Skip to main content
. Author manuscript; available in PMC: 2021 Apr 6.
Published in final edited form as: Chem Rev. 2014 Apr 10;114(11):5815–47. doi: 10.1021/cr400401e

Table 4. Classification of all known three-dimensional structures of wild-type and synthetic conopeptides into folds and sub-folds.

Namea Speciesb Cys frame workc Size (aa) # Cysd Loop sizee Gene super family Methodf BMRB IDg PDB IDg Cono Server IDg
Fold A: four cysteines, globular [connectivity 1-3, 2-4]
   Sub-fold A1 (one turn of helix in first loop)
α-ImI C. imperialis I 12 4 4/3 A NMR 1G2G, 1IMI, 1CNL, 1IM1 5, 24, 25, 27
X-ray 2BYP, 2C9T 34, 35
α-ImI [D5N] I 12 4 4/3 NMR 4847 1E76 10
α-ImI [R7L] I 12 4 4/3 NMR 4846 1E75 9
α-ImI [A9L,W10Y,R11ABA] I 12 4 4/3 NMR 20107 131
α-ImI [R11E] I 12 4 4/3 NMR 4845 1E74 8
α-ImI [C2Agl,C8Agl] I 12 2 4/3 NMR 20033 128
α-ImI [C2U,C8U] I 12 4 4/3 NMR 6897 2BC7 97
α-ImI [C2U,C3U,C8U,C12U] I 12 4 4/3 NMR 6896 2BC8 98
α-RgIA C. regius I 12 4 4/3 A NMR 20002, 15435 2JUT 118, 123
α-RgIA [D5E] I 12 4 4/3 NMR 15367 2JUR 119
α-RgIA [P6V] I 12 4 4/3 NMR 15436 2JUQ 121
α-BuIA C. bullatus I 13 4 4/4 A NMR 15031 2I28 7
α-AuIB C. aulicus I 15 4 4/6 A NMR 1MXN, 1DG2 31, 13
cyclic-AuIB-4 (GGAA) I 19 4 4/6 NMR 142
cyclic-AuIB-5 (AGAGA) I 20 4 4/6 NMR 143
cyclic-AuIB-6 (GGAAGG) I 21 4 4/6 NMR 144
α-EI C. ermineus I 18 4 4/7 A NMR 1K64 18
α-Epi [sTy15>Y] I 16 4 4/7 X-ray 1A0M 20
α-GIC C. geographus I 16 4 4/7 A NMR 5985 1UL2 26
α-GID C. geographus I 18 4 4/7 A NMR 5585 1MTQ 15
α-MII C. magus I 16 4 4/7 A NMR 1M2C, 1MII 21, 29
α-MII [E11A] I 16 4 4/7 NMR 145
cyclic-MII-6 I 22 4 4/7 NMR 6818 2AJW 32
cyclic-MII-7 I 23 4 4/7 NMR 6817 2AK0 33
α-OmIA C. omaria I 17 4 4/7 A NMR 6237 2GCZ 5
α-PeIA C. pergrandis I 16 4 4/7 A NMR 139
α-PIA C. purpurascens I 18 4 4/7 A NMR 6720 1ZLC 36
α-Pni1 I 16 4 4/7 X-ray 1PEN 12
α-PnIA [A10L,D14K,sTy15Y] I 16 4 4/7 X-ray 2BR8 30
α-PnIB C. pennaceus I 16 4 4/7 A X-ray 1AKG 16
ρ-TIA C. tulipa I 19 4 4/7 A NMR 1IEN 65
α-TxIA C. textile I 16 4 4/7 A X-ray 2UZ6 110
α-Vc1.1 C. victoriae I 16 4 4/7 NMR 7177 2H8S 4
cyclic-Vc1.1 I 22 4 4/7 NMR 149
α-Vc1.2 C. victoriae I 16 4 4/7 A NMR 20126 141
Sub-fold A2 (no turn of helix in first loop)
α-CnIA C. consors I 14 4 3/5 NMR 1B45 53
α-GI C. geographus I 13 4 3/5 A NMR 1XGA 22
X-ray 1NOT 11
α-GI [N4Benzoy1-phenylalanine] I 13 4 3/5 NMR 2FRB 3
α-GI [S12Benzoy1-phenylalanine] I 13 4 3/5 NMR 2FR9 2
α-SI C. striatus I 13 4 3/5 A NMR 4503 1QMW 1
X-ray 1HJE 17
α-LtXIVA C. litteratus XIV 13 4 3/3/2 L NMR 21014 148
Sub-fold A3 (no turn of helix in first loop, second loop similar to sub-fold A1)
χ-CMrVIA [K6P] X 11 4 4/2 NMR 2IH6 111
χ-CMrVIA [K6P] amidated X 11 4 4/2 NMR 2IH7 112
Fold B: six cysteines, three disulfide bonds not in a knotted arrangement [connectivity 1-4, 2-5, 3-6]
   Sub-fold B1 (one turn of helix in second loop, two turns of helix overall)
μ-CnIIIC C. consors III 22 6 5/4/5 NMR 2YEN 150
μ-GIIIA C. geographus III 22 6 5/4/4 M NMR 1664, 1665 1TCG, 1TCJ 82, 84, 134, 135
μ-GIIIA [R13A] III 22 6 5/4/4 NMR 1TCH,1TCK 83, 85
μ-GIIIB C. geographus III 22 6 5/4/4 M NMR 1GIB 64
μ-KIIIA C. kinoshitai III 16 6 5/4/4 M NMR 20048 129
μ-PIIIA C. purpurascens III 22 6 5/4/4 M NMR 6027 1R9I 79
μ-RIIIK [T24A] III 24 6 6/4/4 NMR 146
μ-SIIIA C. striatus III 20 6 1/4/5 M NMR 20025 125
μ-SmIIIA C. stercusmuscarum III 22 6 5/4/5 M NMR 5881, 1Q2J 77
μ-TIIIA C. tulipa III 22 6 5/4/4 M NMR 20024 126
Sub-fold B2 (no turn of helix in second loop, one turn of helix overall)
α-PIIIE C. purpurascens III 24 6 4/5/4 M NMR 5113 1AS5, 1JLO 51, 68
α-PIIIF C. purpurascens III 24 6 4/5/4 M NMR 5112 1JLP 69
Fold C: six cysteines, three disulfide bonds forming a cystine knot [connectivity 1-4, 2-5, 3-6]
Sub-fold C1 (six residues in first loop)
δ-Am2766 C. amadis VI/VII 26 6 6/6/3/3 O1 NMR 1YZ2 94
ω-CVID C. catus VI/VII 27 6 6/6/3/6 O1 NMR 138
δ-EVIA C. ermineus VI/VII 32 6 6/9/3/3 O1 NMR 1G1P, 1G1Z 62, 63
ω-FVIA C. fulmen VI/VII 25 6 6/6/3/4 NMR 2KM9 137
μ-conotoxin-GS C. geographus VI/VII 27 6 6/3/4/7 O1 NMR 1AG7 50
ω-GVIA C. geographus VI/VII 27 6 6/6/2/6 O1 NMR 2CCO, 1TTL, 1OMC 72, 89, 100
ω-GVIA [O10>K] VI/VII 27 6 6/6/2/6 NMR 1TR6 86
μ-MrVIB C. marmoreus VI/VII 31 6 6/9/4/4 O1 NMR 6135 1RMK 80
ω-MVIIA C. magus VI/VII 25 6 6/6/3/4 O1 NMR 1DW4, 1DW5, 1MVI, 1OMG, 1TTK 55, 56, 70, 73, 88
ω-MVIIA with C-terminal Gly VI/VII 26 6 6/6/3/4 NMR 1FEO 59
ω-MVIIA [R10>K] VI/VII 25 6 6/6/3/4 NMR 1TT3 87
ω-MVIIC C. magus VI/VII 26 6 6/6/3/5 NMR 4500 1CNN, 1OMN 74
ω-MVIIC [S17K,S19R,K25R] VI/VII 26 6 6/6/3/5 NMR 1V4Q 90
κ-PVIIA C. purpurascens VI/VII 27 6 6/6/3/5 O1 NMR 1AV3, 1KCP 46
ω-SO3 C. striatus VI/VII 25 6 6/6/3/4 O1 NMR 1FYG 61
ω-SVIB C. striatus VI/VII 26 6 6/6/3/5 O1 NMR 1MVJ 71
t7a C. tulipa VI/VII 30 6 6/3/4/4 O1 NMR 1EYO 57
ω-TxVII C. textile VI/VII 26 6 6/6/3/3 O1 NMR 1F3K 58
δ-TxVIA C. textile VI/VII 27 6 6/6/3/4 O1 NMR 1FU3 60
ι-RXIA C. radiatus XI 46 8 6/5/2/4 I1 NMR 15175 2P4L, 2JTU 104, 130
ι-RXIA [BTr33>W] XI 46 8 6/5/2/4 NMR 15174 2JRY 105
Sub-fold C2 (three residues in first loop)
gm9a C. gloriamaris IX 27 6 3/5/3/1/4 P NMR 1IXT 67
Fold D: four cysteines, disulfide bonds with ribbon connectivity [connectivity 1-4, 2-3]
Sub-fold D1 (disulfide 2-3 in a staple conformation)
χ-MrIA C. marmoreus X 13 4 4/2 T NMR 6891 2EW4 102
  cyclic-MrIA X 15 4 4/2 NMR 2J15 49
χ-MrIB amidated C. marmoreus X 13 4 4/2 NMR 1IEO 66
*α-GI ribbon isoform I 13 4 3/5 NMR 1XGB 23
Sub-fold D2 (disulfide 2-3 in a hook conformation)
*α-AuIB ribbon isoform I 15 4 4/6 NMR 1MXP 14
*α-BuIA ribbon isoform I 4 4/4 NMR 2NS3 114
*α-ImI deamidated ribbon isoform I 12 4 4/3 NMR 2IGU 106
*α-ImI [P6A] ribbon isoform I 12 4 4/3 NMR 2IFI 108
*α-ImI [P6K] ribbon isoform I 12 4 4/3 NMR 2IFZ 107
*α-ImI [P6K] ribbon deamidated isoform I 12 4 4/3 NMR 2IFJ 109
*χ-CMrVIA ribbon isoform 11 4 4/2 2B5P 95
*χ-CMrVIA amidated ribbon isoform X 11 4 4/2 NMR 2IHA 113
Fold E: four cysteines, mirror of fold A [connectivity 1-3, 2-4]
χ-CMrVIA C. marmoreus X 11 4 4/2 NMR 2B5Q 96
Fold F: four cysteines, disulfide bonds collinear [connectivity 1-3, 2-4]
α-Pu14a C. pulicarius XIV 23 4 10/1/3 A NMR 21015 147
Fold G: four cysteines, parallel disulfide bonds [connectivity 1-3, 2-4]
κ-PlXIVA C. litteratus XIV 25 4 3/10/1 J NMR 6951 2FQC 103
Kunitz fold: large protein with two disulfide bonds [connectivity 1-4,2-3]
Conkunitzin-S1 C. striatus XIV 60 4 24/20/3 X-ray 1Y62 48
Conkunitzin-S2 C. striatus XIV 65 4 24/20/3 NMR 2j6d 117
Fold H: six cysteines [connectivity 1-5, 2-4, 3-6]
mr3e C. marmoreus III 16 6 4/3/1 M NMR 15195 2EFZ 101
Fold I: six cysteines [connectivity 1-5, 2-3, 4-6]
α-PIVA [Hyp7P,Hyp13P] IV 25 6 7/2/1/6 NMR 1P1P 75
α-EIVA C. ermineus IV 30 6 7/2/1/7 NMR 5869 1PQR 76
Fold J: two cysteines, cystine stabilized turn
contryphan-R C. radiatus 8 2 5 NMR 1QFB 47
contryphan-R [Δ1] 7 2 5 NMR 1DG0 45
contryphan-Sm C. stercusmuscarum 8 2 5 NMR 1DFY, 1DFZ 38, 39
contryphan-Vn C. ventricosus 9 2 5 NMR 1NXN 43
cyclic-contryphan 8 2 5 NMR 1D7T 37
conopressin-T C. tulipa 9 2 4 NMR 20007 124
Fold K: no cysteine, fully helical
conantokin-G C. geographus 17 0 B NMR 1AD7, 1AWY, 1ONU 40, 41, 44
conantokin-T C. tulipa 21 0 NMR 1ONT 42
Fold L: no cysteine, 3/10 helix and coil
conomarphin C. marmoreus 15 0 M NMR 7397 2YYF 115
conomarphin [d13>D] 15 0 NMR 2JQC 116
a

A brief description of the folds and sub-folds is provided in Figures 4a or 4b. The names of non-natural synthetic variants are indented in the case where the fold is the same as the wild-type conopeptide, whereas the name of the variant is preceded by an asterisk in the case where it adopts a different fold from the wild-type.

b

Only wild-type conopeptides are provided with a Conus (C.) species.

c

Cysteine frameworks are defined in Table 2.

d

The number of cysteine residues (# cysteines) is counted in the sequence of the mature peptide region in the precursor, before modification to cystines.

e

The “loop size” designates the length of the inter-cysteine segments defined in the cysteine frameworks, whose description is in Table 2.

f

“Method” refers to the experimental method used to determine the three-dimensional structures. If two different experimental methods were used for the same conopeptide, identifiers are provided on two separate lines.

g

The database identifiers in the Biological Magnetic Resonance dataBank (BMRB), Protein Data Bank (PDB) and ConoServer database are provided. Distinct structural studies are catalogued as different entries in ConoServer, and therefore each entry in ConoServer can be associated with a BMRB and/or a PDB entry. Some conopeptide three-dimensional structures are only found in ConoServer as they were not deposited by their authors in the PDB or BMRB.