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Abstract

Ovarian function is central to female fertility, and several genome-wide association studies 

(GWAS) have been carried out to elucidate the genetic background of traits and disorders that 

reflect and affect ovarian physiology. While GWAS have been successful in reporting numerous 

genetic associations and highlighting involved pathways relevant to reproductive aging, for ovarian 

disorders, such as premature ovarian insufficiency and polycystic ovary syndrome, research has 

lagged behind due to insufficient study sample size. Novel approaches to study design and analysis 

methods that help to fit GWAS findings into biological context will improve our knowledge about 

genetics governing ovarian function in fertility and disease, and provide input for clinical tools and 

better patient management.

Genetics of Ovarian Biology

The ovarian reserve (see Glossary), one of the key elements of female fertility, is 

influenced by many factors, including genetics. As a result, much attention has been focused 

on elucidating the genetic background of both normal reproduction and various disorders 

that affect and reflect the ovarian reserve and healthy folliculogenesis. Ovarian function 

revolves around folliculogenesis, a cyclic process responsible for the maturation and release 

of oocytes from the ovaries. The follicle reserve and the effectiveness of folliculogenesis 

affect female reproductive potential, which directly depends on natural reproductive aging, 

delineated by menarche and menopause-the two time-points in a woman’s life that open and 

close the reproductive window, respectively. However, in many women the normal course of 

events is disturbed by pathologies such as premature ovarian insufficiency (POI) and 

polycystic ovary syndrome (PCOS). Both POI and PCOS have a significant impact on 
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female fertility because compromised reproduction is an inherent feature of POI, while 

PCOS is the most common cause of anovulatory infertility [1]. In addition to being essential 

for natural conception, ovarian reserve and response also remain the key limiting steps in 

assisted conception because one of the prerequisites for successful in vitro fertilization 
(IVF) treatment is the availability of multiple good-quality oocytes (Figure 1).

Normal reproductive aging has a strong genetic component, and the heritability of 

menopausal age can be as high as 90% [2]. Similarly, genetic factors have been implicated 

both in the pathogenesis of POI [3] and PCOS (heritability up to 70%) [4], justifying the 

search for genetic determinants. Although epidemiological evidence points to a complex 

interplay between reproductive aging and various ovary-related traits or conditions [5,6], the 

extent to which these phenotypes share genetic determinants has only recently begun to be 

clarified.

Over the past decade, advances in array-based genotyping technologies and the concurrent 

development of a wide variety of software tools have led to increased interest in genome-
wide association studies (GWAS). These studies have broadened our horizon regarding the 

genetic architecture of complex traits and have resulted in new discoveries concerning the 

genetics governing female reproduction. This review summarizes current knowledge and 

addresses the impact that GWAS have on our understanding of ovarian biology as a whole, 

while concomitantly discussing potential new developments in study group selection, data 

analysis, and interpretation, and finally the translational potential of the findings.

Designing the Study–Biobanks or Patient-Based Cohorts?

Both hypothesis-driven candidate gene studies and hypothesis-free GWAS begin by defining 

the phenotype and selecting the appropriate study group, a crucial step that defines the 

success of a study [7]. Traditionally the research centers conducting the study have recruited 

very precisely defined participants to ensure homogeneity of the study group. However, the 

power of a study to detect genetic associations, that each have a small effect on the complex 

trait or disease of interest, depends directly on the study size; the larger the study the more 

associations, and smaller effects are robustly identified [8]. The establishment of large 

populationbased biobanks that collect biological material, phenotype, and lifestyle data has 

made it possible to dramatically increase the sample size for some traits. For example, recent 

GWAS meta-analyses for age at menarche/menopause have included tens of thousands of 

women and revealed dozens of associated loci [9–11]. However, the question remains of 

whether population-based biobanks with healthcare records and questionnaire-based data 

can be used for large-scale studies on phenotypes that are usually defined using rigorous 

clinical criteria. One of the main advantages of recruiting individuals for a specific study is 

the possibility to collect additional biological material (urine, follicular cells, and other 

tissues) or information on diseasespecific sub-phenotypes, such as hormonal values or data 

from ultrasound scans, which are usually not collected from individuals recruited into 

population-based biobanks. Biobanks have proved to be extremely useful for studying 

anthropometric traits (such as height) that can be extracted from self-reported data [12]. 

Several biobanks have established female healthspecific questionnaires, thereby creating 

valuable datasets for reproductive health-related phenotypes which could also provide 
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insight into ovarian biology. For example, a recent study proposed that menstrual cycle 

length could be a proxy marker for ovarian reserve and oocyte quality [13], and recently a 

GWAS for this trait was published, highlighting variants near the FSHB gene that encodes 

the ß subunit of follicle-stimulating hormone (FSH) [14]. Because menstrual cycle length 

is among the phenotypes that some biobanks collect data for (relevant questions are included 

in the UK Biobanki, the Estonian Biobankii, and the LifeLines Biobankiii female health 

questionnaires), we will probably soon have more information about the genetics of 

menstrual cycle. Moreover, phenotypes such as parity also reflect ovarian function to some 

extent, and GWAS conducted thus far suggest that associated genetic variants are there to be 

found with the help of larger study cohorts [15,16].

In addition, biobanks collect data on medical history and current health status and, 

depending on regional legislation, also have the possibility to link with national or hospital 

databases, creating the opportunity to confirm diagnoses or identify cases. An algorithm 

combining various inclusion and exclusion criteria has successfully been used to extract 

patients with suspected POI from a population-based biobank, to explore the prevalence and 

epidemiology of the condition [17], and a similar approach could also be used in studies 

aimed at finding genetic associations with POI. Furthermore, the usability of text-mining 

algorithms for the detection of women with PCOS has also been explored [18], providing 

additional means for increasing sample size of this phenotype.

Successful reproductive aging GWAS meta-analyses have demonstrated the value of 

population-based biobanks. Whether these resources could also be used to progress genetic 

studies on traits and disorders associated directly with ovarian biology remains to be 

established.

Analyzing the Data–Quality or Quantity?

The main concern related to using biobanks for studying various disorders is the question 

whether increase in quantity comes at the price of quality. As mentioned in the previous 

section, specifically recruited patients enable seemingly homogenous study groups to be put 

together. For example, all three criteria used for diagnosing PCOS (Box 1) overlap to some 

degree, but also encompass some different characteristics, resulting in varying phenotypes 

under the umbrella of PCOS diagnosis. Until now it has been suggested that all diagnostic 

criteria should be treated as separate entities in genetic association studies in the interests of 

clinical precision and study group homogeneity. However, no significant genetic 

heterogeneity across the National Institutes of Health (NIH) and Rotterdam criteria, and in 

self-reported disease status, was observed in the latest PCOS GWAS [19]. This suggests that, 

although important from a clinical perspective, less-stringent clinical criteria, International 

Classification of Diseases (ICD) codes, or even self-reported status can be used for some 

conditions to increase the power to detect associations in large-scale studies. However, this 

approach needs to be validated for each phenotype either by assessing genetic heterogeneity 

i Resources 
www.ukbiobank.ac.uk 
ii www.geenivaramu.ee/en 
iii www.lifelines.nl/ 
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in comparison with clinically confirmed cases, or by replicating established genotype—

phenotype associations [20].

In addition to larger sample size, study power can be increased by other means of expanding 

the dataset, for example by taking advantage of repeated measurements [21] such as 

hormone values or other quantitative traits that vary in time and have been measured at 

different timepoints. Repeated measurements are, for example, generated in IVF treatment 

cycles, where women often undergo more than one treatment cycle, resulting in multiple 

data-points for hormonal measurements and controlled ovarian stimulation (COS) 

outcome (the number of oocytes retrieved in each cycle). In data analysis, usually all but one 

cycle is discarded; however, more complex statistical models that make full use of the data at 

hand are necessary here [22].

The novel approaches to study group formation and the multi-layered structure of collected 

data for certain traits discussed in this section provide a means to increase analysis power. 

Potentially, this could lead to interesting new discoveries regarding the genetics of PCOS, 

POI, and ovarian reserve.

What Have We Learned So Far about Ovarian Biology from GWAS?

The list of traits related to the ovarian function and ovarian reserve interrogated by the 

GWAS approach includes not only those that are markers of ovarian reserve but also the 

folliculogenesis-related pathologies POI and PCOS as well as reproductive aging 

parameters, such as age at menarche and menopause, that can provide clues about the 

processes governing ovarian physiology. The primary outcome of a GWAS analysis—a list 

of significantly associated variants, is a starting point to unravel the physiological 

mechanisms underlying a trait. Because GWAS takes advantage of linkage disequilibrium 

(LD) between variants, and the majority of GWAS hits lie in intergenic (regulatory) regions 

[23], the use of different approaches is necessary to find the most likely causal genes and 

associated biological mechanisms. A plethora of analytical tools have been developed to 

take the list of variants forward and fit them into a larger biological picture by aiding the 

identification of likely causal genes and pathways, and the dissection of underlying 

mechanisms and genetic correlations to other comorbidities and traits (Box 2).

Ovarian Reserve

The ovarian reserve can be indirectly estimated by hormonal or ultrasound markers [FSH, 

anti-Müllerian hormone (AMH), antral follicle count (AFC)], and some studies have been 

conducted to identify genes associated with these markers, resulting in several variants that 

associated with AMH or early follicular phase FSH values in Caucasian and African 

American women [24]. However, none of these hits were later confirmed in studies 

specifically aimed at finding the genetic regulators of sex hormones, including FSH [25] and 

AMH [26]. Instead a signal near FSHB that influenced FSH as well as luteinizing hormone 
(LH) levels was reported in a study group consisting mainly of female Europeans [25] 

(Figure 2A), while variants directly in the AMH locus were found to regulate AMH levels in 

males but not females [26]. In addition, variants associated with AFC were also reported 

[27], several of which were also associated with AMH levels [27], indicating an overlap 
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between the genetic determinants for these traits. However, the variants reported in [24] and 

[27] are near genes (LRRC61, GPR12, KLRAP1, BLK, MACROD2) that have previously 

not been linked to female reproduction and, considering the limited sample size in the 

original studies, validation in larger independent cohorts and functional studies will be 

necessary to confirm their role in ovarian biology.

Another trait closely related to the ovarian reserve is the response to COS used in IVF. One 

very small GWAS (n = 92) has been done on IVF-related traits (oocyte yield, the total 

amount of FSH used during stimulation, the amount of FSH needed for retrieving one 

oocyte, embryo quality, and likelihood of pregnancy), but likely due to power this study only 

yielded a few sub-significant associations [28].

Apart from the few studies conducted for hormone levels, GWAS related to ovarian reserve 

parameters have suffered from a lack of sufficiently sized study groups. Further studies, 

especially for COS parameters, will be necessary to reveal the genetic determinants of 

ovarian response.

Reproductive Aging

For natural reproductive aging, several GWAS have been conducted, both for the timing of 

menarche [9,11,29–31] and menopause [10,32–36]. The largest studies, involving more than 

180 000 and nearly 70 000 women, respectively, have identified altogether approximately 

150 associated loci in women of European descent [37] (Figure 2A). Collectively, these 

explain about 3-4% [9,11] and 6% [10], respectively, of the variance in menarche and 

menopause timing. The reported effect sizes range from 2 weeks up to 1.25 years for 

menarche (largest effect for a low-frequency variant in TACR3) [9,11], and from ~4 weeks 

to nearly 1 year for menopause (largest effects for common variants in MCM8 and low-

frequency variants in HELB) [10]. Several regions initially identified in one population have 

also shown consistent associations with menarche/menopause timing in other populations 

[30,31,38–41], pointing to significant genetic overlap of reproductive timing across various 

populations and races. In addition, variants associated with menarche and menopause timing 

are enriched in regions that contain genes for monogenic puberty disorders [9,10]. 

Furthermore, menopause associations tend to lie near genes responsible for monogenic 

forms of POI [10]. This again highlights not only the genetic overlap between distinct 

disorders and normal variation observed in a population but also between the two time-

points that define the reproductive lifespan. Additionally, both menarche and menopause 

show genetic correlations with several other phenotypes (Figure 2B). Tissue enrichment 

analysis with DEPICT (Box 2) and previously published loci ([9,10] and Tables S1-S4 in the 

supplemental information online) showed no statistically significant enriched tissues for 

menarche loci (top-ranking terms included musculoskeletal system, connective tissue cells, 

and central nervous system), but highlighted the endocrine, blood, and stem cells together 

with the immune system and urogenital tissues (including ovary) for menopause loci.

Biological pathways highlighted in studies include DNA repair and immune response for 

menopause [10,34], and energy homeostasis, pituitary function, nuclear hormone receptor 

signaling, steroidogenesis, and gene silencing for menarche [9]. Interestingly, for menopause 

signals, no enrichment was seen in genes associated with ovarian function (the tested list 
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included 130 genes associated with POI, folliculogenesis, ovarian dysgenesis, etc.) [10]. 

Nevertheless, several of the identified candidate genes are directly involved in processes 

governing ovarian function. For example, variation in FSHB is associated with both age at 

menarche [9] and menopause [10], and FSH plays a central role in folliculogenesis. MCM8, 

that participates in DNA replication and is reported to have the biggest effect on menopause 

timing, was found to be associated with follicle count and is also expressed in human 

ovarian follicles [27], and furthermore is one of the genes responsible for monogenic forms 

of POI [42,43]. Several of the other known menopause loci have been associated with traits 

reflecting the ovarian function [44–46], and a recent study showed that SYCP2L (encoding 

an oocyte centromere protein), which is associated with menopausal age [10] and with COS 

and IVF outcome [44], is expressed in oocytes, regulates primordial oocyte survival [47], 

and is associated with reduced fertility in aged female mice [47]. These results demonstrate 

that, in addition to identifying the genetic variants associated with reproductive aging in the 

general population, GWAS of these traits also offer valuable leads for further research into 

ovarian biology.

Taken together, GWAS for natural reproductive aging are a perfect example of how this 

approach can improve our understanding of reproductive health-associated phenotypes 

because these studies have not only highlighted the mechanisms behind ovarian aging but 

have also demonstrated a complex network of interactions between different (reproductive) 

phenotypes.

Premature Ovarian Insufficiency

To date, six studies using a GWAS approach have been conducted to find variants associated 

with POI in various populations ([48–53], reviewed in [3]). Numerous sub-significant 

associations [50–53] have been reported, and none of these associations were replicated in 

subsequent studies. Furthermore, no associations were observed in regions previously 

associated with monogenic forms of POI [3]. This is probably caused by the low prevalence 

of POI, making it difficult to collect sufficient numbers of cases. However, there is evidence 

that the same variants associated with age at normal menopause contribute to both early 
menopause and POI [54–56], indicating a considerable genetic overlap between POI and 

(early) menopause. This also underlines the possibility of studying the reproductive aging 

and ovarian insufficiency as a continuum without setting any cut-offs for menopausal age. 

Nevertheless, to fully understand the POI phenotype and its place in the reproductive aging 

continuum, a well-powered study for this phenotype is also highly anticipated.

Although not within the scope of this review, in recent years another hypothesis-free 

approach, namely next-generation sequencing (NGS), has identified several novel genes 

implicated in idiopathic POI. NGS encompasses high-throughput DNA sequencing 

technologies including whole-genome sequencing (WGS), whole-exome sequencing (WES), 

and other targeted NGS. The respective findings have been reviewed in more detail 

previously [3,57], but of interest is the fact that candidate genes identified by WES 

(including MCM8 and MCM9) are involved in meiosis, DNA repair, and chromosome 

stability, mirroring the findings from reproductive aging GWAS. Furthermore, a targeted 

NGS among potential POI candidate genes showed that mutations in ADAMTS19 are 
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associated with POI [58], confirming a previous sub-significant finding from a POI GWAS 

[52]. In this respect, GWAS and NGS represent two complementary approaches. On the one 

hand, NGS can determine the exact sequence of DNA, and therefore will give information 

about all genetic variants, including rare variants. However, it is still not feasible to sequence 

the large quantities of samples necessary for a genome-wide analysis, hence NGS is well 

suited for analyzing familial cases. On the other hand, GWAS samples are genotyped using a 

genome-wide array, and variants not directly genotyped are inferred or ‘imputed’ based on 

sequenced reference data and known haplotype structure. This makes GWAS a more cost-

effective method most suitable for the analysis of common genetic variants because the 

quality of imputation is much lower for rare genetic variants (and much larger study groups 

are needed for rare variant analysis).

PCOS

Recent years have seen a rapid emergence of PCOS GWAS studies and, since 2011, five 

studies have been published [19,59–62]. Together, these studies have identified 16 loci that 

are significantly associated with PCOS (Table 1). Moreover, four regions (THADA, C9orf3, 
FSHB, and YAP1) have been replicated in more than one study, and in women of Caucasian 

and Chinese Han backgrounds, suggesting common pathogenesis mechanisms across 

different populations. The first two studies identified 11 loci in Chinese Han PCOS patients 

[59,60]. The third PCOS GWAS conducted among Koreans did not identify any significant 

associations, but reported replication of seven of the previously found PCOS associations 

[61]. The study by Hayes et al. was the first PCOS GWAS among Caucasians and, as a 

result, two novel signals for PCOS risk were reported [62]. The most recent study included a 

total of ~7000 PCOS cases (both self-reported and clinically confirmed) and reported three 

novel hits [19]. Notably, this provides evidence the Erb-B pathway might be implicated in 

PCOS, and this pathway is involved in primordial germ cell development in mice [63]. In 

addition, ERBB3 interacts with YAP1 in the Hippo pathway, which regulates organ size by 

controlling cell proliferation and apoptosis, and has been associated with primordial follicle 

pool in mice [64]. Taken together, these five studies provide considerable evidence for the 

role of the Hippo pathway, neuroendocrine changes (mediated by LHCGR, FSHR and 

FSHB), and EGFRs in PCOS pathophysiology. In addition, the PCOS susceptibility variants 

found by Day et al. and Hayes et al. were also found to be associated with AMH, FSH, and 

LH levels [19,62], offering some insight into the genetics of these traits as well. Finally, 

variants associated with menopause also associate with PCOS risk, suggesting a shared 

genetic background for ovarian aging and PCOS [19,46], and providing an evolutionary 

explanation for the high prevalence of PCOS-the primordial follicle pool is larger or more 

efficiently used in PCOS patients [19].

In conclusion, the GWAS approach has proven to be relatively successful for finding genetic 

susceptibility factors of PCOS. While some of the findings (such as the neuroendocrine 

component) were to be expected, others are novel and warrant further studies to understand 

their role in disease development.
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What Can GWAS of Traits Related to Ovarian Biology Provide to the 

Patients?

From a clinical point of view, additional tools facilitating disease prediction, early diagnosis, 

informed interventions, or personalized treatment would substantially improve patient 

management, and there is accumulating evidence that GWAS findings can provide the 

necessary means for this. Addition of genetic markers to known risk factors was shown to 

improve the performance of clinical breast cancer risk prediction models [65] or help to 

predict Parkinson’s disease progression [66], while drug mechanisms with genetic support 

from GWAS have better success rates [67]. Although individual associated genetic markers 

identified in GWAS confer only a modest disease risk, the combined effect of tens or 

thousands of markers can be sufficient to be clinically useful. Polygenic risk scores with 

genome-wide data can be used to summarize the effects of many genetic variants, and proof 

of concept for their use in disease prediction has been shown in simulations [68]. Ideally, 

risk models should consider environmental, lifestyle, and genetic risk factors, as well as their 

interactions.

In the context of ovarian biology, such risk-prediction models would be useful for the timely 

detection of women at risk of PCOS [69] orearly/premature menopause [54,56]. Because the 

most significantly associated genetic variants identified in menopausal timing studies show 

potential for predicting reproductive lifespan [54,56], it could be expected that the use of 

polygenic risk scores involving more markers would also improve prediction accuracy. 

Furthermore, genetic variants associated with natural menopausal timing also seem to have 

an impact on the onset of menopause in women undergoing chemo- or radiotherapy [45]. 

This means that genetic risk prediction models could provide a basis for more personalized 

counseling regarding family planning, lifestyle choices, or the use of modern technologies 

for maintaining fertility, such as oocyte cryopreservation. For PCOS, genetic risk profiles 

have been proposed for individualizing treatment approaches depending on risk categories 

[69]; however, currently proposed genetic risk profiles show poor predictive value [69] and 

cannot be used as stand-alone clinical tools.

Input for individualizing treatment can also come from Mendelian randomization analyses, 

which use GWAS data to explore the causality between phenotypes. For example, the causal 

roles of increased body mass index and insulin resistance in the pathophysiology of PCOS 

were confirmed using this approach [19], highlighting the importance of lowering weight 

and reducing insulin resistance as a part of PCOS treatment. As the causal relationships 

between other phenotypes are revealed, this could highlight additional ways for more 

personalized patient counseling to decrease disease risk.

Finally, a marker profile associated with ovarian stimulation outcome would be a valuable 

pharmacogenomic tool for personalizing and optimizing treatment protocols because there is 

evidence that individual genetic variation could be related to COS response in IVF [70]. 

Considering the genetic overlap between reproductive aging and other ovarian-related 

phenotypes, genetic variants associated with reproductive aging could also be potential 

candidates for assessing ovarian function and response in infertility treatment. Personalized 

COS-IVF protocols could lower the risk of side effects from treatment (such as ovarian 
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hyperstimulation syndrome or poor ovarian response), and could potentially lead to more 

efficient treatment in terms of oocytes received or even pregnancy rate. However, further 

studies will be necessary to determine how these genetic variants associate with known 

markers of ovarian reserve and IVF outcome, and how they perform individually or in 

combination.

In summary, genetic markers are stable and detectable throughout life, and this supports 

their use as prognostic biomarkers. The main factors currently hindering their application in 

the clinical setting include the lack of information on functional significance for the majority 

of identified variants, and on how genetic variants interact with each other or with 

environmental factors. Hopefully the coming years will see both novel analytical methods 

for modeling these interactions and also the application of genetic markers in the clinical 

setting.

Concluding Remarks and Future Perspectives

It is evident that, although for some phenotypes discussed in this review (such as age at 

menarche and menopause) GWAS have been true success stories, for others (PCOS, POI, 

ovarian reserve and response) the best is yet to come. The studies conducted so far have 

shown that some findings will support what is previously known or suspected (such as the 

involvement of DNA repair mechanisms in ovarian aging, or the importance of 

neuroendocrine mechanisms in PCOS susceptibility), while others will prompt new 

investigations. As analytical methods for finding causative genes or biological context 

improve, so will our knowledge on the genetics governing ovarian physiology. However, 

functional studies for validating the GWAS findings and for understanding how associated 

variants modify biological mechanisms largely remain an untouched territory in the context 

of ovarian biology.

While many gaps in our knowledge remain (see Outstanding Questions), we hope that new 

and innovative approaches to study design, valuable lessons from other phenotypes, and 

close collaboration between clinicians and scientists will pave the way for new discoveries 

and, more importantly, for novel means to harness GWAS findings on ovarian function for 

the benefit of the patients.
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Box 1

PCOS Diagnostic Criteria

Owing to the heterogeneous clinical manifestation of PCOS, which results in nearly 20 

different phenotypes [71], the diagnosis cannot be made based on a single characteristic. 

Over the years many different definitions have been used, but currently three sets of 

criteria have been proposed for diagnosing PCOS that use in various combinations the 

following characteristics: hyperandrogenism (presenting as excessive body hair, acne, or 

baldness), hyperandrogenemia (elevated male sex hormone levels in blood), 

oligomenorrhea (less than nine menstrual periods a year), amenorrhea (no menstrual 

periods), and polycystic ovaries (increased ovarian volume or at least 12 follicles 

measuring 2-9 mm in diameter in at least one ovary). According to the NIH/National 

Institute of Child Health and Human Development (NICHD) criteria established in 1990, 

PCOS is defined as the presence of hyperandrogenism and/or hyperandrogenemia and 

menstrual dysfunction [72]. The so-called Rotterdam criteria proposed in 2003 state that 

two of the following three characteristics must be present: hyperandrogenism and/or 

hyperandrogenemia, menstrual dysfunction, and polycystic ovaries visualized on 

ultrasound [73]. Use of the Rotterdam criteria is also suggested by the Endocrine Society 

[74]. Finally, the Androgen Excess Society Criteria published in 2009 proposed defining 

PCOS as the presence of both hyperandrogenism (clinical and/or biochemical) and 

ovarian dysfunction (oligo- or anovulation and/or polycystic ovaries) [71]. All three 

criteria also state that other conditions that might mimic these symptoms need to be 

excluded.
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Box 2

What Can We Do with GWAS Findings In Silico? 

Because the variants identified in GWAS are not always directly causal, but are instead 

surrogates for true causal variants, different approaches (Figure IA) are used to fit GWAS 

findings into a larger biological picture and provide possible explanations for how genetic 

variation could influence the phenotype, for example by modifying gene expression. We 

list here some of the analytical methods that have been most used in studies related to 

ovarian function.

Expression quantitative trait locus (eQTL) analysis aims to find genetic variants that 

influence gene expression. eQTLs can be local, near the SNP of interest (cis-eQTL), or 

distant. The latter are usually called trans-eQTLs and are spatially separated from the 

SNP of interest, for example on another chromosome. Several freely accessible databases 

have been established for various human tissues. The most comprehensive public eQTL 

databases are currently the whole blood eQTL browseriv [75] and the Genotype-Tissue 

Expression (GTEx) databasev [76].

’Pathway and enrichment analyses’ fit GWAS hits into a functionally more meaningful 

context by evaluating the joint effect of many genes, thereby highlighting those biological 

processes or functional domains most affected by the associated variants. To facilitate 

such analyses, tools such as Meta-Analysis Gene-set Enrichment of variaNT Associations 

(MAGENTAvii) [77] and Data-driven Expression-Prioritized Integration for Complex 

Traits (DEPICTviii) [78] have been developed. These programs use GWAS summary 

statistics (P value and chromosomal positions) as an input and propose causal genes, find 

enriched biological processes/pathways, gene sets, and also tissues or cell types where 

genes from associated loci show high expression.

In addition to looking for enrichment in pre-defined pathways, tissues, or functional 

elements, text-mining tools such as Gene Relationships Across Implicated Loci 

(GRAILix) offer the possibility to prioritize genes by scanning published papers for 

keywords that are similar for associated markers [79]. In addition, GWAS data can be 

used to explore the shared genetic component between traits by assessing pleiotropy (one 

locus influences multiple phenotypes) or by using the recently developed LD Score 

Regression method that takes advantage of the enrichment of heritability in particular 

genomic regions that is shared across many traits [80].

From a clinical perspective, polygenic profiles generated based on the associations 

observed in GWAS can be used for assessing the causal relationships between 

phenotypes using Mendelian randomization [81], similarly to clinical randomization 

studies, only using genotype data as instruments (Figure IB). In the future, polygenic 

profiles could also be used for personalized risk assessment and counseling.

iv genenetwork.nl/bloodeqtlbrowser/ 
v www.gtexportal.org/home/ 
vii www.broadinstitute.org/mpg/magenta/ 
viii www.broadinstitute.org/mpg/depict/ 
ix www.broadinstitute.org/mpg/grail/ 
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Figure I. 
How To Fit the GWAS Findings in a Larger Biological Picture? Various approaches (A) 

contextualizing GWAS findings, and (B) harnessing GWAS findings for translational 

output.
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Trends

Large population-based biobanks can be harnessed for genetic studies in ovary-related 

phenotypes to take research efforts to the next level.

New analytical methods that use GWAS summary statistics can be used to identify the 

most likely causal genes, pathways, underlying mechanisms, genetic correlations, and 

causal relationships between phenotypes.

There is significant genetic overlap between traits and disorders reflecting ovarian 

function, such as age at natural menopause, polycystic ovary syndrome, and premature 

ovarian insufficiency.

Results from large-scale genetic association studies can provide information for more 

personalized patient management.
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Outstanding Questions

How exactly are reproductive aging, ovarian reserve and ovarian disorders related at a 

genetic level? Can well-designed GWAS in phenotypes where this approach has not been 

used successfully, together with analytical methods for assessing genetic correlations, 

provide a sufficient answer?

How do the identified genetic associations exert their biological effects on these traits and 

conditions? Gene expression, methylation, and protein level datasets for follicular cell 

subpopulations, ovarian stromal cells, or even oocytes may complement our knowledge 

on how genetic variation modifies gene expression in ovarian tissue.

How can the findings from GWAS be successfully translated to individualizing healthcare 

in prevention, early diagnosis, and treatment?
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Glossary

Anti-Müllerian hormone (AMH)
a hormone produced by granulosa cells of small antral follicles. AMH levels reflect the 

number of small antral follicles (oocytes) and decline with age. Lower AMH levels may 

indicate a decreased dynamic ovarian reserve.

Antral follicle count (AFC)
the number of (2–10 mm) antral follicles visible in the ovaries by ultrasonography early 

in the menstrual cycle.

Controlled ovarian stimulation (COS)
refers to the growth of multiple ovarian follicles when induced by stimulating the ovaries 

with exogenous hormones.

Early menopause (EM)
menopause before the age of 45 years.

Follicle-stimulating hormone (FSH)
a pituitary-derived hormone that stimulates the growth of ovarian follicles. Elevated FSH 

levels in early menstrual cycle may indicate a decreased ovarian reserve.

Genome-wide association study (GWAS)
a study to test the association between millions of genetic markers and a phenotype of 

interest. Owing to the large number of association tests carried out, a P value threshold of 

P = <5 × 10−8 is used to avoid false-positive results.

In vitro fertilization (IVF)
a methodology used to treat infertility. A typical IVF treatment cycle involves COS, in 
vitro fertilization of the obtained oocytes, and culture of the embryos, which are then 

transferred into the uterus.

Luteinizing hormone (LH)
a pituitary-derived hormone that triggers ovulation.

Ovarian reserve
a term used to describe female reproductive potential as defined by the total number of 

oocytes in the ovaries.

Polycystic ovary syndrome (PCOS)
the most common endocrine disorder among reproductive-aged women (prevalence 

~10%) that encompasses menstrual cycle disturbances, hyperandrogenism, and in some 

cases also obesity and insulin resistance.

Premature ovarian insufficiency (POI)
menopause before the age of 40 years; affects about 1% of reproductive-aged women.
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Figure 1. Ovarian Reserve Throughout Life, Normal Ovarian Function, And the Impact of 
Various Pathologies.
The ovarian reserve is established before birth, and thereafter the number of follicles 

containing the oocytes decreases through controlled atresia until menopause when the 

ovarian reserve is virtually exhausted. Normally, during the reproductive lifespan ovarian 

follicles go through distinct developmental stages and one oocyte is released monthly. 

However, in women with polycystic ovary syndrome (PCOS), hormonal disturbances result 

in follicular arrest and anovulation, while in premature ovarian insufficiency (POI) the 

ovarian reserve is depleted prematurely. During ovarian stimulation (COS) used for in vitro 
fertilization (IVF), exogenous hormones are used to stimulate the growth and release of 

several oocytes.
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Figure 2. Reported Genetic Associations and Genetic Correlations between Phenotypes.
(A) Genome-wide significant loci associated with menarche, menopause, polycystic ovary 

syndrome, FSH and LH levels, and menstrual cycle length; and genes associated with 

monogenic forms of POI. (B) Genetic correlations between phenotypes reflecting ovarian 

physiology and overall health status. Data are from published studies [9,10,19] that report 

genetic correlations based on observed pleiotropy between loci or LD score regression 

analysis. Abbreviations: AMH, anti-Müllerian hormone; FSH, follicle-stimulating hormone; 

LD, linkage disequilibrium; LH, luteinizing hormone; PAI-1, plasminogen activator inhibitor 

type 1; PCOS, polycystic ovary syndrome; POI, premature ovarian insufficiency.

Laisk-Podar et al. Page 21

Trends Endocrinol Metab. Author manuscript; available in PMC 2021 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Laisk-Podar et al. Page 22

Table 1
GWAS Loci Associated with Polycystic Ovary Syndrome

Marker Location Nearest Gene(s) Comments Refs

rs1351592 2q33.3-q34 ERBB4 (Erb-B2 receptor tyrosine kinase 4) PCOS susceptibility allele also 
associates with higher AMH levels in 
girls. Nominal associations were found 
for two other members of the EGFR 
family (ERBB2/HER2 and ERBB3 
HER3).

[19]

rs7563201
rs13429458

2p21 THADA (thyroid adenoma associated) PCOS susceptibility allele also 
associates with higher AMH levels in 
girls.

[19,59]

rs13405728 2p21 LHCGR (luteinizing hormone/choriogonadotropin 
receptor)

[59]

rs2268361 2p21-p16 FSHR (follicle-stimulating hormone receptor) [60]

rs13164856 5q31 RAD50 (RAD50 double-strand break repair protein) PCOS susceptibility allele also 
associates with higher AMH levels in 
girls.

[19]

rs804279 8p23.1-p22 GATA4 (GATA-binding protein), NEIL2 (nei-like DNA 
glycosylase 2)

[62]

rs10993397
rs3802457

9q22.32 C9orf3, FANCC (Fanconi anemia complementation 
group C)

[60,62]

rs2479106 9q33.3 DENND1A (DENN domain-containing 1A) [59]

rs11031006 11p13 FSHB (follicle-stimulating hormone ß subunit) PCOS susceptibility allele also 
associates with higher AMH levels in 
girls. Marker also associated with FSH 
and LH levels.

[19,62]

rs1894116
rs11225154

11q13 YAP1 (Yes-associated protein 1) PCOS susceptibility allele also 
associates with higher AMH levels in 
girls.

[19,60]

rs705702 12q13 RAB5B (RAB5B, member RAS oncogene family), 
SUOX (sulfite oxidase)

[60]

rs2272046 12q15 HMGA2 (high mobility group AT-hook 2) [60]

rs1275468 12q21.2 KRR1 [KRR1, small subunit processome component, 
homolog (yeast)]

PCOS susceptibility allele also 
associates with higher AMH levels in 
girls.

[19]

rs4784165 16q12.1 TOX3 (TOX high mobility group box family member 
3)

[60]

rs2059807 19p13.3-p13.2 INSR (insulin receptor) [60]

rs6022786 20q13.2 SUMO1P1 (SUMO 1 pseudogene 1) [60]
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