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Abstract

Purpose of Review—This current review summarizes the investigational and therapeutic 

applications of transcranial magnetic stimulation (TMS) in schizophrenia.

Recent Findings—Fairly consistent findings of an impaired cortical excitation-inhibition 

balance, cortical plasticity, and motor resonance have been reported in schizophrenia. Cortical 

connectivity impairments have also been demonstrated in motor and prefrontal brain regions. In 

terms of treatment, the best support is for 1-Hz TMS to the left temporoparietal cortex for the 

shortterm treatment of persistent auditory hallucinations. High-frequency TMS to the left 

prefrontal cortex improves negative and cognitive symptoms, but with inconsistent and small 

effects.

Summary—TMS combined with diverse brain mapping techniques and clinical evaluation can 

unravel critical brain-behavior relationships relevant to schizophrenia. These provide critical 

support to the conceptualization of schizophrenia as a connectopathy with anomalous cortical 

plasticity. Adaptive modulation of these aberrant brain networks in a neuroscience-informed 

manner drives short-term therapeutic gains in difficult-to-treat symptoms of schizophrenia.
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Introduction

Schizophrenia is a severe brain disorder with a lifetime prevalence of ~ 1% that typically 

begins in early adulthood, resulting in substantial disability, morbidity, and mortality, at 

considerable personal and societal costs [1, 2]. Antipsychotic medications discovered in the 
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1950s, which act via blocking dopamine receptors in the brain, are still the mainstay of 

treatment in schizophrenia [1]. They are effective in approximately 50% of patients [3] and 

help in correcting positive symptoms like hallucinations and delusions, with little impact on 

the more disabling negative and cognitive symptoms. It is therefore imperative to examine 

novel therapeutic avenues that not only target the resistant, positive symptoms but also 

improve negative and cognitive symptoms of schizophrenia. In order to develop new 

treatments, the current pathophysiological models need to be empirically examined using 

both in vivo and in vitro methods. It is here that the role of transcranial magnetic stimulation 

(TMS) plays a dual and vital role. First, TMS can be utilized as a neurophysiological probe 

to understand brain function, thus enabling better neurobiological characterization of disease 

processes and their evolution with treatment [4, 5••]. Next, when precisely delivered in trains 

of repeated pulses (rTMS), it can potentially have excitatory and inhibitory cortical network-

level effects, depending on the pattern of stimulation. This property of TMS has been 

leveraged to drive short-term change in behavior based on prior understanding of the 

underlying cortical-level pathophysiological processes [6]. This current review will focus on 

both these applications of TMS—(a) an investigational probe for characterizing aberrant 

brain function in schizophrenia, and (b) a therapeutic tool for treating resistant symptoms of 

schizophrenia.

TMS as an Investigational Probe (Table 1)

The motivation behind the invention of TMS was primarily to use it as an investigational 

tool that could focally (and non-invasively) modulate brain activity [7]. Typically, a single 

stimulus (perturbation pulse) is applied over the scalp area corresponding to the motor cortex 

via a figure-of-eight coil that carries a large, brief pulse of current (~ 4000 A), generating a 

magnetic field, which passes effortlessly through a highresistance structure like the skull. 

Visible motor twitches in the contralateral limb arise from the resultant action potentials 

generated by ionic currents induced in the superficial brain by the rapid, time-varying 

magnetic field. Electromyography is typically used to measure the amplitude of this motor 

response.

Depending on the number, frequency, and interval between pulses, diverse brain 

physiological systems can be probed to reveal both correlative and causal mechanisms of the 

schizophrenia pathophysiology (Fig. 1). Single and paired-pulse TMS paradigms are used to 

study functional brain dynamics through cortical reactivity (excitation and inhibition) and 

connectivity (inter- and intrahemispheric) at resting or active/task states with high temporal 

(order of milliseconds) resolution. In contrast, longer-lasting trains of rTMS pulses are used 

to manipulate neuronal activity to produce transient/virtual lesions or neuroenhancement, 

based on long-term depression (LTD)– or potentiation (LTP)-like plasticity effects. When 

applied in an offline manner, paired with an informed examination of cortical/ behavioral 

after-effects that last over several minutes, this technique permits the study of causal 

contributions of specific brain networks towards specific behaviors [5••].
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Motor Cortical Reactivity

Balance of excitatory and inhibitory post-synaptic potentials generated through the 

stimulation of gamma-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) 

glutamate interneurons regulates pyramidal neuron firing. An optimal cortical excitation/

inhibition balance is necessary for synchronized firing of neuronal networks that drive social 

behavior relevant to psychiatric disorders [8]. TMS can probe the functioning of these 

intracortical networks and their neurotransmitter systems using single/paired-pulse 

paradigms [4].

Cortical Excitability—Resting motor threshold (RMT), motor evoked potential (MEP) 

amplitude, and intracortical facilitation (ICF) capture cortical excitability. Voltage-gated Na+ 

channels and ionotropic non-NMDA glutamate receptors govern the transsynaptic effects of 

the TMS pulse on the corticospinal pyramidal neurons and spinal motoneurons, thus 

regulating RMT [9]. Trans-synaptic activation of pyramidal neurons via excitatory/inhibitory 

interneurons, and the moderating effects of dopamine, serotonin, norepinephrine, and 

acetylcholine, contribute to the MEP amplitude [9]. ICF reflects predominant facilitation 

triggered by stronger excitatory (glutamatergic; primarily NMDA) and weaker inhibitory 

(GABAergic; primarily GABAA) interneurons. A meta-analysis that examined pooled effect 

sizes in these excitability measures revealed no significant differences between 

schizophrenia patients and healthy comparison subjects [10•]. This indicates that the 

excitability of the motor cortex to an external perturbation TMS pulse is intact in 

schizophrenia.

Cortical Inhibition—Short-interval intracortical inhibition (SICI) and long-interval 

intracortical inhibition (LICI) are paired-pulse inhibitory TMS paradigms. Fast inhibitory 

post-synaptic potentials mediated by the rapid but less potent ionotropic GABAA receptors 

mediate SICI [11]. In contrast, slow inhibitory post-synaptic potentials mediated by the more 

potent metabotropic GABAB receptors mediate LICI [12]. GABAB receptor–driven motor 

cortical inhibition mediates the cortical silent period (CSP) [4]. While the observation of 

deficits in LICI and CSP (both mediated by GABAB receptors) was inconsistent, that of 

deficient SICI was consistent in schizophrenia (Hedge’s g = 0.47) [10•]. Diminished SICI is 

related to the strength of the prefrontal to motor cortex functional connectivity and the 

integrity of the connecting white matter tracts [13], suggesting a dysregulated top-down 

frontal inhibitory mechanism. Importantly, a deficit in SICI is not specific to schizophrenia; 

it is also observed in marginally greater magnitude (Hedge’s g ~ 0.6) in major depression 

and obsessive-compulsive disorder [10•]. SICI impairments in schizophrenia are related to 

deficits in both social [14] and non-social [15] cognition. A critical aspect of CSP in 

schizophrenia is that it is enhanced with clozapine treatment as compared to other 

antipsychotic medications [16, 17]; this not only provides insights into the mechanisms of 

clozapine but also provides a potential physiological marker of tracking symptom change. 

Recent studies in untreated patient populations [14, 18] have revealed that the balance 

between GABAa- and GABAB-mediated neurotransmission may differentiate schizophrenia 

(deficient GABAA and normal GABAB) patients from those with mania (deficient GABAA 

and elevated GABAB); however, these findings need replication.
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Motor Resonance or Putative Mirror Neuron System Activity—The mirror neuron 

system (MNS) is a frontoparietal network of specialized nerve cells with dual properties—

they discharge during action execution, as well as observation of the same action [19]. This 

dual property is thought to form an internal template to decode intentions underlying 

gestures, actions, and emotions in social interactions via an automatic reflexive mechanism 

referred to as embodied simulation [20]. Social behaviors like imitation and empathy are 

potential functional correlates of the MNS. TMS can be used to indirectly infer premotor 

MNS activity, via its posited connections with the motor cortex [21, 22]. Deficient MNS 

response was observed in un-medicated schizophrenia patients that had a significant 

association with the severity of their social cognition impairments [23, 24]. In contrast, an 

elevated MNS response (possible disinhibition) was demonstrated in unmedicated bipolar 

mania patients that correlated with hyperimitative behaviors (incidental echolalia) and manic 

symptom severity [25]. Evidence for such a deficit is not consistently reported in medicated 

schizophrenia patients [26, 27]. Recent investigations have attempted to examine MNS 

responses using more nuanced, social context–based action observation stimuli. Viewing 

actions within a context results in greater facilitation of motor cortical reactivity relative to 

neutral action observation in both patients and healthy subjects. However, this MNS 

response to context-based action observation was still blunted in schizophrenia patients 

treated with antipsychotic medications [28].

Cortical Connectivity

TMS-evoked cortical reactivity propagates to connected hubs of the network that is being 

stimulated. This propagation can inform about the integrity of the connecting white matter 

tracts, as well as examine functional properties (excitatory or inhibitory) of the stimulated 

networks.

Transcallosal Connectivity—The ipsilateral silent period (ISP) is a function of corpus 

callosum integrity [29] since it reflects transcallosal inhibition of the contralateral 

preactivated motor area by the motor area stimulated by TMS. This can also be evaluated by 

applying TMS pulses in close temporal approximation to both hemispheres. This 

transcallosal inhibition (TCI) is also cortical in origin and mediated by transcallosal motor 

fibers, thus providing a direct measure of optimal corpus callosum maturation/integrity [29]. 

TCI at shorter interstimulus intervals (7–10 ms) does not correlate with that at longer 

intervals (40 ms). However, the 40-ms TCI correlates with ISP duration, indicating both 

common and shared mechanisms [30]. Transcallosal facilitation (TCF) is the percentage of 

MEP facilitation relative to suprathreshold test pulse MEP from one hemisphere when a 

low-intensity conditioning pulse is delivered over the contralateral hemisphere 4–5 ms 

before the test pulse [31]. In schizophrenia, there is consistent evidence of diminished TCI 

and ISP [32–34], indicative of aberrant corpus callosum functioning. However, there is 

inconclusive evidence about interhemispheric facilitation in schizophrenia [33].

Motor Cortical Connectivity—Ipsilateral subthreshold parietal stimulation facilitates the 

MEP obtained from the motor cortex [35]. This twin-coil, paired-pulse TMS paradigm can 

provide a robust estimation of functional connectivity within the brain. This parieto-motor 
connectivity, structurally supported by the superior longitudinal fasciculus, is found to be 

Mehta et al. Page 4

Curr Psychiatry Rep. Author manuscript; available in PMC 2021 March 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



deficient in patients with schizophrenia and has behavioral correlates with severity of the 

disabling negative symptoms [36]. On similar lines, premotor-motor connectivity is also 

found to be impaired in schizophrenia [37]—a subthreshold conditioning stimulus produces 

diminished facilitation of MEP elicited by a suprathreshold test pulse in the contralateral 

hemisphere in schizophrenia as compared to healthy subjects. Lastly, the inhibitory 

influence of the cerebellum on the motor cortex (via Purkinje cells) can also be examined 

with TMS, informing about the integrity of the cerebellar-thalamo-cortical connectivity. In 

schizophrenia, a diminished cerebellar inhibition of MEP was reported in a small study [38]. 

This is, however, in keeping with more recent findings of an association between negative 

symptom severity and aberrant cerebellar-prefrontal connectivity in schizophrenia [39•]. 

Delivering single TMS pulses to the motor cortex and examining the change in resting-state 

fMRI BOLD signals in the thalamus can reveal cortico-thalamic connectivity. The strength 

of this TMS-evoked fMRI response in the thalamus is significantly diminished in 

schizophrenia as compared to healthy subjects [40].

Motor Cortical Plasticity

Dysplasticity is a core pathophysiology of schizophrenia, which encompasses hypoplastic 

cognitive and volitional neural systems, as well as hyperplastic salience detection and 

emotion processing systems [41]. With the advent of diverse neuromodulatory techniques, 

we can now quantify and compare cortical plasticity in schizophrenia and healthy 

individuals [42–44]. TMS can be employed as both a neuromodulator—to induce plastic 

change, and, as a neurophysiological probe—to quantify the degree of plastic change, in 

combination with EMG, EEG, or fMRI. In schizophrenia, both TMS and transcranial 

electrical stimulation perturbation protocols have been used to study in vivo transitory 

cortical reactivity increases or decreases [45] that are thought to parallel the commonly 

observed in vitro longterm potentiation/depression (LTP/LTD)–like experience-dependent 

synaptic plasticity [46]. A recent meta-analysis of 16 datasets yielding data from 189 

schizophrenia patients and 187 healthy controls [47•] to quantify the magnitude of such 

cortical plasticity impairments in schizophrenia revealed effect sizes ranging from 0.66 

(LTP-like plasticity) to 0.68 (LTD-like plasticity). The consistency of these findings, despite 

the known clinical heterogeneity of schizophrenia, encourages the use of these biomarkers to 

characterize illness trajectories and treatment response. Future studies can also examine how 

the cortical excitation-inhibition balance influences cortical plasticity outcomes to the 

different neuromodulatory techniques [48]. Connectivity of the motor cortex to distinct 

premotor and parietal cortices can also be examined using such perturbation protocols. 

Delivering 1-Hz TMS to the premotor cortex resulted in suppression of motor cortical 

excitability in healthy individuals, but facilitation in schizophrenia patients [49]. In contrast, 

delivering 20-Hz TMS to the premotor/inferior frontal gyrus area enhanced MNS 

responsiveness in healthy individuals [50, 51]. This application of TMS has both heuristic 

(understanding the behavioral aftereffects of enhancing MNS activity) and translational 

(poten-tial treatment of social cognition deficits) applications when tested in patients with 

schizophrenia.
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Cortical Reactivity and Connectivity in Non-motor Brain Regions

Earlier TMS investigations focused on the motor cortex. This limitation is overcome partly 

by the advent of TMS-EEG, which has ushered a new era of examining brain states and their 

dynamics in motor and non-motor regions [52••]. Cortical reactivity and effective 

connectivity can be recorded with EEG following a TMS pulse [53]. These responses are 

thought to reflect a summation of excitatory and inhibitory cortical pyramidal and 

intemeuron post-synaptic potentials [54]. Despite the tremendous challenges that come with 

the technique (especially handling artifacts and analyzing large data dimensions), there are 

important inferences from current TMS-EEG experiments that could be consolidated in the 

future. Schizophrenia patients demonstrated diminished TMS-evoked EEG gamma 

oscillations in the site of frontal stimulation; its propagation (connectivity) to other cortical 

regions was also restricted as compared to healthy subjects [55]. Slowing of the TMS-

evoked EEG frequency in the prefrontal (and not in the parietal) cortex was associated with 

symptom severity and cognitive deficits in schizophrenia [56]. Similar aberrations in 

prefrontal reactivity were described in first-episode psychotic patients as well [57]. In a 

related investigation, schizophrenia patients demonstrated waves of recurrent excitation 

propagating throughout the cortex, as compared to a faster fading away in healthy subjects 

[58].

Further advances have been made in examining cortical inhibitory processes within the 

prefrontal cortex using TMS-EEG. SICE LICI, and ICF can now be determined in nonmotor 

areas, thus providing measurements of various excitatory and inhibitory intracortical circuit 

functioning. Inhibition or facilitation is measured as suppression or facilitation of specific 

positive (e.g., P30) and negative (e.g., N100) peaks of the TMS-evoked potentials (TEP) [59] 

or as a change in the average EEG amplitude [60]. Schizophrenia patients demonstrate 

diminished prefrontal LICI as compared to their unaffected relatives and healthy subjects 

[61]. They also revealed deficits in prefrontal SICI and ICF as compared to healthy subjects 

in some of the positive and negative peaks of the TEP [62]. Lastly, another inhibitory 

paradigm that has been examined using TMS-EEG is the short-latency afferent inhibition 

(SAI). Here, a somatosensory conditioning (electrical stimulation of a peripheral nerve) 

stimulus delivered at a short latency (20 ms) inhibits the MEP (motor cortex) or TEP 

(prefrontal cortex). This process is thought to be mediated by both cholinergic and 

GABAergic inputs [63]. The prefrontal (and not motor) SAI is seen to be deficient in 

schizophrenia and is related to their cognitive performance [64]. Nevertheless, these TMS-

EEG results are very preliminary findings that require replication in future studies.

TMS in the Treatment of Schizophrenia

TMS has been used in the treatment of difficult-to-treat symptoms of schizophrenia, like 

persistent auditory hallucinations, negative symptoms, and cognitive deficits. There is a need 

for exploring alternative, neuroscience-informed treatments of these symptoms. 

Administering repetitive TMS treatment successively for several days can leverage the 

unique focal neuromodulatory property of TMS in bringing about behavioral change based 

on the site and pattern of stimulation, guided by our current understanding of the 

neurobiology of these symptom dimensions.
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Conventional TMS can either increase or decrease cortical activity depending on the 

frequency used to administer magnetic pulses. High-frequency TMS (10 or 20 Hz) enhances 

cortical activity while low-frequency TMS (1 Hz) reduces it. Recently introduced theta burst 

stimulation (TBS) uses bursts of very high frequency (50 Hz) repeatedly in either intermitted 

or continuous pattern to bring about stimulation or inhibition of cortical neiuons, 

respectively [65]. TBS has advantages of being brief and has longer-lasting neuroplasticity 

changes and a theoretically lower risk of inducing seizures compared to conventional TMS.

Positive Symptoms

Apart from its effects on resistant auditory hallucinations, the utility of TMS in treating 

other positive symptoms like delusions, made phenomena, or formal thought disorder is 

limited, with the current stimulation site and parameters. Speech processing brain regions in 

the bilateral temporal lobes are hyperactive during ongoing auditory hallucinations [66]. 

Therefore, low-frequency (1-Hz) rTMS has been used to reduce this cortical hyper-

activation to treat auditory hallucinations [67]. Recent meta-analyses on the therapeutic 

effects of rTMS for auditory hallucinations reveal significant benefits as compared to sham 

stimulation, with varying effect sizes: 0.29 [68•], 0.44 [69], 0.49 [70], and 0.51 [71••]. 

However, these come with several caveats. The effect sizes observed in more recent 

metaanalyses, which include larger samples, are lower than those reported in earlier analyses 

with smaller samples but stronger effects of 0.8 [72] to 1 [73]. There is a high degree of 

variability in the stimulation parameters, brain region targeted, the degree of treatment 

resistance, and duration of treatment. Concerns of publication bias, where negative trials 

may not have been published and unstable results on sensitivity analyses by removing 

individual trials [68•], also require consideration. The most common and perhaps most 

effective among all stimulation protocols is the low-frequency (1-Hz) stimulation over the 

left temporoparietal cortex [69]. This protocol, however, has limited benefits for other 

psychotic symptoms [69, 71••]. Interestingly, within-group (before and after treatment) 

effects of placebo (sham) treatment are also significant (effect size of 0.29) [74]; however, it 

must be noted that the effect sizes reported in the meta-analyses quoted above are for 

between-group differences (true versus sham). The durability of beneficial effects is short-

lasting (4–6 weeks), and this underlines the importance of continued medical treatment with 

antipsychotics [69], as well as a systematic study of pragmatic maintenance treatment 

strategies [75].

Younger age, female gender [76], higher co-prescribed antipsychotic dose, short (< 3-week) 

trial duration [71 ••], shorter scalp-to-temporal cortex distance [77], and increased regional 

cerebral blood flow at the site of stimulation before treatment are associated with better 

response [78]. High emotional salience to die hallucinations predicts a better response to 

rightsided 1-Hz rTMS [79]. While some of these predictive findings are plausible from a 

neurophysiological perspective, others (e.g., shorter trial duration and greater improvement) 

are indeed counterintuitive, requiring more systematic investigation. Given the promising but 

variable results, investigators have attempted to examine means to enhance the efficacy and 

durability of rTMS effects. High-frequency (20-Hz) rTMS to the left temporoparietal cortex 

[80], high-frequency primed 1-Hz rTMS [81], structural [82] and functional [83] MRI 

guided or neuronavigational rTMS, theta burst stimulation [84], bilateral sequential rTMS 
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[85], and deep TMS [86] have been used to enhance treatment outcomes, with mixed results. 

Indications other than treatment resistance are under-represented. For example, the potential 

benefits during early-course treatment of schizophrenia, its utility in children, pregnancy, 

and maintenance therapies have not been evaluated sufficiently.

Negative Symptoms

TMS is typically administered to enhance the “hypofrontality” of the dominant prefrontal 

cortex for improving negative symptoms. Results from two recent meta-analyses [71••, 87••] 

suggest a small-to-moderate benefit of true TMS over sham in improving negative 

symptoms (effect sizes 0.49 to 0.64). A third meta-analysis included studies examining only 

10-Hz rTMS with more stringent selection criteria and did not show any significant benefit 

of true TMS [68•]. In a sensitivity analysis that excluded two studies with unusually high 

effects of true TMS, the overall benefits of true TMS over sham TMS persisted at a much 

lower (effect size 0.31) magnitude [87••]. Higher pulse frequency (10–20 Hz), stronger 

stimulus intensity (100–110% RMT), longer treatment duration (> 3 weeks), younger age (< 

39 years), and shorter duration of illness (< 13 years) were associated with better outcomes 

[71••, 87••]. However, there was also a trend suggesting a worsening of positive symptoms 

with this treatment protocol for negative symptoms, thus necessitating stringent monitoring 

[71••]. Structural plasticity of the left hippocampus and precuneus also predicts negative 

symptom improvement following left prefrontal stimulation [88•].

Nevertheless, these are short-term effects, from small trials and influenced by heterogeneity 

in the recruited patients and the technique of TMS administration. Not all studies control for 

the moderating effects of improvement in depression since the stimulation protocol is similar 

[89]. Interestingly, sham stimulation also resulted in a significant within-group improvement 

with an effect size of 0.31 [87••]. Moreover, an adequately powered multi-center trial failed 

to demonstrate any beneficial effects of true left prefrontal TMS over sham in improving 

negative symptoms immediately post-treatment and at the 3-month follow-up [90•].

These observations have led to the investigation of stimulating newer sites (e.g., cerebellum) 

with different parameters. Prefrontal TBS [91], deep prefrontal TMS [92], and bilateral 

prefrontal TMS [93] are modifications of stimulation technique that have been examined for 

negative symptoms, with limited and mixed results. One promising alternative approach is to 

target prefrontal activity by stimulating its connections within the cerebellum. In a recent 

study, the functional connectivity of the cerebellum with the right prefrontal cortex was 

inversely associated with negative symptom severity; modulating the cerebellum using 

intermittent theta burst stimulation (iTBS) resulted in improvement of negative symptoms 

and reversal of this functional dysconnectivity in schizophrenia [39•]. These emerging 

findings provide further scientific rationale to explore cerebellar iTBS in the treatment of 

negative symptoms [94, 95]. A recent study from our facility randomized 60 patients to 

active and sham groups of intermittent TBS at 90% of RMT over the cerebellar vermis 

administered twice daily for 5 days. Both groups demonstrated a significant improvement in 

negative symptoms at the end of treatment and at the 6-week followup, but only the hue 

TMS group revealed a significant engagement of the cerebellar-prefrontal resting-state 
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functional connectivity [96]. Future studies may examine more prolonged and potent 

activation of this neural circuit.

Cognitive Symptoms

Cognitive deficits across social and non-social domains are a significant hallmark of 

schizophrenia [97]. They persist during symptom remission [98] and are an important 

determinant of real-world functioning [99]. With the advent of rTMS as a viable therapeutic 

option for depression [100], there was an active call for monitoring its cognitive safety 

[101]. Over the years, it became apparent that TMS had limited detrimental effects on 

cognition, and could perhaps be leveraged to enhance cognition when delivered under 

strictly monitored conditions [102, 103]. Also, trials that examined the benefits of TMS for 

negative symptoms noticed improvements in cognition in the active TMS group [104]. 

Subsequently, trials have been designed with specific aims of evaluating the cognitive 

benefits of rTMS in schizophrenia. Given the critical role of the prefrontal cortex in 

cognitive dysfunction of schizophrenia [105], and the ease with which it can be targeted, 

most studies have attempted to deliver high-frequency rTMS to the left or bilateral prefrontal 

cortices.

A pilot randomized controlled trial of 20-Hz bilateral prefrontal rTMS over 4 weeks 

demonstrated significant improvement in working memory as compared to sham rTMS in 

schizophrenia [106]. Modulation of task-related frontal gamma oscillatory activity may drive 

this response [107]. Another trial examined 10-Hz bilateral prefrontal rTMS at subthreshold 

doses (90% RMT), but longer train duration (10 s); cognition improved only in one (verbal 

fluency) of the seven domains assessed [93]. Similar improvements in overall neurocognitive 

performance were observed in a more recent trial with a small sample receiving a similar 

bilateral 20-Hz stimulation, but for 2 weeks [108]. The improvement persisted even at the 2-

week follow-up, and baseline left frontal cortical thickness correlated with treatment 

response. However, a large, multi-center study involving 156 schizophrenia patients found 

no benefits of 3-week left prefrontal 10-Hz stimulation as compared to sham stimulation 

[109]. Interestingly, 2-week left prefrontal 10-Hz stimulation improved a measure of social 

cognition (facial emotion recognition) in schizophrenia as compared to sham stimulation, 

thus opening a window of opportunity to explore newer neuromodulatory techniques to 

improve the disabling social cognition deficits in schizophrenia [110]. A recent meta-

analysis of cognitive benefits with rTMS in schizophrenia reported a beneficial effect size of 

0.34 in improving working memory as compared to sham stimulation [111•]; these benefits 

persisted when reassessments were performed approximately 1 month after stopping 

treatment.

Nevertheless, the modest degree of improvement in limited cognitive domains requires the 

study of novel stimulation patterns, targeting different brain networks. In this regard, 

hippocampal-functional connectivity–guided stimulation of the lateral parietal cortex has 

shown improvements in associative memory in healthy individuals [112•]; this technique 

holds promise for exploration in schizophrenia. Lastly, combining rTMS with other known 

therapies for cognitive enhancement may be able to yield more potent therapeutic gains 

[113]; future studies may explore this avenue. This field is still nascent, and important 
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challenges regarding matching the best stimulation parameters for the specific cognitive 

deficits a given patient experiences still remain. In addition, safety, durability of benefits, 

their generalizability to real-world functioning, and dissemination to a larger community 

patient population require more refined study [114].

Conclusions and Future Directions

With its immense potential of (a) evoking brain responses with precision temporal resolution 

and (b) targeted modulation of cortical activity and therefore behavior with successive trains 

of stimulation, TMS is an invaluable tool for both neuroscientists and psychiatrists. Future 

studies must focus on consolidating the critical leads derived in the last three decades.

As for investigational applications, the field has gradually moved to incorporate multimodal 

strategies that combine TMS with functional neuroimaging [115] and high-density EEG 

[52••] studies. While these methods are technologically challenging, they have the potential 

to reveal brain dynamics in schizophrenia at rest and during tasks, with much better 

spatiotemporal accuracy. This may result in more accurate diagnostic and prognostic 

biomarkers. Important methodological challenges and variability in responses still remain, 

especially in terms of the stimulation parameters to elicit cortical reactivity/ connectivity. 

Systematic studies to ascertain the reliability and validity of these measurements will go a 

long way in bridging the translational application gap of these techniques [13, 116].

Therapeutic use of rTMS in schizophrenia has not achieved success as in depression. Larger, 

high-quality, multi-center studies are very few, and they do not support its unequivocal 

clinical utility. Nevertheless, meta-analyses suggest small to modest effect size benefits of 

rTMS over placebo treatment for all three symptom dimensions described above. The 

clinical applicability of small effect treatments appears discouraging. However, it must be 

noted that most of these trials have been conducted on patients with resistant or difficult-to-

treat symptoms. This also emphasizes an urgent need to strategize and identify key thrust 

areas for research. Clinicians must work in tandem with basic neuroscientists and engineers 

to refine stimulation parameters (site, dose, duration, etc.) that would improve clinical 

benefits without compromising safety. The clinical effectiveness of newer treatments must 

be examined in large, multi-center trials that are sufficiently powered to yield reliable and 

consistent results. Clinical trials need to be supplemented by mechanistic studies that 

identify key processes driving clinical benefits. Lastly, future studies should explore 

demographic, clinical, genomic, and brain physiological reasons for variable treatment 

response. This could help identify the category of patients responding well to rTMS, and set 

the platform to explore next-generation personalized treatment approaches catered to a given 

person’s symptoms based on individualized biological markers.
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Fig. 1. Schematic representation of different investigational TMS approaches
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