Skip to main content
. Author manuscript; available in PMC: 2021 Mar 30.
Published in final edited form as: IEEE Trans Med Imaging. 2021 Mar 19;PP:10.1109/TMI.2021.3067512. doi: 10.1109/TMI.2021.3067512

Table I.

Image Quality Assessment for synthetic experiments. We run ablation study to investigate the performance of models employing either Voronoi (2, 4) or Bicubic kernel (3, 5) for simulated noise or noise-free data. We compare Video ZSSR with Voronoi kernel (6) against SISR trained on synthetic data (7), state-of-the-art DCNN (8) [20], baseline interpolation reference method (2).

model baseline ZSSR SISR DCNN [20]
training interpolation noise-free frame noisy frame noisy video simulation pre-trained
kernel LR (1) Voronoi (2) Cartesian (3) Voronoi (4) Cartesian (5) Voronoi (6) Voronoi (7) Cartesian (8)
PSNR 27.99 ± 1.08 28.86 ± 1.08 28.27 ± 0.99 30.16 ± 1.22 28.23 ± 0.93 30.67 ± 1.27 30.99 ± 1.29 28.04 ± 1.08
SSIM 0.851 ± 0.020 0.880 ± 0.017 0.862 ± 0.014 0.878 ± 0.015 0.849 ± 0.021 0.890 ± 0.014 0.902 ± 0.012 0.852 ± 0.020
LIPIPS 0.781 ± 0.017 0.806 ± 0.015 0.785 ± 0.012 0.806 ± 0.014 0.777 ± 0.018 0.817 ± 0.012 0.816 ± 0.014 0.782 ± 0.017
GMSD 0.940 ± 0.006 0.954 ± 0.007 0.953 ± 0.004 0.955 ± 0.004 0.943 ± 0.006 0.960 ± 0.004 0.961 ± 0.004 0.940 ± 0.006
L1 loss 0.973 ± 0.003 0.975 ± 0.003 0.974 ± 0.003 0.980 ± 0.003 0.973 ± 0.003 0.981 ± 0.003 0.982 ± 0.003 0.973 ± 0.003
VGG 2.62 ± 0.19 2.39 ± 0.17 2.70 ± 0.14 2.37 ± 0.16 2.69 ± 0.20 2.24 ± 0.14 2.25 ± 0.16 2.60 ± 0.19