessions in the preprocessing step were used to train the decoding 

models. A trained model k consisted of a single vector with length of good sensors n 

consisting of 1 slope coefficient for each of the sensors together with an intercept 

coefficient. Decoding models were trained on MEG data elicited by direct presentations of 

the visual stimuli.

For each category we trained one binomial classifier. Positive examples for the classifier 

were trials on which that category was presented. Negative examples consisted of two kinds 

of data: trials when another category was presented, and data from the fixation period before 

the text pre-cue appeared. An equal number of events of null data were included as there 

were actual events. The null data were included to reduce a potential correlation between 

different classifiers – enabling all classifiers to report low probabilities simultaneously.

To examine localizer performance we used cross-validation. We computed the number of 

included trials per category (after exclusion of trials due to MEG artifacts). We then 
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calculated the number of cross-validation folds by subtracting the minimum number of trials 

included across categories plus one; the number of folds per participant was usually between 

15-20. Classifier performance was estimated on the included data and tested on randomly 

determined left-out data for N folds; performance was then averaged across folds to derive a 

mean value.

Separately, for classifying memory retrieval data a different classifier was trained. This 

classifier was trained on all localizer trial data with no cross-validation; crossvalidation is 

not used for across-phase analyses as no inferences are made based on the localizer 

performance itself. Prediction accuracy was estimated by treating the highest probability 

output among all classifiers as the predicted category. Sensor distributions of beta estimates 

are shown in Extended Data Figure 4 and prediction performance of classifiers trained on 

200 ms on left-out trials in functional localizer task are shown in Extended Data Figure 2.

To determine whether the categories used in the experiment were reflective of how these 

stimuli were actually represented in the MEG data as participants viewed the stimuli, we 

conducted a supplemental classification analysis that trained a separate classifier for each of 

the 32 stimuli (4 category-level stimuli for each of 8 episodes). This analysis used cross-

validation as described above. Also as above, a second classification analysis did not use 

cross-validation but instead trained on the full localizer phase and tested on the memory test 

phase cue-evoked responses. An alternative classification analysis trained each stimulus 

versus all other stimuli but left out the other members of that stimulus’ category (e.g. 

training for face1 omitted trials with face2-face6). Note that the classification of individual 

stimuli was under-powered given the low number of repetitions per stimulus, and our 

localizer phase was not designed to produce robust single-stimulus classifiers for use on the 

sequenceness analyses.

Sequenceness measure

The decoding models described above allowed us to measure spontaneous reactivation of 

task-related representations during memory retrieval. We next defined a ‘sequenceness’ 

measure in terms of the degree to which these representations were reactivated in a well-

defined sequential order (19, 20). Here we utilized an updated general linear model approach 

(20). This analysis approach is illustrated in Extended Data Figure 4. Briefly, the method 

approximates a lagged cross-correlation between category evidence for transitions in a given 

episode. As such, the method utilizes the full period of analysis in the calculation and 

produces a single statistic representing the strength of sequenceness across this full period. 

Discrete sequential events are not identified, though in theory each retrieval period could 

include numerous events.

First, we applied each of the six category decoding models to the cued retrieval period MEG 

data. This yielded six timeseries of reactivation probabilities for each trial, each with length 

N, where N is the number of time samples included in the retrieval period analysis window. 

Below, we use the term “stimulus” for simplicity to refer to the category-level information.
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We then used a linear model to ask whether particular sequences of stimulus activations 

appeared above chance in these timeseries. For each stimulus i, at each possible time lag Δt, 
we estimated a separate linear model:

Yi = X( Δ t) ∗ βi( Δ t)

The predictors X(Δt) were time-lagged copies of the six reactivation timeseries. The model 

predicted Yi, the reactivation of stimulus i. The linear model had N rows, with each row a 

time sample. We estimated βi (Δt), a vector of coefficients that described the degree to which 

stimulus i’s reactivation was predicted by activation of each other stimulus at time lag Δt. By 

repeating this procedure for each stimulus i, we obtained βi (Δt), a 6x6 matrix that can be 

viewed as an empirical transition matrix between the six stimuli (categories) at lag Δt.

Specifically:

Yi = Σj = 1
s Xj( Δ t)βij( Δ t)

Where Xj (Δt) are time-lagged copies of Yj, s is the number of states, and therefore:

Yi(t) = Σj = 1
s Yj(t − Δ t)βij( Δ t)

The matrix βi(Δt) is obtained by solving the following set of equations for each stimulus i, 
up to state s.

Yi = 1(t) = ∑ j = 1sYj(t − Δ t)βij( Δ t)
Yi = 2(t) = ∑ j = 1sYj(t − Δ t)βij( Δ t)
Yi = s(t) = ∑ j = 1sYj(t − Δ t)βij( Δ t)

We next asked whether the βi (Δt) was consistent with a specified 6x6 transition matrix by 

taking the Frobenius inner product between these two matrices (the sum of elementwise 

products of the two matrices). This resulted in a single number Z Δt, which pertained to lag 

Δt. Finally, differential forward – backward sequenceness was defined as ZfΔt – ZbΔt. In our 

initial analyses and individual differences analyses, we used the difference between 

correlations in the forward (ZfΔt) and backward (ZbΔt) direction in order to remove common 

autocorrelation which would otherwise add significant variance. In the analyses testing for a 

relationship between sequenceness and trial-bytrial accuracy, we entered the separate 

forward (ZfΔt) and backward (ZbΔt) sequenceness measures into the regression analyses. As 

our analysis was on trialbased data and not rest, we did not need to control for alpha rhythm 

(20).

The transition matrix was defined as the stimulus (category) order in each episode. Our 

primary results focus on comparisons of sequenceness on correct versus incorrect retrieval 

trials; as such, we do not conduct comparisons to a null value. Here, as category orders were 

pseudo-randomly shuffled across episodes, we did not conduct permutation tests. To ensure 
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that the results were not overfit to the regularization parameter of the logistic regression, all 

results were obtained with the lasso regularization parameter that yielded the strongest mean 

decoding in the localizer (l1 = 0.002). The decoding models used to evaluate sequenceness 

were trained on functional localizer data taken from 200 ms following stimulus onset. The 

200 ms time point exhibited the strongest decoding accuracy during the localizer; notably, 

this time point of category decoding was also consistent with the individual stimulus 

decoding findings of Kurth-Nelson et al. (19) and Liu et al. (20). We only included trials 

with a button response to the probe stimulus; all trials with no response were excluded from 

analysis.

In an initial step, prior to the multi-level modelling analyses, we localized a time lag of 

interest in the after condition over correct trials using a leave-one-participant-out cross-

validation procedure. For a given held-out participant, the absolute value of the peak 

response across the remaining participants determined the lag for the held-out participant. 

The analysis included lags from 40-350 ms. These peak times ±10 ms were used to select 

trial-by-trial sequenceness values.

Identifying Replay Onsets

Replay onsets were defined as moments when a strong reactivation of a stimulus was 

followed by a strong reactivation of the next (or preceding) stimulus in the sequence from an 

episode (20). In this analysis, we first found the stimulus-to-stimulus time lag Δt at which 

there was maximum evidence for sequenceness (as described above), time shifted the 

reactivation matrix X up to this time lag Δt, obtaining X(Δt). We then multiplied X by the 

transition matrix P, corresponding to the unscrambled sequences: X × P. Next, we element-

wise multiplied X(Δt) by X × P. The resulting matrix had a column for each stimulus, and a 

row for each time point in the cue period for each trial. We then summed over columns to 

obtain a long vector R, with each element indicating the strength of replay at a given 

moment in time (across trials). Finally, we thresholded R at its 95th percentile to only 

include high-magnitude putative replay onset events across all trials. We also imposed that 

constraint that a replay onset event must be preceded by 100 ms of replay-onset-free time.

Specifically:

Proj = X( Δ t)

Matrix Proj is obtained by time shifting the reactivation matrix X to time lag Δt.

Orig = X × P

Matrix Orig is obtained by matrix multiplication between reactivation matrix X and 

transition matrix P.

Rt = ΣisOrigti ∗ Projti
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Vector R is obtained by elementwise multiplication between matrix Orig and Proj, and then 

summing over columns.

Cue-triggered reactivation analyses

In the cued retrieval period, we tested for cue-triggered reactivation of episode elements. 

This analysis compared evidence for categories present in a cued episode versus categories 

not present in a cued episode. The analysis utilized the raw classifier evidence vectors (n 
categories by t trial timepoints) to investigate differential activity near the peak stimulus 

response at ~ 200 ms. For each episode, the within-episode categories that were not 

presented as a cue were averaged to derive a measure of reactivation of within-episode 

elements. In the after condition, there were 3 within-episode categories; in before condition, 

trials where the cue came from state 5 had 4 categories entered into the within-episode 

analysis. The 2 categories that were not members of the cued episode were averaged to 

derive a measure of other-episode reactivation. The timepoints showing the strongest 

difference between these two measures were averaged for each trial to derive trial-by-trial 

reactivation measures representing relative within- versus other-element activity. These 

values were subsequently entered into multi-level regression analyses. We examined a 

relationship between the trial-by-trial reactivation measure and mean episode accuracy: the 

average performance across trials for the episode cued on a given trial. We also examined 

the relationship to trial-by-trial accuracy, but this analysis was under-powered in the very 

high performing participants. The reactivation analyses collapsed across the after and before 

conditions.

Time-frequency analyses

A frequency decomposition (wavelet transformation) was computed for the memory 

retrieval period in every trial. From this data, we extracted power changes surrounding 

putative replay onset events.

Zero-lag correlation analysis

In a supplemental analysis, we examined the relationship between reactivation of within-

episode elements compared to other-episode elements with a zero time lag. This measure 

was a basic correlation between the time series of category evidence: the average of 3 

correlations for the within-episode elements and 2 correlations for the other-episode 

elements. We did not find a greater correlation between within-episode elements than 

between other-episode elements. Through thresholding of the category evidence time series, 

we found that correlations were driven by increases in evidence and that these increases 

were brief (Extended Data Figure 10).

Statistics

Blinding and randomization—There was no comparison between groups in our design 

and therefore no need for randomization or blinding during testing. Each participant 

experienced the same trials but in a pseudo-random order.
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Multi-level modelling

We conducted all pre-processing of behavioral and MEG data for multi-level (mixed effects) 

modelling in Matlab. Multi-level models were implemented in R, following previous 

procedures (51). We used a multi-level logistic regression model (glmer, in the lmer4 

package) to predict correct memory responses. A correct response in the cued retrieval phase 

was an answer stimulus correctly identified as coming after the cue in a given episode, an 

answer stimulus correctly rejected as coming after the cue in a given episode, etc. All missed 

response trials (where no response was recorded within the response time window) were 

excluded from analysis. The residuals of the model were checked for normality.

The primary models included sequenceness derived from the current episode transition 

matrix. Additional control models examined the effect of sequenceness derived from 

transitions present in all other episodes but not present in the current episode, combining 

results across 7 separate permutations of other episode control models.

For trial-by-trial accuracy analyses, we included only participants with greater than 10 MEG 

artifact-free trials in each condition. In general, our exclusion was intended to be 

conservative and to align with practices in fMRI research regarding approximately sufficient 

numbers of trials in a condition. We also had a conceptual reason to exclude participants 

with very few miss trials. In the very high performing participants, miss trials are more 

likely to be dominated by lapses in attention and resulting error button presses than in 

regular performing participants; including miss trials in these participants then would add 

noise to the analyses.

In the main sequenceness analyses, we fit separate intercept, forward sequenceness, and 

backward sequenceness effects for each participant. In the model, we also included control 

variables representing performance in neighboring trials. These variables were included 

because we found that performance 1 and 2 trials in the past and performance 1 and 2 trials 

in the future was positively related to current trial performance, an effect similar to what we 

have observed in previous memory studies. In analyses of continuous variables such as mean 

correct performance for the episode cued on the current trial, we used multi-level regression 

(lmer).

For all models, to ensure convergence, models were run using the bobyqa optimizer set to 

106 iterations. We estimated confidence intervals using the confint.merMod function and p-

values using the bootMer function (both from the lmer4 package) using 2500 iterations. All 

reported p-values are two-tailed.

MEG Source Reconstruction

All source reconstruction was performed in SPM12 and FieldTrip utilizing OAT. Forward 

models were generated on the basis of a single shell using superposition of basis functions 

that approximately corresponded to the plane tangential to the MEG sensor array.

Linearly constrained minimum variance beamforming (52) was used to reconstruct the 

epoched MEG data to a grid in MNI space, sampled with a grid step of 5 mm. The sensor 
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covariance matrix for beamforming was estimated using data in broadband power across all 

frequencies.

For the category localizer analysis, the baseline activity was the mean power averaged over 

50 ms following stimulus onset. All non-artifactual trials were baseline corrected at source 

level. We estimated the main effect of each category and contrasts of each category versus 

all other categories and extracted the peak 200 ms after onset for display.

For the replay onsets analysis, the baseline activity was the mean power averaged over -100 

ms to -50 ms relative to replay onset. All non-artifactual trials were baseline corrected at 

source level. We looked at the main effect of the initialization of replay. This analysis was 

conducted separately to investigate backward replay events in the after condition and 

forward replay events in the before condition.

The statistical significance of clusters identified in the beamforming analysis was calculated 

using SPM12. An initial cluster-forming threshold of p < 0.001 was applied and regions 

exceeding p < 0.05 whole-brain family-wise-error corrected (FWE) at the cluster level are 

reported. The timepoint preceding replay onset (- 10 ms) was additionally investigated to 

explore whether individual differences in memory performance related to differential MTL 

power preceding replay onset.

Individual differences

We tested for a relationship between MEG measures of sequenceness and mean memory 

performance in the after and before conditions. For sequenceness, we used differential 

(forward-backward) sequenceness given the strong decaying autocorrelation evident in the 

raw forward and backward sequenceness estimates (19, 20). While our analysis uses a single 

lag (mean across 100-120 ms) across all participants, the results are qualitatively the same 

lag is selected using the LOSO procedure. These analyses used Pearson correlations, 

reporting two-tailed p-values. Data normality was assessed using the Lilliefors test. A 

statistical comparison of the correlations between of sequenceness and behavior in the after 

condition and the before condition was conducted using a test for the difference between two 

dependent correlations. This test is conservative, as the performance measures in the after 

condition and the before condition were not identical, while the test assumes full 

dependence. In a supplemental analysis, we estimated the relationship between replay and 

memory performance using a regression, separately entering forward and backward 

sequenceness as predictor variables.

Permutation of MEG analyses and relationship to performance

We first computed each participant’s sequenceness values for each of the lags. Next, for each 

permutation, we randomly reassigned which trials are considered correct and incorrect, 

while maintaining the proportion of correct/incorrect trials within each subject. Third, we 

selected the leave-one-subject-out (LOSO) maximum absolute value lag of sequenceness 

(forward-backward) in the after condition. Fourth, we computed the correlation of mean 

forward-backward sequenceness with mean performance across participants to determine the 

false positive rate and empirical adjusted 5 % threshold of this analysis. Fifth, we computed 

the association between sequenceness and behavior across the regular performing 

Wimmer et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



participants. Using these steps, we conducted 25,000 permutations using Matlab; the multi-

level regression function in Matlab is sufficient for these permutations, but note that all 

analyses of interest were conducted using R.

One reason to conduct the permutation analysis was that in the individual differences 

analyses, it is possible that under certain circumstances, having increasing variability in the 

underlying data toward one end of a distribution across participants might impact on the 

chance rate of finding a correlation – whether positive or negative – between two variables. 

Specifically, because lower performing participants have fewer correct trials entered into the 

mean value than is the case for higher performing participants, the mean values for low 

performing participants may show higher random variation by chance. (Note that any 

observed differences in correlation direction between the after and before conditions would 

not be explained by any such effect.)

For the individual differences analyses, we use the lag showing the highest absolute value 

because an across-participant analysis makes sense when the same region of the data 

(whether time or space) is used for all participant and because lag selection is orthogonal to 

the individual differences analyses. If, as in the case in our data, all but one participant have 

the same time point selected using the LOSO procedure, an across-participant correlation 

with one odd participant does not seem appropriate. For the trial-by-trial multi-level 

regression analyses, the LOSO procedure is essential to reduce the rate of false positives.

Simulation of MEG analyses and relationship to performance

To provide additional support for our results, we conducted simulations to confirm that the 

relationship between randomly generated MEG data and behavioral measures is what would 

expected by chance. All processing and analysis steps were as described above, beyond the 

generation of simulated MEG data. The simulation proceeded in 3 steps: 1) generation of 

MEG localizer data and training of classifiers, 2) generation of MEG memory retrieval data, 

applications of classifiers, and calculation of sequenceness for each trial, and 3) multi-level 

modelling to relate sequenceness to behavior.

In step 1, we first estimated a sensor covariance matrix based on random data (here and 

below using the randn function in Matlab), constructed sensor patterns per category, and 

generated category training data for each category based on random data plus the generated 

sensor patterns. Classifiers (one per each of 6 categories) were trained on these data.

In step 2, for each trial, MEG data were generated across all sensors using the mvrnd 

function in Matlab. Across time, an estimated temporal auto-correlation derived from the 

actual data (0.65) was applied, as well as the previously derived covariance across sensors. 

Then the sequenceness analysis was applied per trial as in the main analysis described 

above. This produced a sequenceness measure in the forward and backward direction for 

each lag up to 350 ms.

In step 3, the values for the simulated after condition on simulated correct trials were 

extracted for each participant. We then applied a leave-one-out cross-validation procedure 

for time lag selection. As in the analysis of real data, the lag selected for the left-out 
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participant was based on the peak absolute magnitude of forward minus backward (or 

differential) sequenceness at lags from 40-350 ms. Across all trials, the mean sequenceness 

in the forward and backward directions at this peak ±10 ms were entered into the multi-level 

logistic regression analyses.

One set of simulations utilized all potential behavioral variables from the actual 

counterbalancing assignment and data (accuracy per trial, exclusion / exclusion of MEG data 

per trial, after/before condition, and cued episode transition matrix). A second set of 

simulations approximated the behavioral variables (similar distribution of mean performance 

across simulated participant, equal number of excluded MEG trials, and equal sampling of 

each of the episodes). The two simulations based on real behavioral data and simulated 

behavioral data were each run 10,000 times.
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Extended Data

Extended Data Figure 1. Memory performance as a function of episode length and episode 
ending and performance on the post-scan episode re-ordering test.
As in Fig. 1c, purple dots represent individual data points for regular performance 

participants with sufficient incorrect response (error) trials free from MEG artifacts for 

accuracy analyses (after, n = 17; before, n = 18), in order to keep consistency between 

behavioral and MEG analyses. Note that performance for participants in subsets of trials will 

not always follow the mean defined by all trials. (a and b) Memory did not significantly 
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differ in the after condition by length (one-sample two-sided t-test t(24) = -1.389; p = 0.178; 

two one-sided test (TOST) equivalence test p = 0.065, thus we are unable to rule out the 

presence of a medium-sized effect) or the before condition by length (t(24) = 0.661; p = 

0.515; TOST equivalence test p = 0.0156). (c and d) Memory did not differ in the after 

condition by end valence (t(24) = -0.068; p = 0.946; TOST equivalence test p = 0.004) or the 

before condition by end valence (t(24) = 0.1478; p = 0.88; TOST equivalence test p = 0.005). 

Given the null behavioral differences, primary MEG analysis collapsed across these 

variables. (e) Performance on the post-scan episode sequence memory re-ordering test (n = 

24 participants; data are missing from one participant). Participants attempted to placement 

of each element within each episode; individual scores represent average binary accuracy. 

Sequence memory did not have a condition, so regular performance participants (purple) 

represent those participants included in both the after and before condition regular 

performance groups (n = 15); the data points for the remaining high performance 

participants are depicted in orange. Grey boxes represent the 25-75 percentiles of the data; 

median: line, mean: dot; error bars represent standard error of the mean (SEM). All figure 

results include n = 25 participants.

Wimmer et al. Page 27

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 2. Illustration of localizer classifier performance for the six stimulus 
categories that made up the first 4 components of episodes and performance of a classifier 
trained for each of the 32 individual stimuli from these categories.
(a) Cross-validated classification performance for each category (face, building, body part, 

object, animal, and car). Results represent training on the 200 ms time point and testing 

across all time points. (b) Classifier sensor weight correlations across participants within and 

between-categories reveal strong within-category similarity, suggesting similar sensor 

importance across participants for the same categories. Categories are sorted as in the legend 

for panel a: face, building, body part, object, animal, and car. (c) Classification performance 
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for each of 32 stimuli. Results represent training on the 200 ms time point and testing across 

all time points. (Colors were randomly assigned.) (d) Cross-classification performance for 

32 individual stimuli where the classifier was trained on the localizer phase (at 200 ms) and 

tested on the cues in the memory phase. Performance was above the pre-trial baseline level 

and significant (one-sample two-sided t-test t(24) = 9.20, p<1e-8). Compared to the category-

level cross-classification results in Fig. 1f (y-axis range is matched across figures for 

comparison), the magnitude of the effect versus baseline was weaker: the effect for the 

category across-phase classification of memory cues was significantly stronger than the 

single-stimulus across-phase classification (t(24) = 12.47, p<1e-11). Yellow line represents 

200 ms, the peak category classification time point in the localizer phase. The dashed line 

represents the estimated chance threshold to assess significance. (e) Trained classifier beta 

weight correlation across sensors across all 32 individual stimuli depict natural emergence of 

category structure. The image represents that average of individual participant correlation 

matrices. Categories are sorted as in the legend for panel a: face, building, body part, object, 

animal, and car. Shaded error margins represent SEM. All figure results include n = 25 

participants.

Extended Data Figure 3. Illustration of source localization results for the six categories of stimuli 
in the localizer phase.
Each category was contrasted versus all other categories. We found expected patterns of 

activation for the 4 categories that have received the most investigation in the literature: 

faces, buildings, body parts, and objects. For faces, activation peaked in a region roughly 

consistent with the fusiform face area (FFA) as well as the occipital face area (OFA). 

Activation for building stimuli was located between the well-known parahippocampal place 

area (PPA) and the retrosplenial cortex (RSC), a region also known to respond to scene and 

building stimuli. Activation for body part stimuli was in a region consistent with the 

extrastriate body area (EBA). Activation for objects was in a region consistent with the 

Wimmer et al. Page 29

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



object-associated lateral occipital cortex (LOC) as well as an anterior temporal cluster that 

may relate to conceptual processing of objects. Activity for the two less-studied categories, 

animals and cars, was localized to different areas of the ventral and posterior occipital 

cortex. Each individual category was thresholded at a level that best displayed localized 

peaks. Results are for illustration only. Full unthresholded maps can be found at https://

neurovault.org/collections/6088/. The z coordinates refers to the MNI atlas. All figure results 

include n = 25 participants.

Extended Data Figure 4. Sequenceness analysis schematic.
(a) Classifiers were trained on the 6 categories that made up the episodes. The mean 

weighting (approximate importance) of each sensor for a given category, for illustration; in 

analyses, participant-specific weights were used. (Anterior = top; posterior = bottom.) (b). 

Mean sensor weighting across all categories. (In panels a and b, results represent the mean 

across n = 25 participants.) (c) Illustration of how the trained classifiers are applied to the 

MEG data timeseries for each cued retrieval period, where states 1-4 represents episode 

components 1-4 from Fig. 1a. (d) The sequenceness analysis detects systematic time shifts 
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(T) in category evidence. A forward sequence illustration is shown on the left; a backward 

sequence illustration is shown on the right.

Extended Data Figure 5. Results of permutations and simulations of the complete MEG analysis 
pipeline.
The top row shows the percentage of resulting p-values from 0-5 % derived from the 

individual differences analyses and the bottom row shows the percentage of resulting p-

values from 0-5 % derived from the trial-by-trial multi-level regression analyses (panels d-f). 

After condition in cyan; before condition in blue. In panel a and d, ‘x’ symbols mark the 
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empirical 5 % thresholds noted in the Results. (a) Permutation results of the individual 

differences analysis using real MEG and behavioral data, shuffling correct and incorrect 

labels (25k simulations). (b) Results using simulated MEG data of the individual differences 

analyses with behavioral variables taken from actual participant data (10k simulations). (c) 

Results using simulated MEG data of the individual differences analyses with simulated 

(approximated) behavioral variables (10k simulations). (d) Permutation results of the trial-

by-trial multi-level regression analysis using the real MEG and behavioral data, shuffling 

correct and incorrect labels (25k simulations). (e) Simulation results of the multi-level 

regression analyses with behavioral variables taken from actual participant data (10k 

simulations). (f) Simulation results of the multi-level regression analyses with simulated 

(approximated) behavioral variables (10k simulations). All simulations include n = 25 

participants.

Extended Data Figure 6. Additional individual differences analyses using true sequenceness and 
other episode sequenceness.
As in Fig. 1c the data points for the regular performance participants are shown in purple; 

high performance participants are shown in orange. Correlations report two-sided Pearson’s 

correlation. (i-j) Mean performance relationship to sequenceness, as in Fig. 3, but here 

separating sequenceness into forward and backward components. (i) In the after condition, a 

regression analysis including both forward and backward sequenceness showed that reverse 

sequenceness was negatively and numerically more strongly related to mean performance 

(forward, one-sample two-sided t-test, t(22) = 2.265, p = 0.0337; backward t(22) = -2.9111, 

p = 0.0081). Forward in purple; backward in blue. (j) In the before condition, forward 

sequenceness was related to mean performance (forward, one-sample two-sided t-test, t(22) 

= -2.2419, p = 0.0354; backward t(22) = 1.0456, p = 0.3071). Error bars represent 95 % CI. 

Both results support the primary individual difference correlations in the Results (Fig. 3). (c-

d) In the after and before conditions, mean sequenceness strength (forward-backward) with 

a 40-50 ms lag did not significantly relate to overall mean memory performance (percentage 
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of correct trials). (d) As in panel c, here for the before condition. (e-h) Correlations with the 

‘other episode’ sequenceness measure. (e-h) In the after and before conditions, mean 40-50 

ms sequenceness for other episode transitions (excluding the current episode) did not 

significantly relate to mean memory performance. (g-h) In the after and before conditions, 

mean 100-120 ms sequenceness for other episode transitions did not significantly relate to 

mean memory performance. All figure results include n = 25 participants.

Extended Data Figure 7. Analyses relating both current episode sequenceness and ‘other 
episode’ sequenceness to accuracy.
Forward in purple; backward in blue. Multi-level regression analysis beta coefficients in 

panels a-f and h; two-sided p-values determined via bootstrapping. Error bars represent 95 % 

CI. (a) In the after condition, sequenceness derived from current episode sequenceness 
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(100-120 ms; left) remained significant while other episode sequenceness at lags determined 

by the leave-one-subject-out (LOSO) procedure showed no relationship to successful 

retrieval (right; Supplementary Table 3). (b) As in panel a, but for the before condition. (c) 

Difference between current episode sequenceness (LOSO lag) and other episode 

sequenceness in the after condition (left) and before condition (right). (d) In the after 

condition, current episode sequenceness (100-120 ms lag; left, darker color) remains 

significant (left) while other episode sequenceness (derived from all other transitions 

excluding the current episode transitions) at a lag of 40-50 ms lag showed no relationship to 

successful retrieval (right, lighter color; Supplementary Table 4). (e) As in panel d, but for 

the before condition. (f) Difference between current episode sequenceness (40-50 ms lag) 

and other episode sequenceness in the after condition (left) and before condition (right). (g) 

Individual regression coefficients for the trial-bytrial relationship between sequenceness and 

successful retrieval in the after and before conditions as in Fig. 3a., but derived from a 

single-level GLM instead of a multi-level regression analysis. (Grey boxes represent the 

25-75 percentiles of the data; median: line, mean: dot; error bars represent standard error of 

the mean (SEM).) (h) For a single stimulus analyses (instead of the primary category-level 

analyses), the classifier showed cross-classification performance that was numerically close 

to chance (see Extended Data Fig. 3). For completeness, in the after condition, we found no 

relationship between single-stimulus backward sequenceness and retrieval success (p = 

0.379). In the before condition we found a positive, but non-significant, relationship between 

single-stimulus forward sequenceness and retrieval success (p = 0.0920). All figure results 

include n = 25 participants. *p < 0.05.
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Extended Data Figure 8. Additional sequenceness onset beamforming results.
(a) Timecourse of power changes relative to replay onset in the anterior hippocampus in the 

after (cyan) and before (blue) conditions. (Shaded error margins represent SEM.) (b) Power 

in the right visual cortex at replay onset in the after condition, displaying a different view of 

the whole-brain results shown in a coronal section in Fig. 4a. Statistical map thresholded at p 

< 0.001 uncorrected, for display; cluster significant at p < 0.001 whole-brain FWE, one-

sided. (c) Power in the left MTL 10 ms before the onset of reverse sequenceness events 

correlated with performance, such that lower performing participants showed the strongest 
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increase in power (https://neurovault.org/images/306232/). Statistical map thresholded at p < 

0.001 uncorrected, for display; cluster significant at p = 0.003 whole-brain FWE, one-sided. 

(d) Performance – power relationship in the right anterior hippocampus. Data are for 

visualization purposes only and represent the peak coordinate as in panel c. High 

performance participants in orange; regular performance participants in purple. (e) After 

condition unthresholded backward replay event onset beamforming results. (f) Before 

condition unthresholded forward replay event onset beamforming results. For panels e and f, 

transparency shows underlying anatomy; maximum color p = 0.0001. All figure results 

include n = 25 participants. The x, y, and z coordinates refers to the MNI atlas.

Extended Data Figure 9. Time-frequency analysis of replay onsets in the after and before 
conditions separately.
Results as in Fig. 4c-d. (a) Time-frequency analysis showing power increases at replay onset 

in the after condition showing frequencies up to ~ 50 Hz. 0 ms represents the onset of 

putative replay events. (Average across correct trials.) (b) Time-frequency analysis as in 
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panel a, here in the before condition. (c) Time-frequency analysis of high frequencies in the 

after condition (using data sampled at 600 Hz) relative to replay onset (d) Time-frequency 

analysis of high frequencies as in panel c, here in the before condition. All figure results 

include n = 25 participants.

Extended Data Figure 10. Relationship between accuracy and alternative non-sequential 
measures: cue-evoked reactivation, on-screen cue response, and zero-lag correlation between 
within-episode category evidence during the retrieval period.
Forward in purple; backward in blue; control variable in red. Regression coefficients from 

multilevel analyses; two-sided p-value determined via bootstrapping. Error bars represent 95 

% CI. (a-b) Cue-evoked reactivation of within-episode elements minus other-episode 

elements from 200-250 ms and retrieval success in the after condition (a) and before 

condition (b), included in the regression model with forward and backward sequenceness. 

The effects of cue-evoked reactivation were non-significant (Supplementary Table 6); the 

relationships between sequenceness and memory were unaffected. (c-d) Evidence for 

response to the on-screen cue from 200-250 ms and retrieval success in the after condition 

(c) and before condition (d), included in the regression model with forward and backward 

sequenceness. The effect of cue response was significant in the after condition but not the 

before condition (Supplementary Table 6); the relationships between sequenceness and 

memory were unaffected. (e) The correlation between within-episode category evidence 

across the 160-3667 ms cue period is driven by high-magnitude correlation events (>= 95 % 

of mean), and activity for these events peaks and falls rapidly. For illustration, the purple line 

represents the mean across participants in the after condition. (Shaded error margins 
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represent SEM.) (f) The correlation between evidence for within-episode categories minus 

the correlation between all other pairings (zero-lag correlation difference) across the 

160-3667 ms cue period of analysis is not related to mean performance on a given episode 

(as in Fig. 5c) in very high or regular performance participants: High performance (multi-

level regression β = -0.050 ± 0.0463; z = -1.079, p = 0.290; n = 10 participants); regular 

performance (β = -0.0612 ± 0.0590; z = -1.037, p = 0.296; n = 15 participants). (g-h) The 

zero-lag correlation difference included in the regression model with forward and backward 

sequenceness in the after condition (g) and in the before condition (h). The effect of 

clustered reactivation was non-significant (after: β = 0.118 ± 0.462; z = 0.255, p = 0.770; 

before: β = -0.724 ± 0.494; z = -1.467, p = 0.145); the relationships between sequenceness 

and memory were unaffected. Error bars represent 95 % confidence intervals. With the 

exception of panel f, all figure results include n = 25 participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Zeb Kurth-Nelson for helpful discussions. This work was supported by a Wellcome Trust 
Investigator Award (098362/Z/12/Z) to R.J.D. Y.L. is supported by a UCL Graduate Research Scholarship and an 
Overseas Research Scholarship. The Max Planck University College London Centre is a joint initiative supported 
by University College London and the Max Planck Society. The Wellcome Centre for Human Neuroimaging is 
supported by core funding from the Wellcome Trust (203147/Z/16/Z).

Data availability

Complete behavioral data are available on the Open Science Framework (https://osf.io/

qaewv/). Unthresholded group beamforming statistical parametric maps of replay onset 

power changes and category responses during the localizer are available on NeuroVault 

(https://neurovault.org/collections/6088/). The raw MEG data are available on OpenNeuro 

(https://openneuro.org/datasets/ds00000).

Code availability

Code for the sequenceness analysis, as included in the full processing pathway simulation, 

can be found in Supplementary Software and is also available on GitHub (https://

github.com/gewimmer-neuro/memory-sequences).

References and Notes

1. Eichenbaum, H, Cohen, NJ. From Conditioning to Conscious Recollection: Memory Systems of the 
Brain. Oxford University Press; New York: 2001. 

2. Buzsaki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. 
Nat Neurosci. 2013 Feb.16:130. [PubMed: 23354386] 

3. Eichenbaum H. The role of the hippocampus in navigation is memory. J Neurophysiol. 2017 Apr 
1.117:1785. [PubMed: 28148640] 

4. Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. 
Nature. 2013 May 2.497:74. [PubMed: 23594744] 

Wimmer et al. Page 38

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://osf.io/qaewv/
https://osf.io/qaewv/
https://neurovault.org/collections/6088/
https://openneuro.org/datasets/ds00000
https://github.com/gewimmer-neuro/memory-sequences
https://github.com/gewimmer-neuro/memory-sequences


5. Jadhav SP, Kemere C, German PW, Frank LM. Awake hippocampal sharp-wave ripples support 
spatial memory. Science. 2012 Jun 15.336:1454. [PubMed: 22555434] 

6. Olafsdottir HF, Bush D, Barry C. The Role of Hippocampal Replay in Memory and Planning. 
Current biology: CB. 2018 Jan 8.28

7. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for 
memory consolidation and retrieval. Nat Neurosci. 2011 Feb.14:147. [PubMed: 21270783] 

8. Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval 
during memory search. Science. 2005 Dec 23.310:1963. [PubMed: 16373577] 

9. Horner AJ, Bisby JA, Bush D, Lin WJ, Burgess N. Evidence for holistic episodic recollection via 
hippocampal pattern completion. Nat Commun. 2015 Jul 2.6

10. Wimmer GE, Shohamy D. Preference by association: how memory mechanisms in the 
hippocampus bias decisions. Science. 2012 Oct 12.338:270. [PubMed: 23066083] 

11. Wheeler ME, Petersen SE, Buckner RL. Memory’s echo: vivid remembering reactivates sensory-
specific cortex. Proc Natl Acad Sci U S A. 2000 Sep 26.97

12. Kurth-Nelson Z, Barnes G, Sejdinovic D, Dolan R, Dayan P. Temporal structure in associative 
retrieval. Elife. 2015 Jan 23.4

13. Michelmann S, Bowman H, Hanslmayr S. The Temporal Signature of Memories: Identification of 
a General Mechanism for Dynamic Memory Replay in Humans. PLoS Biol. 2016 
Aug.14:e1002528. [PubMed: 27494601] 

14. Brown TI, et al. Prospective representation of navigational goals in the human hippocampus. 
Science. 2016 Jun 10.352:1323. [PubMed: 27284194] 

15. Wimmer GE, Buchel C. Learning of distant state predictions by the orbitofrontal cortex in humans. 
Nature Communications. 2019 Jun 11.10

16. Yaffe RB, Shaikhouni A, Arai J, Inati SK, Zaghloul KA. Cued Memory Retrieval Exhibits 
Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and 
Prefrontal Cortex. J Neurosci. 2017 Apr 26.37:4472. [PubMed: 28336569] 

17. Jafarpour A, Fuentemilla L, Horner AJ, Penny W, Duzel E. Replay of very early encoding 
representations during recollection. J Neurosci. 2014 Jan 1.34:242. [PubMed: 24381285] 

18. Michelmann S, Staresina BP, Bowman H, Hanslmayr S. Speed of time-compressed forward replay 
flexibly changes in human episodic memory. Nature Human Behaviour. 2019 Feb.3:143.

19. Kurth-Nelson Z, Economides M, Dolan RJ, Dayan P. Fast Sequences of Non-spatial State 
Representations in Humans. Neuron. 2016 Jul 06.91:194. [PubMed: 27321922] 

20. Liu Y, Dolan RJ, Kurth-Nelson Z, Behrens T. Human replay spontaneously reorganises experience. 
Cell. 2019

21. Papale AE, Zielinski MC, Frank LM, Jadhav SP, Redish AD. Interplay between Hippocampal 
Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in Decision Making. Neuron. 
2016 Dec 7.92:975. [PubMed: 27866796] 

22. Pezzulo G, Donnarumma F, Maisto D, Stoianov I. Planning at decision time and in the background 
during spatial navigation. Curr Opin Beh Sci. 2019; 29:69.

23. Buzsaki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 
planning. Hippocampus. 2015 Oct.25:1073. [PubMed: 26135716] 

24. Wikenheiser AM, Redish AD. Hippocampal theta sequences reflect current goals. Nat Neurosci. 
2015 Feb.18:289. [PubMed: 25559082] 

25. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal 
at a decision point. J Neurosci. 2007 Nov 7.27

26. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat 
Neurosci. 2007 Oct.10:1241. [PubMed: 17828259] 

27. Ambrose RE, Pfeiffer BE, Foster DJ. Reverse Replay of Hippocampal Place Cells Is Uniquely 
Modulated by Changing Reward. Neuron. 2016 Sep 7.91:1124. [PubMed: 27568518] 

28. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during 
the awake state. Nature. 2006 Mar 30.440:680. [PubMed: 16474382] 

Wimmer et al. Page 39

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



29. Singer AC, Carr MF, Karlsson MP, Frank LM. Hippocampal SWR activity predicts correct 
decisions during the initial learning of an alternation task. Neuron. 2013 Mar 20.77:1163. 
[PubMed: 23522050] 

30. Kumaran D, Hassabis D, McClelland JL. What Learning Systems do Intelligent Agents Need? 
Complementary Learning Systems Theory Updated. Trends Cogn Sci. 2016 Jul.20:512. [PubMed: 
27315762] 

31. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971 Jul 
1.262:23. [PubMed: 4399412] 

32. Schuck NW, Niv Y. Sequential replay of nonspatial task states in the human hippocampus. Science. 
2019; 364

33. Kievit RA, Frankenhuis WE, Waldorp LJ, Borsboom D. Simpson’s paradox in psychological 
science: a practical guide. Frontiers in psychology. 2013; 4:513. [PubMed: 23964259] 

34. Howard MW, Kahana MJ. A distributed representation of temporal context. Journal of 
mathematical psychology. 2002 Jun.46:269.

35. Tambini A, Davachi L. Persistence of hippocampal multivoxel patterns into postencoding rest is 
related to memory. Proc Natl Acad Sci U S A. 2013 Nov 26.110

36. Ben-Yakov A, Dudai Y. Constructing realistic engrams: poststimulus activity of hippocampus and 
dorsal striatum predicts subsequent episodic memory. J Neurosci. 2011 Jun 15.31:9032. [PubMed: 
21677186] 

37. Deuker L, et al. Memory consolidation by replay of stimulus-specific neural activity. J Neurosci. 
2013 Dec 4.33

38. Schapiro AC, McDevitt EA, Rogers TT, Mednick SC, Norman KA. Human hippocampal replay 
during rest prioritizes weakly learned information and predicts memory performance. Nat 
Commun. 2018 Sep 25.9

39. Tse D, et al. Schemas and memory consolidation. Science. 2007 Apr 6.316:76. [PubMed: 
17412951] 

40. Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave 
sleep. Neuron. 2002 Dec 19.36:1183. [PubMed: 12495631] 

41. Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G. Replay and time compression of recurring 
spike sequences in the hippocampus. J Neurosci. 1999 Nov 1.19:9497. [PubMed: 10531452] 

42. Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948 Jul.55:189. [PubMed: 18870876] 

43. Behrens TEJ, et al. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. 
Neuron. 2018 Oct 24.100:490. [PubMed: 30359611] 

44. Dolan RJ, Dayan P. Goals and habits in the brain. Neuron. 2013 Oct 16.80:312. [PubMed: 
24139036] 

45. Shohamy D, Daw ND. Integrating memories to guide decisions. Curr Opin Behav Sci. 2015 
Oct.5:85.

46. Shadlen MN, Shohamy D. Decision Making and Sequential Sampling from Memory. Neuron. 2016 
Jun 1.90:927. [PubMed: 27253447] 

47. Bakkour A, et al. The hippocampus supports deliberation during value based decisions. Elife. 2019 
Jul 3.8

48. Wimmer GE, Buechel C. Reactivation of reward-related patterns from single past episodes 
supports memory-based decision making. J Neurosci. 2016; 36:2868. [PubMed: 26961943] 

49. Brewin CR, Gregory JD, Lipton M, Burgess N. Intrusive images in psychological disorders: 
characteristics, neural mechanisms, and treatment implications. Psychol Rev. 2010 Jan.117:210. 
[PubMed: 20063969] 

50. Suh J, Foster DJ, Davoudi H, Wilson MA, Tonegawa S. Impaired hippocampal ripple-associated 
replay in a mouse model of schizophrenia. Neuron. 2013 Oct 16.80:484. [PubMed: 24139046] 

51. Braun EK, Wimmer GE, Shohamy D. Retroactive and graded prioritization of memory by reward. 
Nat Commun. 2018 Nov 20.9

52. Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity 
via linearly constrained minimum variance spatial filtering. IEEE Transactions on biomedical 
engineering. 1997; 44:867. [PubMed: 9282479] 

Wimmer et al. Page 40

Nat Neurosci. Author manuscript; available in PMC 2021 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Brief Summary

Successful recall of an extended episode of experience in humans is associated with a 

highly compressed replay of neural patterns associated with a memory. Replay also 

flexibly changes direction depending on task goals.
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Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Fig. 1. Experimental design and decoding of the episode elements.
(a) On day 1, in the episodic encoding phase we presented subjects with eight extended non-

spatial episodes, with a single exposure per episode. Episodes contained five stimulus 

elements. The first four episode elements were selected from six distinct picture categories. 

Participants were incentivised to encode the precise order of the episode elements. (b) On 

day 2, in the episodic memory test phase, participants retrieved episodes in two conditions. 

In the ‘after’ condition, participants were asked to identify whether a subsequent probe 

element came after the cue element. Following a 5.5 s retrieval period, a test probe 
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presented. The sequential order referred to any stimulus from the same episode that followed 

this cue; here, the depicted answer would be ‘correct’. By contrast, in the ‘before’ condition, 

participants were asked to identify whether a subsequent probe element came before the cue 

element. (c) Mean memory performance in the after and before conditions. Purple dots 

represent individual data points for regular performance participants with sufficient incorrect 

response (error) trials free from MEG artifacts for accuracy analyses (after, n = 17; before, n 
= 18), in order to keep consistency between behavioral and MEG analyses; the remaining 

very high performance participants are shown in orange (see also Extended Data Fig. 1; grey 

boxes represent the 25-75 percentiles of the data; median: line, mean: dot; error bars 

represent standard error of the mean (SEM)). (d) Classifier performance for episode element 

categories presented during the localizer phase, training and testing at all time points, 

showing good discrimination of the 6 categories used to compose the first four episode 

elements. In localizer trials, note that a word naming the upcoming stimulus appeared 2 s 

before the stimulus, contributing to above-chance classification at 0 ms. (e) Peak classifier 

performance at 200 ms after stimulus onset in the localizer phase (depicting the diagonal 

extracted from panel d; see also Fig. S3). Dashed line represents the permutation threshold. 

(f) Application of the trained classifier (at 200 ms) to cue onset in memory retrieval trials 

demonstrated above chance decoding of the current on-screen category during retrieval. The 

dashed line represents the estimated chance threshold to assess significance. Yellow lines 

represent 200 ms, the peak classification time point in the localizer phase. Shaded error 

margins represent SEM. *** p < 0.001. All figure results include n = 25 participants.
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Fig. 2. Mean sequenceness (replay) in the after condition and the relationship between 
sequenceness and performance in the after and before memory retrieval conditions.
(a) In the after condition, mean forward minus backwards sequenceness for correct memory 

trials (when participants accurately answered the memory question). On correct trials, a peak 

of reverse sequenceness was observed at lags from 100-120 ms. This time window, shaded 

in light blue, was used for subsequent analyses. Grey shaded error margins represent SEM. 

(b) In the after condition, stronger mean reverse sequenceness on correct trials correlated 

negatively with overall mean memory performance (percentage of correct trials). As in Fig. 

1c the data points for the regular performance participants are shown in purple; high 

performance participants are shown in orange. (c) In the before condition, stronger forward 

sequenceness related to lower performance. The overall results in the after and before 
conditions support a stronger role for replay in retrieving weaker memory traces. All figure 

results include n = 25 participants.
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Fig. 3. Relationship between forward and backward sequenceness and trial-by-trial memory 
retrieval success in the after and before conditions.
(Forward in purple; backward in blue.) (a) In the after condition (left; n = 17 participants), 

successful memory retrieval was supported by reverse sequenceness. In the before condition 

(right; n = 18 participants), retrieval was supported by forward sequenceness. Error bars 

represent 95 % confidence intervals (CI); multi-level regression analysis, two-sided p-value 

determined via bootstrapping. See also Extended Data Figure 7 for individual participant 

regression coefficients derived from a single level analysis. (b) Interaction of replay 

direction (forward, backward) by condition (after, before) showing a stronger effect of 
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forward replay on trial-by-trial successful memory retrieval in the before condition, and a 

stronger effect of backward replay on successful memory retrieval in the after condition. 

(The regular performance group in the combined sequenceness analysis included n = 15 

participants common to the regular performance group across the after and before 

conditions; multi-level regression analysis, two-sided p-value determined via bootstrapping.) 

(c) Example of reverse sequenceness in the after condition. (d) Example of forward 

sequenceness in the before condition. s = participant; trl = trial; *p < 0.05; **p < 0.01; error 

bars represent 95 % confidence intervals.
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Fig. 4. Beamforming analysis of power increases at the onset of sequenceness events and time-
frequency analyses of replay onset.
(a) In the after condition, power in the right anterior MTL increased at onset of reverse 

sequenceness events. The y coordinate refers to the MNI atlas. (b) In the before condition, 

power in the right anterior MTL increased at the onset of forward sequenceness events. For 

panels a and b, statistical maps were thresholded at p < 0.001 uncorrected, for display; 

clusters significant at p < 0.001 whole-brain FWE, one-sided. For unthresholded statistical 

maps see: https://neurovault.org/collections/6088/) (c) Time-frequency analysis showing 

power change relative to replay onset across the after and before conditions in frequencies 

up to 50 Hz; analysis focuses on the 8-12 Hz range reflecting a 100-120 ms lag. 0 ms 

represents the onset of putative replay events. (d) Time-frequency analysis of replay onset 
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showing no high frequency power change relative to replay onset across the after and before 

conditions (using data sampled at 600 Hz); analysis focuses on the 120-150 Hz range as 

previously identified (20). All figure results include n = 25 participants.
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Fig. 5. The relationship between cue-evoked reactivation and performance.
(a) Across both the after and before conditions, we found evidence for cue-evoked 

reactivation of the elements present in the episode, measured as the difference between 

within-episode versus other episode elements, peaking 200-250 ms after cue onset. This 

time window, shaded in light blue, was used in later analyses. Shaded error margins 

represent SEM; n = 25 participants. One-sample two-sided t-test versus zero; *** p < 0.001. 

(b) Example of cue-evoked reactivation of within-episode elements in a single trial in a 

single participant. (c) Differential cue-evoked reactivation related to mean performance in a 

given episode for the high performance participants, but not regular performance participants 

Group breakdown based on number of incorrect trials across both the after and before 

conditions: high n = 10 participants; regular n = 15 participants; error bars represent 95 % 

CI. (d) Retrieval model illustrating the relationship between memory and sequenceness 

across-and within-participants. Across participants, higher mean memory performance was 

associated with weaker sequenceness and stronger cue-evoked reactivation of episode 

elements (‘clustered retrieval’). Within-participants, in regular performing participants, 

stronger trial-by-trial sequenceness positively related to trial-by-trial retrieval success.
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