Table I.
model | baseline | ZSSR | SISR | DCNN [20] | ||||
---|---|---|---|---|---|---|---|---|
training | interpolation | noise-free frame | noisy frame | noisy video | simulation | pre-trained | ||
kernel | LR (1) | Voronoi (2) | Cartesian (3) | Voronoi (4) | Cartesian (5) | Voronoi (6) | Voronoi (7) | Cartesian (8) |
PSNR | 27.99 ± 1.08 | 28.86 ± 1.08 | 28.27 ± 0.99 | 30.16 ± 1.22 | 28.23 ± 0.93 | 30.67 ± 1.27 | 30.99 ± 1.29 | 28.04 ± 1.08 |
SSIM | 0.851 ± 0.020 | 0.880 ± 0.017 | 0.862 ± 0.014 | 0.878 ± 0.015 | 0.849 ± 0.021 | 0.890 ± 0.014 | 0.902 ± 0.012 | 0.852 ± 0.020 |
LIPIPS | 0.781 ± 0.017 | 0.806 ± 0.015 | 0.785 ± 0.012 | 0.806 ± 0.014 | 0.777 ± 0.018 | 0.817 ± 0.012 | 0.816 ± 0.014 | 0.782 ± 0.017 |
GMSD | 0.940 ± 0.006 | 0.954 ± 0.007 | 0.953 ± 0.004 | 0.955 ± 0.004 | 0.943 ± 0.006 | 0.960 ± 0.004 | 0.961 ± 0.004 | 0.940 ± 0.006 |
L1 loss | 0.973 ± 0.003 | 0.975 ± 0.003 | 0.974 ± 0.003 | 0.980 ± 0.003 | 0.973 ± 0.003 | 0.981 ± 0.003 | 0.982 ± 0.003 | 0.973 ± 0.003 |
VGG | 2.62 ± 0.19 | 2.39 ± 0.17 | 2.70 ± 0.14 | 2.37 ± 0.16 | 2.69 ± 0.20 | 2.24 ± 0.14 | 2.25 ± 0.16 | 2.60 ± 0.19 |