Skip to main content
. Author manuscript; available in PMC: 2021 Mar 26.
Published in final edited form as: Nat Biotechnol. 2020 Jul 6;38(12):1415–1420. doi: 10.1038/s41587-020-0570-8

Extended Data Fig. 5. Single channel stability of CsgGR9:FCP complexes.

Extended Data Fig. 5

(a, b) Single channel conductance trace of two representative CsgGR9:FCP nanopores during a 24 hour sequencing run, recorded at -180 mV. The data show both CsgGR9 and CsgGR9:FCP are predominantly in a sequencing, DNA-occupied state, with apo pores capturing new DNA strands within seconds. The two traces show a CsgGR9:FCP pore complex that stays intact of the 24h sequencing run (a), as well as a pore complex that shows dissociation of the FCP peptides during the sequencing run (at ~ 19h; b). Upon FCP dissociation, the channel continues sequencing now as a CsgGR9 apo pore (labelled CsgGR9). Arrows indicate the average conductance levels of the open pore and the DNA-occupied pore during sequencing intervals. The zoomed in panels show two representative 30s time windows of the sequencing run of the intact CsgGR9:FCP channel (left) and the CsgGR9 channel following dissociation of FCP (right). The full and zoomed in sequencing runs show high DNA capture rates for CsgGR9:FCP channels throughout the 24h sequencing run. (c) Scatter plot of the open pore current of 25 CsgGR9:FCP channels during 24h sequencing runs, recorded at -180 mV. Open pore plots for CsgGR9:FCP pores that stay intact throughout the 24h run (n=22), and pores that lose FCP (n=3) are coloured blue and red, respectively.