Table I.
Image Quality Assessment for synthetic experiments. We run ablation study to investigate the performance of models employing either Voronoi (2, 4) or Bicubic kernel (3, 5) for simulated noise or noise-free data. We compare Video ZSSR with Voronoi kernel (6) against SISR trained on synthetic data (7), state-of-the-art DCNN (8) [20], baseline interpolation reference method (2).
model | baseline | ZSSR | SISR | DCNN [20] | ||||
---|---|---|---|---|---|---|---|---|
training | interpolation | noise-free frame | noisy frame | noisy video | simulation | pre-trained | ||
kernel | LR (1) | Voronoi (2) | Cartesian (3) | Voronoi (4) | Cartesian (5) | Voronoi (6) | Voronoi (7) | Cartesian (8) |
PSNR | 27.99 ± 1.08 | 28.86 ± 1.08 | 28.27 ± 0.99 | 30.16 ± 1.22 | 28.23 ± 0.93 | 30.67 ± 1.27 | 30.99 ± 1.29 | 28.04 ± 1.08 |
SSIM | 0.851 ± 0.020 | 0.880 ± 0.017 | 0.862 ± 0.014 | 0.878 ± 0.015 | 0.849 ± 0.021 | 0.890 ± 0.014 | 0.902 ± 0.012 | 0.852 ± 0.020 |
LIPIPS | 0.781 ± 0.017 | 0.806 ± 0.015 | 0.785 ± 0.012 | 0.806 ± 0.014 | 0.777 ± 0.018 | 0.817 ± 0.012 | 0.816 ± 0.014 | 0.782 ± 0.017 |
GMSD | 0.940 ± 0.006 | 0.954 ± 0.007 | 0.953 ± 0.004 | 0.955 ± 0.004 | 0.943 ± 0.006 | 0.960 ± 0.004 | 0.961 ± 0.004 | 0.940 ± 0.006 |
L1 loss | 0.973 ± 0.003 | 0.975 ± 0.003 | 0.974 ± 0.003 | 0.980 ± 0.003 | 0.973 ± 0.003 | 0.981 ± 0.003 | 0.982 ± 0.003 | 0.973 ± 0.003 |
VGG | 2.62 ± 0.19 | 2.39 ± 0.17 | 2.70 ± 0.14 | 2.37 ± 0.16 | 2.69 ± 0.20 | 2.24 ± 0.14 | 2.25 ± 0.16 | 2.60 ± 0.19 |