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Abstract

Knowledge of genome-wide genealogies for thousands of individuals would simplify most 

evolutionary analyses for humans and other species, but has remained computationally infeasible. 

We developed a method, Relate, scaling to > 10,000 sequences while simultaneously estimating 

branch lengths, mutational ages, and variable historical population sizes, as well as allowing for 

data errors. Application to 1000 Genomes Project haplotypes produces joint genealogical histories 

for 26 human populations. Highly diverged lineages are present in all groups, but most frequent in 

Africa. Outside Africa, these mainly reflect ancient introgression from groups related to 

Neanderthals and Denisovans, while African signals instead reflect unknown events, unique to that 

continent. Our approach allows more powerful inferences of natural selection than previously 

possible. We identify multiple novel regions under strong positive selection, and multi-allelic traits 

including hair color, body mass index (BMI), and blood pressure, showing strong evidence of 

directional selection, varying among human groups.

Large-scale genetic variation datasets are now available for many species, including tens of 

thousands of humans. In principle, all information about a sample’s genetic history is 

captured by their underlying genealogical history, which records the historical coalescence, 

recombination, and mutation events producing the observed variation patterns. In practice, 

several key existing approaches (e.g., Refs. [1,2]) leverage an underlying coalescent model, 

which provides a flexible modelling framework and is the limiting behavior of a variety of 

finite-population models3,4. However, coalescent-based inference is complicated by the 

structure of the model, and the extremely large space of probabilistically plausible sample 

histories conditional on observed data5. Other approaches6–11 use more heuristic coalescent 

approximations, sometimes reducing accuracy: regardless, published existing methods scale 

to tens or a few hundred samples at most.
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These issues have restricted the use of direct genealogy-based approaches to infer 

recombination, mutational ages, and natural selection to smaller datasets1,2, while for larger 

datasets diverse approaches based on data summaries12–14 or downsampling15,16 have 

predominated. In humans, such tools have detected genetic structure and admixture in good 

agreement with independent evidence17,18, changes in population size15,19–21 and 

introgression with archaic groups, including Neanderthals22.

We developed a scalable method, Relate, to estimate genome-wide genealogies (Figure 1; 

Methods; https://myersgroup.github.io/relate/ for implementation). Relate separates two 

steps; firstly identifying a genealogical framework at each site in the genome, describing 

ancestral relationships among sequences but not their coalescence times. Secondly, these 

times are estimated after mutations are mapped to branches of these trees, allowing for 

variable population sizes simultaneously inferred from the data, to produce complete 

genealogies. These are then used directly for downstream inferences. Our approach 

approximates the coalescent model, but performs as well as or better than existing 

approaches in our simulations, whilst being thousands of times faster.

We demonstrate the utility of a genealogy-based analysis by applying Relate to 4,956 

haplotypes of the 1000 Genomes Project (1000GP) dataset23,24. We estimate population 

sizes of all 26 populations in the dataset and their split times using cross-coalescence rates. 

In agreement with previous work, we identify an increase in the mutation rate of TCC to 

TTC around 10,000 to 20,000 years ago25. The estimated genealogies contain signals of 

introgression between Neanderthals and modern humans in Eurasia, and between modern 

East and South Asians and Denisovans, alongside other signals specific to African groups. 

Finally, we suggest a test statistic that identifies loci under positive selection by tracking 

mutation frequencies through time. We demonstrate that for plausible scenarios of selection 

on complex traits, involving selection dispersed over many loci, this test improves power 

over the integrated Haplotype Score (iHS)26, and identify previously unreported genomic 

regions under strong positive selection. We find a remarkable enrichment of SNPs identified 

in genome-wide association studies (GWAS) among targets of selection, and evidence of 

widespread directional polygenic adaptation.

Results

Overview of the Relate approach

At each genomic position, Relate first identifies a non-symmetric distance matrix whose 

rows estimate the relative order of coalescence events between a particular sequence and the 

remaining observed sequences. To do this, Relate uses the posterior probabilities output by a 

hidden Markov model (HMM) similar to that proposed by Li and Stephens27, but leveraging 

knowledge of ancestral and derived status at each single nucleotide polymorphism (SNP) to 

improve speed and accuracy. This distance matrix is used to construct a rooted binary tree 

using a bespoke algorithm. Mathematical arguments demonstrate, encouragingly, that if the 

“infinite-sites” model is satisfied so that each observed mutation occurs exactly once, our 

approach is guaranteed to generate genealogies exactly producing the observed data, in the 

limiting cases where either there is no recombination, where the recombination rate is very 

large, or where all recombination occurs in intense widely spaced hotspots (Supplementary 
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Note). Because the distance matrix is position specific, these binary trees adapt to changes in 

local genetic ancestry due to recombination. In practice, we save computational time by only 

rebuilding trees at a subset of sites along the genome (Methods, Supplementary Figures 1 

and 2).

To estimate branch lengths while allowing for changing population sizes, we first map 

mutations onto each genealogical tree and then apply an iterative Markov Chain Monte 

Carlo (MCMC) algorithm to estimate times under a coalescent prior. We simultaneously 

estimate a stepwise varying effective population size through time, using the genome-wide 

collection of estimated genealogies (Methods). Our final time estimates account for changes 

in population size, assuming an unstructured population. We can also explore population 

stratification within a sample, by leveraging estimated coalescence rates of any pair of 

sampled sequences. By averaging pairwise coalescence rates within and across groups, we 

obtain effective population size estimates for sub-populations and cross-coalescence rates 

between populations. As we show in the next section, this can provide accurate estimates 

despite the fact that our tree-builder does not account for such population stratification.

Simulations

We evaluated Relate for its speed, accuracy of inferred trees, robustness, and ability to infer 

evolutionary parameters, by simulating data under the coalescent with recombination using 

msprime28. We compared performance to ARGweaver2, which samples from a time-

discretized approximation to the coalescent with recombination, and which we therefore 

expect to perform well on these simulations. Relate was >4 orders of magnitude faster than 

ARGweaver, for cases we were able to apply the latter, and also much faster than RENT+11 

(Figure 2a,b). Our approach scales linearly in sequence length and quadratically in sample 

size Ni, enabling genealogical inference for e.g. 10,000 human samples genome-wide using 

a compute cluster.

To evaluate accuracy, we compare, at each locus and for each of the 
N
2  pairs of haplotypes, 

the estimated time to their most-recent common ancestor (TMRCA) to the truth (Figure 

2c,d), observing improved performance relative to both ARGweaver and RENT+. Relate 

also showed improved robustness to errors in the data, identified misclassified ancestral 

alleles, and estimated times well in the context of varying population size (Supplementary 

Figure 3). Other accuracy measures yielded similar improvements (Supplementary Note). 

Relate identified repeat mutations and variable mutation rates, and is robust to computational 

rephasing of haplotypes (Supplementary Figure 4). We next compare Relate’s inferred 

population sizes to those from applying two leading specialist approaches, MSMC20 and 

SMC++21. For multiple previously tested20,21 scenarios including oscillating population 

sizes and bottlenecks similar to those observed in out-of-Africa events of modern humans, 

Relate obtains more accurate estimates, particularly in the recent past (Figure 2e, 

Supplementary Figure 3). While Relate assumes a single population when estimating branch 

lengths, when applied to a combined sample from two diverged populations, it still performs 

well in recovering their distinct population histories and estimating their split time(s) (Figure 

2f,g).
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Genome-wide human genealogies

We applied Relate to 2,478 1000GP individuals with diverse genetic ancestry and 

approximately 81 million SNPs (see Methods for data pre-processing). Computation time, 

using up to 300 processors, was ~4 days (Supplementary Table 1). 86% of all SNPs (>96% 

of SNPs at >0.2% derived-allele frequency (DAF)) map uniquely to trees, falling to 76% for 

CpG dinucleotides, known to possess strongly elevated mutation rates (Supplementary 

Figure 5). The number of different trees in a genomic subregion strongly correlates with 

recombination rate (r 2 = 0.63) and the average tree has 3,883 SNPs mapped to it, reflecting 

block-like structures of human haplotypes between recombination hotspots (Supplementary 

Figure 5).

We estimated within and across-group coalescence rates for pairs of groups, by first 

extracting the genealogy for members of a particular subsample of interest embedded within 

the full genealogy, and then re-estimating coalescence rates for this genealogy. We observe a 

clear out-of-Africa bottleneck for Eurasian populations (CHB: Chinese in Beijing and GBR: 

British in England and Scotland shown), and gradual separation from African populations 

(YRI: Yoruba in Ibadan, Nigeria shown) already visible 200,000 years before present (YBP) 

and lasting to around 60,000YBP (Figure 3a,b). This is consistent with recent studies15,29 

and might reflect several out-of-Africa dispersal events. Asian (CHB shown) and European 

(GBR shown) populations separate more recently, with a clear and visibly more sudden 

separation around 30,000 YBP (Figure 3c). We also detect, and date, very recent separations 

<10,000 YBP, such as between CHB-JPT (JPT: Japanese in Tokyo) or FIN-GBR (FIN: 

Finnish in Finland) (Figure 3d,e). Finnish samples exhibit a second bottleneck, around 

3000-9,000 YBP following separation from GBR30,31, with other population-specific events 

in e.g. Peruvians and Gujarati individuals (Supplementary Figure 6). The Finnish bottleneck 

is thought to have caused enrichment of certain disease-causing gene variants, commonly 

classified as Finnish heritage diseases30,31. A strong bottleneck post-dating separation from 

Eurasian groups is absent in African populations (LWK: Luhya in Webuye, Kenya and YRI 

shown, Figure 3f). All populations show a remarkable increase often to >1,000,000, in the 

recent past (Supplementary Figure 6), however we note possible inaccuracies due to 

incomplete power to detect rare variants24 leading to underestimation, and computational 

phasing leading to overestimation (Supplementary Figure 4).

Exploring the relative mutation rate of particular mutation classes through time confirms, as 

reported previously25, a strong elevation in the rate of trinucleotide changes including TCC-

>TTC in West Eurasian groups, which we date to 5,000-30,000 YBP, but infer to be weak or 

absent in the present day (Figure 4a). Other mutation types show more subtle temporal 

biases and signatures consistent with GC-biased gene conversion32 (Supplementary Figure 

6). Overall, these results support accuracy of our inferred historical relationships, including 

the timing of a range of different historical events, identified within a single analysis 

framework.

Neanderthal/Denisovan and unexplained introgression events

Introgression from distantly related groups in the past is expected to introduce lineages 

which forward in time can randomly spread in the tree, and backward in time remain distinct 

Speidel et al. Page 4

Nat Genet. Author manuscript; available in PMC 2021 April 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



from other lineages, resulting in an excess of long branches associated with particular times. 

We identified such deep branches (>1 million years (MY) in age and with varying lower 

end), across human groups (Figure 4b,c). It is established that all nonAfrican human groups 

possess similar levels of Neanderthal introgression, and specific Asian and Australasian 

groups possess admixture from a group related to Denisovans22,33. We therefore label deep 

branches possessing at least two derived mutations by whether at least one mutation is 

shared with the sequenced Denisova33 or Neanderthal22,34 genomes (Figure 4b shows one 

example of likely introgression from Neanderthals into European GBR, but not African YRI 

individuals). After classifying deep branches based on their lower-end times, for branches 

originating within the last 10,000YBP, 85-90% are shared with Neanderthal or Denisovan 

for most Eurasian groups (Figure 4c, Methods). Any lineages from recent introgression 

events will show a lower-end age younger than the time of introgression, and upper-end 

older than the split time of the introgressing group, so we expect branches with a younger 

lower-end to be most enriched with lineages that came from distantly diverged introgressing 

groups. This suggests that aside from groups closely related to Neanderthals and 

Denisovans, no strongly diverged hominid has left a major, recent impact in non-African 

populations studied here. An exception is IBS, which has more long branches shared with 

African populations (Supplementary Figure 6). In East and South Asian groups, the data 

suggest a very recent arrival of Denisovan DNA (mainly <15,000YBP). In non-Africans, 

Neanderthal sharing remains high for branches with lower-end age younger than 

~30,000YBP. These dates are only lower bounds on the introgression time, and an accurate 

arrival date of Neanderthal DNA would require estimating a joint genealogy which requires 

further work. Nevertheless, they are consistent with previous estimates based on linkage 

disequilibrium (LD)35, and of direct evidence of hybrids35,36 around 40,000 YBP. Moreover, 

elevation in the sharing of quite deep haplotypes with Neanderthals steadily increases for 

branches with lower-end age of ~100,000 YBP towards the present, which is suggestive of 

introgression beginning from this time in nonAfrican individuals, although it is important to 

note that our date estimates for individual events might be over- or under-estimates in some 

cases.

In contrast to non-African groups, sharing with Neanderthal/Denisovans is lower (<20%, 

Figure 4c) in African populations, and declines towards the present, suggesting minimal 

recent interactions22,33. This is despite the fact that African populations possess far more 

long branches (on average, on deep branches with lower coalescence age <30,000 YBP; 

42,434 vs. 7,012 mutations occur in African vs. non-African populations). Of mutations on 

long branches found in Africa, 98% are Africa-specific, indicating separate events occurring 

in non-African and African populations (Supplementary Figure 6). Comparing YRI, GBR, 

BEB (Bengali in Bangladesh), and CHB to expectations under panmixia, we observe a 

strong excess of mutations on deep branches with lower coalescence age <40,000 YBP in all 

cases, which is almost entirely explained by Neanderthals/Denisovans in the non-African 

populations, but not in YRI (Figure 4d, Methods). In panmictic simulations with matched 

population size histories, we observe no such excess (Supplementary Figure 6). This 

evidences ancient but uncharacterised population structure within Africa, as suggested 

elsewhere37,38. Figure 4b shows one example consistent with an introgression event in YRI, 

not involving a closely relative of Neanderthals.

Speidel et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 April 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Powerful tree-based approaches to study natural selection

By directly modelling how mutations arise and spread, genealogical trees offer the potential 

to powerfully investigate different modes of natural selection. For example, a recent method, 

SDS, indirectly tests for differences in tree tip branch lengths between carriers and non-

carriers using the density of singletons around a focal SNP39 and a tree-based analogue 

(trSDS) tests this directly40. Here, we propose a class of approaches (Relate Selection Tests) 

based on estimating the speed of spread of a particular lineage (carrying a particular 

mutation), relative to other “competing” lineages, over some chosen time range. To test for 

selection over the entire lifetime of a mutation, we condition on the number of lineages 

present when it first arises, and use as a test statistic the number of present-day carriers. 

Assuming no population stratification, the null distribution of this statistic can be calculated 

analytically and is robust in principle to population size changes (Methods).

Simulated data (Figure 5a) show a close match in null no-selection scenarios of our p-values 

p R to the expected uniform distribution. Across a range of selective advantages and SNP 

frequencies (Figure 5b, Supplementary Figure 6), our approach increases power relative to 

(tr)SDS, as well as iHS for weaker selection in particular. trSDS is more powerful than SDS, 

while applying the Relate Selection Test to true genealogical trees yields a test that is 

uniformly more powerful than other approaches (Figure 5b), indicating the strength of tree-

based approaches. In practice, there is some decrease in power from the need to infer trees 

via Relate. The power increases for weak selection might be particularly beneficial for 

testing complex, polygenic traits, where small effect sizes at individual loci are expected to 

yield small selection coefficients41.

Calculating p R for SNPs across twenty 1000GP populations (Methods) identified 35 distinct 

(24 novel) stringent signals genome-wide (p R < 5 × 10-8 in each of three or more groups) 

(Supplementary Table 3). These include the LCT region associated with Lactose tolerance in 

Europeans, and a mutation in the EDAR gene in East Asian populations42,43, with both 

likely causal variants strongly associated with our most significant mutation (r 2 ≥ 0.8). We 

also observe a previously-detected strong signal of positive selection in the MHC region in 

GBR44 (Figure 5c). Among new regions, we identify selection evidence at the EDARADD 
gene - which interacts with the EDAR gene45 in the formation of hair follicles, sweat glands, 

and teeth43 - in all South Asian populations and Finns, with pR < 10-6 in all other European 

populations. In 16 of 35 regions, we identify GWAS catalogue hits (OR=6.44; p=0.01), non-

synonymous mutations (OR=2.49; p=0.16), or expression quantitative trait loci (eQTLs; 

OR=1.74; p=0.1), in LD with the mutation with strongest selection evidence (r 2 ≥ 0.8, 

Methods), suggesting functional effects, reaching statistical significance for the case of 

GWAS hits despite the small number of cases tested. Notably, 18 of the 35 regions are found 

only for African populations.

SNPs in functional parts of the genome are significantly enriched among targets of positive 

selection (Figure 5d, Methods), with strongest enrichment for GWAS hits, across all 

considered populations. This encouragingly supports a link between evidence of selection 

and SNPs with detectable influences on phenotypes at the organism level. Multiple previous 

studies46–49 have attempted to test polygenic traits for evidence of directional selection, but 

confounding due to population stratification50,51 is potentially problematic in practice. To 
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leverage potential power gains, we tested whether derived mutations increasing (or 

decreasing) a trait show increased selection evidence relative to randomly sampled control 

mutations of the same frequency (one-sided Wilcoxon test; Methods). For each trait, we thin 

GWAS hits to account for LD and examined only SNPs showing “genome-wide significant” 

associations (p < 5 × 10-8), because confounding due to population stratification is thought 

to occur through relatively small - but systematic - biases in effect size estimates50,51, but is 

not expected, in general, to produce genome-wide significant false-positives. At each SNP, 

we use only the association direction, rather than its strength, to offer additional robustness 

to potential confounding.

If positive selection influences a trait in a certain direction, e.g. increasing, we would expect 

positive selection on trait-increasing and negative selection on trait-decreasing mutations. 

We expect our test to be sensitive mainly to the former, because selection will increase 

frequencies of such SNPs, and the Relate Selection Test has reduced power to identify 

selection at rarer markers (Figure 5b). However, for traits with a large number of hits and 

strong selection, it is theoretically possible to observe some selection evidence in both 

directions52,53, because to avoid ascertainment effects we condition on SNP allele 

frequencies at traitinfluencing sites. Therefore, we additionally test for differences in 

present-day DAFs between trait-increasing and trait-decreasing mutations, which can 

provide orthogonal evidence of polygenic adaptation, aiding interpretation of results 

(Methods).

As a positive control, we applied our test to GWAS for hair colour within the UK Biobank54 

(Figure 6a). As in previous studies49,55,56, we find a signal for SNPs associated with blonder 

hair color among European populations. We further observe strong selection towards light 

brown hair color and against black hair color, including more weakly in South Asians, but 

not in other groups. Testing based on iHS scores decreases significance by up to 4 orders of 

magnitude (Figure 6a), and some signals become non-significant. We applied the same test 

to test 84 traits: 6 from the UK Biobank, and 78 with at least 10 genome-wide significant 

GWAS catalogue association signals in each effect direction, in all populations except 

recently admixed groups. 61 of these (73%) showed nominal selection evidence (p<0.05) in 

at least one population (Figure 6b), with strong geographic clustering. The most significant 

signal (p = 6 × 10-14) is for SNPs associated with decreased Body Mass Index (BMI) in 

CEU. The largest number of selection signals are observed for Europeans, likely because 

many GWAS were conducted in these groups. Interestingly, East Asians have the fewest 

signals and no enrichment of low p-values (Supplementary Figure 8), possibly explained by 

their stronger population bottleneck, which would theoretically be expected to weaken 

selection signals.

Height, BMI, and Schizophrenia have been studied previously and show a large number of 

association signals57. While several studies have reported genetic differentiation between 

populations58–60, evidence for selection remains controversial40,47–51,58,59,61 and some 

studies reporting recent selection on increased height in Europeans appear confounded by 

subtle population stratification40,50,51. Our test finds selection evidence for both effect 

directions in each population for height, except in East Asians, using the UK Biobank 

GWAS. DAFs tend to be larger towards the height-decreasing direction. This complex 
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picture may be a consequence of both negative and positive selection acting on height, as 

well as pleiotropy. SNPs impacting other traits might also impact height (Supplementary 

Note). We identify strong evidence of selection favouring BMI-decreasing SNPs across 

almost all populations, with agreement of DAF shifts, indicative of directional selection. For 

both traits, we detect little evidence of selection in the smaller GWAS catalogue collection. 

Decreased risk of Schizophrenia has evidence of selection in Europeans, and some South 

and East Asian populations, while African populations show selection evidence towards a 

risk increase.

Among other phenotypes, we see selection evidence for a variety of blood-related 

phenotypes, with congruent DAF signals. In Europeans and some South Asians, we detect a 

strong signal favoring SNPs associated with blood pressure increases, contrary to previous 

studies suggesting the opposite direction55,62. We moreover find evidence in many groups 

for selection favouring SNPs associated with decreased hemoglobin concentration and 

related traits, and with increases in platelet-related traits.

Discussion

We introduced Relate, a scalable method for estimating genealogies genome-wide and 

demonstrated its accuracy and utility on a diverse set of applications. In many settings, 

Relate improved on existing state-of- the-art methods, which have previously required 

separate analyses: by instead obtaining inferences from the same genealogies, comparisons 

across different applications become straightforward. This approach is highly modular; 

methods developed for genealogy-based inference should be applicable regardless of the 

specific algorithm used for estimating marginal trees. Although we have focused on human 

genomes, Relate should work equally well in other recombining species.

In our 1000GP data analysis, we provide several examples whereby Relate-based trees are 

able to capture evolutionary processes that are themselves evolving through time: “evolution 

of evolution”. Temporal changes in mutation rates, population size, migration, and archaic 

admixture are simultaneously inferred, as are population-specific signals of natural selection. 

Genealogies provide a powerful, natural way to study these complex, interacting 

phenomena, and we believe studies of other evolutionarily and temporally dynamic 

processes - for example of evolution of recombination rates63,64 - will yield new insights.

Interpretation of our findings regarding natural selection requires some care. A strength of 

our selection test is that it provides p-values, which are naturally calibrated, even if 

population sizes vary through time. In common with previous studies, we find a relatively 

small (<40) number of clear signals of strong, ongoing selection across multiple human 

populations. In contrast, we find a much larger collection of phenotypes where - based on 

published GWAS - there is evidence of an influence of directional selection. These traits 

include BMI, blood pressure, and white and red blood cell counts, and more generally, we 

see an enrichment of selection evidence at loci shown to associate with human phenotypes. 

These findings appear highly consistent with the polygenic nature of most human 

phenotypes - which are expected to impose very weak selection, but on a large collection of 

loci41. However, temporal changes in selection, overlapping genetic influences across traits, 

and the possibility of compensatory evolution in response to other genetic changes or the 
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environment, are among reasons complicating the assignment of selection signals to specific 

phenotypes (Supplementary Note).

Relate provides age estimates for mutations and other events, and these enable us to 

construct statistics to understand evolutionary history, including natural selection either on 

individual mutations or collections of mutations. We regard the selection statistics 

introduced here as initial approaches along a path towards a richer inference framework, 

including e.g. background selection, full selective sweeps, or balancing selection. 

Development of methods to better understand directional migration and ancient admixture is 

another direction for future work. As one example, our results suggest a large impact of 

ancient substructure specific to African populations, as has been previously 

hypothesized37,38. More generally, we hope that methods will be developed to perform 

statistical analyses on a set of trees generated either by Relate or other approaches. Other 

analyses might use estimated mutational ages obtained here directly (https://zenodo.org/

record/3234689).

There are several natural extensions to Relate itself, e.g. allowing for increasing sample 

sizes. A recently developed method, tsinfer65, has impressive scaling with sample size and 

might readily extend to even millions of samples, while Relate currently only handles at 

most a few tens of thousands of samples genome-wide. While tsinfer currently only infers 

tree topologies (as part of a full ancestral recombination graph structure), and so cannot infer 

tree times or model demographic histories, it would be possible to use tsinfer-based tree 

topologies in our framework, allowing full tree-based inference for huge sample sizes. 

Incorporation of ancient DNA sequences is another important direction. Such samples may 

have substantially higher error rates or more missing data than modern-day individuals, 

potentially requiring an approach that “threads” (ancient) sequences through genealogies 

that are initially built using modern individuals2. This approach might also be useful for 

efficient statistical phasing and/or imputation of individuals only typed at a subset of 

markers.

Online Methods

Relate overview

We estimate genealogies as a sequence of rooted binary trees, where each tree captures the 

genealogy for a subregion of the genome. This representation serves as an approximation of 

an Ancestral Recombination Graph (ARG)4. We estimate local ancestry without global 

constraints on tree topology, thereby transforming genealogy reconstruction into a feasible 

and highly parallelizable problem.

Our approach can be divided roughly into three steps, which we detail below (also see 

Figure 1, Supplementary Figure 1, and Supplementary Note).

Calculating position specific distance matrices

While trees vary along the genome, our method heavily utilizes ancestry information from 

nearby SNPs to reconstruct the tree at a specific position. We achieve this by using a HMM 

similar to that first proposed by Li and Stephens27 (see Supplementary Figure 2 for 
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parameter choices). Intuitively, this HMM reconstructs a haplotype as a mosaic of other 

sample haplotypes along the genome (Supplementary Figure 1), allowing for mismatching in 

the copying process, and viewing changes in haplotype as recombination events. After 

applying the HMM, at a focal SNP ℓ each of the other haplotypes j therefore has some 

probability pij¿ of being copied from, to generate haplotype i. After rescaling log 

pij¿ appropriately (Supplementary Note), we obtain a position-specific distance matrix d 

whose entry (i,j) converges to the number of mutations derived in i and ancestral in j in the 

limit of no recombinations. In the presence of recombination, this d can be interpreted to 

store a local number of derived mutations, where more closely related haplotypes tend to 

have fewer mismatches over longer stretches, therefore receiving a smaller distance in this 

matrix.

We modified the Li-and-Stephens HMM to account for ancestral and derived states, a 

modification that guarantees our approach will construct the correct tree topology under the 

infinite-sites assumption with no recombination, while simultaneously speeding up the 

calculation of posterior copying probabilities.

Tree builder

The distance matrix is turned into a binary tree using a hierarchical clustering algorithm. 

This hierarchical clustering algorithm is motivated by the observation that each row of the 

distance matrix should indicate the order in which this haplotype coalesced with other 

haplotypes of the dataset. This can be shown mathematically in some limit conditions, such 

as the case with no recombination (Supplementary Note).

Our algorithm iteratively merges clades of haplotypes, corresponding to past coalescences. 

After merging clades, we update the distance matrix by combining the corresponding rows 

and columns using a weighted sum, with weights determined by the size of clades. In each 

step of the algorithm, we merge the pair of clades that coalesce with each other before 

coalescing with any other clade, as determined using rows of the distance matrix. If multiple 

pairs of clades satisfy this condition, we choose the pair with minimum symmetrized score 

in the distance matrix. If the data are consistent with a binary tree under the infinite-sites 

model, such a pair always exists. In practise, errors in the data, complex recombination 

histories, or violations of assumptions made by our model, may result in a distance matrix 

that is inconsistent with a binary tree. To be robust to such cases, we relax the conditions for 

identifying pairs of clades to coalesce.

Mapping mutations to branches and estimating branch lengths

Once tree topology is estimated as above, where possible we map mutations to the (unique) 

branch that has the identical descendants as the carriers of the derived allele in the data. To 

be robust to errors, where necessary we use an approximate rule for such mapping; however 

some mutations, e.g. repeat mutations or error-prone loci, may still not map to a unique 

branch. For these loci, we determine the smallest collection of branches, such that the data 

can be fully recovered. If a mutation maps to the tree only after reinterpreting the derived 

allele as the ancestral allele (and vice versa), we “flip” ancestral and derived alleles at this 

locus. For computation efficiency, to avoid having to construct a new tree at every locus we 

Speidel et al. Page 10

Nat Genet. Author manuscript; available in PMC 2021 April 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



construct trees starting at the 5’ end of a region or chromosome, and move along the region 

constructing a new tree only when a SNP is flipped or cannot be mapped to a unique branch. 

Finally, after identifying equivalent branches in adjacent trees along the genome, we apply a 

Metropolis-Hastings type Markov Chain Monte Carlo (MCMC) algorithm to estimate 

branch lengths. The MCMC algorithm has a coalescent prior assuming a single panmictic 

population3.

Estimating coalescence rates through time

We estimate the effective population size, defined as the inverse of the coalescence rate, by 

applying the following iterative algorithm. We initially estimate branch lengths using a 

constant effective population size. We then calculate a maximum-likelihood estimate of the 

coalescence rates between pairs of haplotypes given the branch lengths (Supplementary 

Note). By averaging coalescence rates over all pairs of haplotypes and taking the inverse, we 

obtain a population-wide estimate of the effective population size. We then use this 

population size estimate to re-estimate branch lengths, which requires only the final MCMC 

step of the branchlength estimation. By repeating these two steps until convergence (in 

practice, we use only 5 iterations as this provides good performance), we obtain a self-

contained algorithm for jointly estimating branch lengths and the effective population size. 

We can average pairwise coalescence rates in different ways to obtain rates for sub-

populations and cross-coalescence rates between populations.

Estimating relative mutation rates through time

We estimate the mutation rate through time for all 96 triplet mutations (Figure 4a, 

Supplementary Figure 6). To estimate mutation rates for a mutation category of interest, we 

calculate, for each epoch, the quotient of the number of mutations in that category by the 

total branch length over bases at which such a mutation may have occurred. In our model, 

we fix the average mutation rate to a constant value through time, such that any change in 

average mutation rate should in theory be absorbed in our population size estimate. We 

therefore first eliminate any remaining temporal trends in the average mutation rate by 

dividing by the average mutation rate in each epoch. For each population, we then normalise 

the mutation rates such that the average rate over time equals 1. In simulations 

(Supplementary Figure 4), we show that variable mutation rates among categories can be 

detected by this approach, and approximately dated.

Pre-processing of the 1000 Genomes Project dataset

The 1000 Genomes Project dataset comprises 2504 individuals, from 26 populations. We 

obtained a phased version of the dataset (see Data availability). We next excluded multi-

allelic SNPs, and we exclude one individual (two haplotypes) from each population for 

future applications, and analyzed the remaining 2,478 individuals (Supplementary Table 2). 

We use a genomic mask provided with the 1000 Genomes Project dataset (see Data 

availability) to exclude regions in the marked as “not passing” in the pilot mask, to remove 

loci with low certainty of genotypes. We also exclude any base for which the fraction of “not 

passing” bases within 1,000 bases to either side exceeds 0.9. To account for this filtering, we 

readjust the number of bases between SNPs at which we could have potentially observed a 
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SNP. We use an estimate of the human ancestral genome (see Data availability) to identify 

the most likely ancestral allele for each SNP.

Identifying branches indicative of Neanderthal and Denisovan introgression

We use genome sequences of the Vindija22 and Altai34 Neanderthals (NEA), and a 

Denisovan (DEN)33 to identify branches indicative of Neanderthal and Denisovan 

introgression into non-African populations. To identify branches that remain segregated 

from other human lineages for a long time, we use the world-wide genealogy of 2,487 

samples. To identify whether a branch is shared with NEA or DEN, at least one mutation 

needs to be mapped to that branch. We therefore exclude any mutation that has not been 

genotyped (or does not pass the genomic masks) in these ancient genomes. We further 

restrict our analysis to branches with at least two mutations mapped to them, as well as 

having an upper end that is older than 1M YBP. Of any such branches, we calculate the 

fraction of branches with at least one NEA or DEN mutation. In Figure 4c, we plot these 

fractions as functions of the lower-end age of the branch. Because the same branch may 

persist over multiple trees, we identify equivalent branches (Supplementary Note) and 

average ages of lower and upper ends across these equivalent branches. We assign a branch 

to a population if at least one descendant of that branch is in the population.

In Figure 4d, we observe an enrichment of branches indicative of introgression. This 

enrichment is identified by comparing the observed number of mutations in bins divided by 

upper and lower coalescence age to that expected in a panmictic history. To calculate the 

expected number of mutations in each bin, we fix the ages of coalescence events in each tree 

but randomise the topology assuming a panmictic population. The probability of upper and 

lower coalescence ages falling into bins s and r, conditional on the mutation arising while k 

lineages remain, is given by P (r, s k) = Σl ≥ k, ℎ < kItl ∈ r
2ℎ

l(l − 1)
1
k  where I denotes the 

indicator function. Assuming neutrality, a mutation is equally likely to have arisen anywhere 

on the branch it maps to. We therefore calculate the weighted average Σk
N =2 wkP (r, s k)

with weights wk defined as the proportions of a branch while k lineages remain. Summing 

this over all SNPs yields the expected number of mutations with upper and lower 

coalescence age falling, respectively, into bins s and r. In Figure 4d, log10 age bins are 

defined by [− ∞, 4.25),[4.25,4.75),[4.75,5.25),[5.25,5.75),[5.75, ∞).

Tree-based statistic for detecting positive selection

Positive selection is expected to result in favourable mutations spreading rapidly in a 

population. One approach to capture this is via the number of lineages ultimately descending 

from the potentially favourable mutation(s): although we note that this is not the maximum 

likelihood approach, it has the benefit of making calculations straightforward. Under a null 

model of the standard coalescent model without selection, it is known that while k lineages 

remain, the joint distribution of the number of descendants of these k lineages is uniform in 

the partitions of N haplotypes to k lineages (see e.g., Ref. [66]). Using this property, we 

analytically calculate the marginal distribution that two of k lineages have more than fZ 

descendants, where fZ is the present-day DAF of the mutation. Here, we choose k to be the 
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number of lineages remaining when the mutation of interest increased from frequency 1 to 2 

(see Supplementary Note for the mathematical details).

To remove false-positive selection hits due to poorly inferred genealogies, our analysis for 

the 1000 Genomes Project dataset is based on a subset of all SNPs mapping to trees, and 

present in 3 or more copies in the dataset. Specifically, we remove SNPs failing any of the 

following filters: (i) the number of mutations mapping to that SNP’s tree is in the bottom 5th 

percentile, or (ii) the fraction of tree branches having at least one SNP is in the bottom 5th 

percentile. This excludes approximately 7% of SNPs.

Simulation of positive selection

To simulate positive natural selection, we adopt the pipeline outlined in Ref. [49]. We first 

simulate the trajectory of the DAF using simuPOP67. We vary the selection coefficient 

between s = 0.001 and s = 0.05 and assume that the selected allele is beneficial throughout 

its history. We fix the present-day DAF to 0.7 (see Supplementary Figure 7 for other present-

day DAFs). We then use mbs268 (mutation rate μ = 1.25 × 10-8, constant recombination rate 

ρ = 5 × 10-9) to simulate a region of 20 Mb, given the DAF trajectory for the central selected 

SNP. For each non-zero selection coefficient, we perform 200 simulations, and we perform 

500 simulations for the neutral case. We assume a population size history as for our 

estimates for YRI and GBR, in separate simulations.

We compare to iHS, SDS, and a tree-based variant of SDS (trSDS) proposed in Ref. [40]. 

For iHS, SDS, and trSDS, we standardise scores using the mean and standard deviation in 

the neutral case, which is an idealised setting that should favour the power estimates of these 

methods. We then determine a critical standardized score that corresponds to a given type I 

error rate in the neutral case to estimate the statistical power. For Relate, we use frequency-

conditioned p-values, by calculating a critical p-value that yields the desired false-positive 

rate in the neutral case (for the statistical power using raw p-values, see Supplementary 

Figure 7).

Enrichment of SNPs with functional annotation among targets of positive selection

We merge selection evidence for SNPs by region (AFR: Africans, EAS: East Asians, EUR: 

Europeans, SAS: South Asians) by first calculating Z-scores of the logarithm of selection p-

values within populations, and then averaging these Z-scores across populations. We exclude 

groups expected to be highly admixed69 (ACB, ASW, CLM, MXL, PEL, PUR 

(Supplementary Table 2)), because recent admixture may confound selection signals. We 

further exclude SNPs with a DAF <5% in the region of interest.

To assess statistical significance for the observed enrichment of GWAS hits and functional 

mutations in groups of SNPs showing evidence of selection, we used a block bootstrap with 

a block size of 1 Mb. This will account for LD at scales below this threshold. In each 

bootstrap iteration, we resample blocks containing SNPs with a selection Z-score within the 

range of interest, with replacement, and calculate the ratio of the number of SNPs with 

functional annotation obtained using the HaploReg database70 (see Data availability) and the 

GWAS catalogue to the expected number of such SNPs, conditional on DAF. We condition 
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on frequency, to account for the possibility that skewed frequency spectra in functional SNPs 

could be driving the signal.

Pre-processing of GWAS

We use SNP-trait associations documented in the GWAS catalogue71 (see Data availability) 

to study polygenic adaptation. We use only association signals whose GWAS p-value is 

smaller than 5 × 10-8. For each trait, we also remove any duplicate SNPs.

For every combination of population, trait, and effect direction, we compile a set of 

approximately independent GWAS signals as follows.

For each pair of population and trait, we remove associations that are in close physical 

proximity and may therefore be in LD. For this, we first group SNPs into approximately 

independent blocks, such that any two GWAS hits in separate blocks are separated by at 

least 100 kb and there are no intervals larger than 100 kb with no GWAS hit inside a block. 

We then choose one GWAS hit from each block uniformly at random. We remove any SNP 

with a DAF <5%. To determine the effect direction of a SNP, we use the annotation in 

column “95% CI (TEXT)” combined with the indicated risk allele. We then realign the 

effect direction to the derived allele. We only consider SNPs for which an effect direction 

can be determined with this procedure. As described in the main text, we only analyze traits 

with at least 10 independent hits in both effect directions in all populations. This results in 

76 traits and a total of 7,302 GWAS hits (before filtering for SNPs in close proximity in each 

population).

For Schizophrenia, we are unable to obtain an effect direction using the procedure described 

above. Instead, we downloaded results for a large-scale GWAS conducted by the Psychiatric 

Genomics Consortium72. We considered SNPs reaching a GWAS p-value of 5 × 10-8 of 

which there were 9,138. We intersected this set of SNPs with SNPs segregating in each of 

the considered populations. As for the GWAS catalogue, we identified approximately 

independent blocks. We then chose the SNP with lowest GWAS p-value in each block, 

resulting in 81 to 89 hits per population.

In addition, we use GWAS conducted as part of the UK Biobank54, focussing on highly 

polygenic physical traits. Our pre-processing protocol is analogous to that for schizophrenia 

detailed above. The number of approximately independent hits per population range from 

272 hits for waist circumference to 989 hits for standing height.

Trait selection test

For every combination of population, trait, and effect direction, we test whether p-values are 

smaller than expected. For this test, we first sample SNPs that we use for comparison. For 

each SNP associated with the population, trait, and effect direction tuple of interest, we 

sample 20 SNPs uniformly at random with replacement from SNPs, with the same present-

day DAF in the population of interest. We then use a one-sided Wilcoxon rank-sum test to 

test whether the p-values of SNPs associated with the tuple of interest tend to be smaller 

than those for the frequency-matched set of SNPs. We repeat this test 20 times and report the 

mean p-value of the Wilcoxon rank-sum test.
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Our primary test identifies selection evidence conditional on DAF. However, shifts in DAF 

can themselves serve as orthogonal evidence of polygenic adaptation, complementing our 

inferences. Therefore, we conducted a one-sided Wilcoxon rank-sum test to test whether 

DAFs of SNPs associated with the effect direction with selection evidence tend to exceed 

those associated with the opposing effect direction, and compared to our results conditional 

on SNP frequency. We note that we expect to lack power to reliably detect selection with 

this test, given that there are typically only tens of SNPs independently associating with each 

trait In addition, the relationship between selection and SNP frequencies can be complex if 

selection strength varies through time and/or geographic locations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Relate-estimated coalescence rates, allele ages, and selection p-values for the 1000 Genomes 

Project can be downloaded from https://zenodo.org/record/3234689.

Datasets used in the current study were obtained from the following URLs:

1000 Genomes Project phased dataset, https://mathgen.stats.ox.ac.uk/impute/

1000GPPhase3.html (13 Jan 2017); Genomic mask, ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/supporting/accessible genome masks/ (20 Jul 2017); Human 

ancestral genome, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/

supporting/ancestral alignments/ (20 Jul 2017); GWAS catalogue, https://www.ebi.ac.uk/

gwas/api/search/downloads/full (9 Nov 2017); PGC GWAS study, https://

www.med.unc.edu/pgc/results-and-downloads (23 Nov 2018); HaploReg, http://

archive.broadinstitute.org/mammals/haploreg/data/haploregv4.020151021.vcf.gz (21 Oct 

2017); GTEx eQTL https://storage.googleapis.com/gtex analysis v7/single tissue eqtl data/

GTEx Analysis v7 eQTL.tar.gz (13 Jan 2019); UK Biobank GWAS summary statistics, 

http://www.nealelab.is/uk-biobank (4 Oct 2018); PopHumanScan, https://

pophumanscan.uab.cat (13 Jan 2019)
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Code availability

The software Relate can be downloaded from https://myersgroup.github.io/relate under an 

Academic Use Licence.

External software used in the current study were downloaded from the following 
URLs:

ARGweaver, https://github.com/mdrasmus/argweaver (24 Jan 2017);RENT+, https://

github.com/SajadMirzaei/RentPlus (2 Oct 2017); msprime, https://github.com/tskit-dev/

msprime (22 Jul 2017); msmc, https://github.com/stschiff/msmc2 (14 Oct 2017); SMC++, 

https://github.com/popgenmethods/smcpp (14 Oct 2017); simuPOP, http://

simupop.sourceforge.net/ (27 Jun 2018); mbs, http://www.sendou.soken.ac.jp/esb/innan/

InnanLab/ (27 Jun 2018); SDS, https://github.com/yairf/SDS (27 Jun 2018), selscan, https://

github.com/szpiech/selscan (31 Jul 2018); hapbin, https://github.com/evotools/hapbin (11 

Dec 2018)
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Figure 1. Relate method overview
Our method applies a version of the Li-and-Stephens hidden Markov model15, modified to 

take ancestral and derived states into account, to calculate at a focal SNP (dotted vertical 

line) a position-specific distance matrix d (bottom left). Each entry dij of this matrix stores 

the rescaled loglikelihood of generating haplotype i by copying from haplotype j, which can 

be interpreted as the number of mutations carried by i, but not by j, locally around the focal 

SNP. (Methods; Supplementary Note). Our tree builder uses the resulting inferred distance 

matrix to coalesce haplotypes (right-hand side). After mapping mutations to their 

corresponding branches, we estimate branch lengths using an MCMC algorithm that 

employs a coalescent prior model.
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Figure 2. Simulated data
a, Runtimes of Relate, RENT+ and ARGweaver in CPU minutes as a function of the number 

of bases simulated with N = 200, μ = 1.25 × 10-8, 2Ne = 30,000, and recombination rates 

taken from human chromosome 1. We also show the runtime of Relate excluding the 

estimation of branch lengths. b, Runtime of Relate in minutes as a function of sample size 

N, where we simulate 2.5Mb for each data point. Other parameters are the same as in a; y-

axis is on a quadratic scale. c, True TMRCAs for pairs of haplotypes (x-axis) versus those 

estimated by Relate (y-axis). d, As c, except showing results for ARGweaver. e, Comparison 

of population size estimates across methods for a simulation of 200 haplotypes, 200Mb and 

an oscillating population size20. Relate and SMC++ estimates are based on 200 haplotypes, 

MSMC estimates are obtained from 2 or 8 haplotypes. Inset shows the mutation rate over 

time estimated by Relate. f, g, Populationspecific estimates of population size and cross-

population coalescence rates for a simulation with a discrete bottleneck for two populations 

that separated 80,000 YBP (f; vertical dashed line), or 10,000YBP (g). TMRCA, time to 

most recent common ancestor.
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Figure 3. Population sizes and split times in 1000 GP
Relate-based population-specific estimates of population size and cross-population 

coalescence rates using genome-wide genealogies for CHB and YRI (a), GBR and YRI (b), 

CHB and GBR (c), CHB and JPT (d), FIN and GBR (e), and LWK and YRI (f). Insets show 

the matrices of coalescence rates between pairs of haplotypes at the indicated time. Rows 

and columns are sorted by population labels of haplotypes, as indicated by the colour on the 

left of each matrix.
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Figure 4. Evolution of human mutation rates and evidence for introgression
a, Evolution of mutation rates for three triplet mutations ACC to ATC, TCC to TTC, and 

TCT to TTT (see Supplementary Fig. 7 for all 96 triplet mutations, Methods for 

normalization). b, Marginal trees for a subregion on chromosome 14 (left) and chromosome 

11 (right). The tree on the left contains a long branch with descendants only in GBR (red) 

consistent with Neanderthal introgression into GBR. The tree on the right contains a long 

branch with descendants only in YRI (red) consistent with introgression in YRI involving a 

hominid not closely related to Neanderthals. c, Fraction of branches with an upper-end age 

>1M YBP that are shared with Neanderthals (left), Denisovans and not Neanderthals 

(center), or Neanderthals or Denisovans (right) (Methods;). In a and c, colours encode 

geographic regions (AFR: Africa, EAS: East Asia, EUR: Europe, SAS: South Asia, AMR: 

Americas). d, Number of mutations binned by age of upper and lower coalescent event, 

relative to the expected number of mutations when randomising topology while fixing ages 

of coalescence events (Methods). Right column shows mutations not present in Neanderthal 

or Denisovan samples.
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Figure 5. Natural selection
a, QQ-plot of p-values p R for selection evidence of SNPs. We simulated 250Mb for N = 

1000 haplotypes using the recombination map of chromosome 1 and a bottleneck population 

size resembling that of non-African populations. b, Power simulations using N = 1000 

haplotypes. We use historical population sizes estimated by Relate for YRI (left) and GBR 

(right). Top row shows statistical power and bottom row shows p R with the mean indicated 

by circles and the 5th and 95th percentiles indicated by the error bars. We performed 500 

simulations for the neutral case and 200 simulations for s > 0. c, Manhattan plot showing p R 

of SNPs, for GBR and CHB. We highlight regions containing a SNP with p R < 5 × 10-8 in 

at least three populations (see Supplementary Table 3 for a full list), as well as the MHC 

region in GBR. d, Mean enrichment of functional annotation among targets of selection, 

conditional on allele frequency. Error bars show 95% confidence intervals estimated from 

1000 iterations of a block bootstrap resampling (Methods). We group SNPs by mean 

regional Z-score corresponding to the log p-value for selection evidence, where a smaller Z-

score indicates stronger selection evidence. SNPs are binned by partially overlapping 

functional annotations: intronic mutations (INT), synonymous mutations (SYN), mutations 

at the 5’ end and 3’ end of a gene (U5, U3), non-synonymous mutations (NSM), and GWAS 

hits (GWAS).
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Figure 6. Evidence of selection on traits
a, P-values for evidence of directional selection of black, blond, and light brown hair color 

(see Methods for calculation of p-values). Insets show p-values for the same test but using 

iHS scores instead, where iHS scores are calculated for each population separately for any 

variant with a minor allele frequency >5% in that population. b, Evidence for directional or 

bidirectional selection on multi- allelic traits. Each trait is associated with at least 10 SNPs 

in both effect directions in each of the considered populations. We show evidence for a trait 

increasing over time (left) and evidence for a trait decreasing over time (right) if p ≤ 0.05. 

Black boundaries indicate consistency with an additional test that tests for shifts in the DAFs 

(solid: p ≤ 0.05, dashed: p ≤ 0.5, Methods).
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