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Abstract

Backpropagation (BP) has been the most successful algorithm used to train artificial neural 

networks. However, there are several gaps between BP and learning in biologically plausible 

neuronal networks of the brain (learning in the brain, or simply BL, for short), in particular, (1) it 

has been unclear to date, if BP can be implemented exactly via BL, (2) there is a lack of local 

plasticity in BP, i.e., weight updates require information that is not locally available, while BL 

utilizes only locally available information, and (3) there is a lack of autonomy in BP, i.e., some 

external control over the neural network is required (e.g., switching between prediction and 

learning stages requires changes to dynamics and synaptic plasticity rules), while BL works fully 

autonomously. Bridging such gaps, i.e., understanding how BP can be approximated by BL, has 

been of major interest in both neuroscience and machine learning. Despite tremendous efforts, 

however, no previous model has bridged the gaps at a degree of demonstrating an equivalence to 

BP, instead, only approximations to BP have been shown. Here, we present for the first time a 

framework within BL that bridges the above crucial gaps. We propose a BL model that (1) 

produces exactly the same updates of the neural weights as BP, while (2) employing local 

plasticity, i.e., all neurons perform only local computations, done simultaneously. We then modify 

it to an alternative BL model that (3) also works fully autonomously. Overall, our work provides 

important evidence for the debate on the long-disputed question whether the brain can perform BP.

1 Introduction

Backpropagation (BP) [1–3] as the main principle underlying learning in deep artificial 

neural networks (ANNs) [4] has long been criticized for its biological implausibility (i.e., 

BP’s computational procedures and principles are unrealistic to be implemented in the brain) 

[5–10]. Despite such criticisms, growing evidence demonstrates that ANNs trained with BP 

outperform alternative frameworks [11], as well as closely reproduce activity patterns 

observed in the cortex [12–20]. As indicated in [10, 21], since we apparently cannot find a 
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better alternative than BP, the brain is likely to employ at least the core principles underlying 

BP, but perhaps implements them in a different way. Hence, bridging the gaps between BP 

and learning in biological neuronal networks of the brain (learning in the brain, for short, or 

simply BL) has been a major open question for both neuroscience and machine learning [10, 

21–29]. Such gaps are reviewed in [30–33], the most crucial and most intensively studied 

gaps are (1) that it has been unclear to date, if BP can be implemented exactly via BL, (2) 

BP’s lack of local plasticity, i.e., weight updates in BP require information that is not locally 

available, while in BL weights are typically modified only on the basis of activities of two 

neurons (connected via synapses), and (3) BP’s lack of autonomy, i.e., BP requires some 

external control over the network (e.g., to switch between prediction and learning), while BL 

works fully autonomously.

Tremendous research efforts aimed at filling these gaps, trying to approximate BP in BL 

models. However, earlier BL models were not scaling to larger and more complicated 

problems [8, 34–42]. More recent works show the capacity of scaling up BL to the level of 

BP [43–57]. However, to date, none of the earlier or recent models has bridged the gaps at a 

degree of demonstrating an equivalence to BP, though some of them [37, 48, 53, 58–60] 

demonstrate that they approximate BP, or are equivalent to BP under unrealistic restrictions, 

e.g., the feedback is sufficiently weak [61, 48, 62]. The unability to fully close the gaps 

between BP and BL is keeping the community’s concerns open, questioning the link 

between the power of artificial intelligence and that of biological intelligence.

Recently, an approach based on predictive coding networks (PCNs), a widely used 

framework for describing information processing in the brain [31], has partially bridged 

these crucial gaps. This model employed a supervised learning algorithm for PCNs to which 

we refer as inference learning (IL) [48]. IL is capable of approximating BP with attractive 

properties: local plasticity and autonomous switching between prediction and learning. 

However, IL has not yet fully bridged the gaps: (1) IL is only an approximation of BP, rather 

than an equivalent algorithm, and (2) it is not fully autonomous, as it still requires a signal 

controlling when to update weights.

Therefore, in this paper, we propose the first BL model that is equivalent to BP while 

satisfying local plasticity and full autonomy. The main contributions of this paper are briefly 

summarized as follows:

• To develop a BL approach that is equivalent to BP, we propose three easy-to-

satisfy conditions for IL, under which IL produces exactly the same weight 

updates as BP. We call the proposed approach zero-divergent IL (Z-IL). In 

addition to being equivalent to BP, Z-IL also satisfies the properties of local 

plasticity and partial autonomy between prediction and learning.

• However, Z-IL is still not fully autonomous, as weight updates in Z-IL still 

require a triggering signal. We thus further propose a fully autonomous Z-IL (Fa-
Z-IL) model, which requires no control signal anymore. Fa-Z-IL is the first BL 

model that not only produces exactly the same weight updates as BP, but also 

performs all computations locally, simultaneously, and fully autonomously.
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• We prove the general result that Z-IL is equivalent to BP while satisfying local 

plasticity, and that Fa-Z-IL is additionally fully autonomous. Consequently, this 

work may bridge the crucial gaps between BP and BL, thus, could provide 

previously missing evidence to the debate on whether BP could describe learning 

in the brain, and links the power of biological and machine intelligence.

The rest of this paper is organized as follows. Section 2 recalls BP in ANNs and IL in PCNs. 

In Section 3, we develop Z-IL in PCNs and show its equivalence to BP and its local 

plasticity. Section 4 focuses on how Z-IL can be realized with full autonomy. Sections 5 and 

7 provide some further experimental results and a conclusion, respectively.

2 Preliminaries

We now briefly recall artificial neural networks (ANNs) and predictive coding networks 

(PCNs), which are trained with backpropagation (BP) and inference learning (IL), 

respectively. For both models, we describe two stages, namely, (1) the prediction stage, 

when no supervision signal is present, and the goal is to use the current parameters to make 

a prediction, and (2) the learning stage, when a supervision signal is present, and the goal is 

to update the current parameters. Following [48], we use a slightly different notation than in 

the original descriptions to highlight the correspondence between the variables in the two 

models. The notation is summarized in Table 1 and will be introduced in detail as the models 

are described. To make the dimension of variables explicit, we denote vectors with a bar 

(e.g., x̅ = (x 1, x 2,..., x n) and 0̅ = (0, 0,..., 0)).

2.1 ANNs trained with BP

Artificial neural networks (ANNs) [3] are organized in layers, with multiple neuron-like 

value nodes in each layer. Following [48], to make the link to PCNs more visible, we change 

the direction in which layers are numbered and index the output layer by 0 and the input 

layer by l max. We denote by yil the input to the i-th node in the l-th layer. Thus, the 

connections between adjacent layers are:

yil = ∑j = 1
nl + 1

wi, j
l + 1f yj

l + 1 , (1)

where f is the activation function, wi, j
l + 1 is the weight from the j th node in the (l + 1)th layer 

to the i th node in the l th layer, and n l+1 is the number of nodes in layer (l + 1). Note that, in 

this paper, we consider only the case where there are only weights as parameters and no bias 

values. However, all results of this paper can be easily extended to the case with bias values 

as additional parameters; see supplementary material.

Prediction: Given values of the input sin = s1
in, . . . , snlmax

in
, every yi

lmax in the ANN is set 

to the corresponding siin, and then every yi0 is computed as the prediction via Eq. (1).

Learning: Given a pair (s̅ in, s̅ out) from the training set, y0 = y1
0, . . . , yn0

0  is computed via 

Eq. (1) from s̅ in as input and compared with s̅ out via the following objective function E:
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E = 1
2 ∑i = 1

n0
siout − yi0

2 . (2)

Backpropagation (BP) updates the weights of the ANN by:

Δwi, j
l + 1 = − α ⋅ ∂E / ∂wi, j

l + 1 = α ⋅ δi
lf yj

l + 1 , (3)

where α is the learning rate, and δi
l = ∂E / ∂yil is the error term, given as follows:

δi
l =

siout − yi0 if l = 0 ;

f′ yil ∑k = 1
nl − 1

δk
l − 1wk, i

l if l ∈ 1, . . . , lmax − 1 .
(4)

2.2 PCNs trained with IL

Predictive coding networks (PCNs) [31] are a widely used model of information processing 

in the brain, originally developed for unsupervised learning. It has recently been shown that 

when a PCN is used for supervised learning, it closely approximates BP [48]. As the 

learning algorithm in [48] involves inferring the values of hidden nodes, we call it inference 
learning (IL). Thus, we denote by t the time axis during inference. As shown in Fig. 1, a 

PCN contains value nodes (blue nodes, with the activity of xi, tl ), which are each associated 

with corresponding prediction-error nodes (error nodes: red nodes, with the activity of εi, tl ). 

Differently from ANNs, which propagate the activity between value nodes directly, PCNs 

propagate the activity between value nodes xi, tl  via the error nodes εi, tl :

μi, tl = ∑j = 1
nl + 1

θi, j
l + 1f xj, t

l + 1 and εi, tl = xi, tl − μi, tl , (5)

where the θi, j
l + 1 ’s are the connection weights, paralleling wi, j

l + 1 in the described ANN, and 

μi, tl  denotes the prediction of xi, tl  based on the value nodes in a higher layer xj, t
l + 1. Thus, the 

error node εi, tl  computes the difference between the actual and the predicted xi, tl . The value 

node xi, tl  is modified so that the overall energy F t in εi, tl  is minimized all the time:

Ft = ∑l = 0
lmax − 1 ∑i = 1

nl 1
2 εi, tl 2 . (6)

In this way, xi, tl  tends to move close to μi, tl . Such a process of minimizing F t by modifying 

all xi, tl  is called inference, and it is running during both prediction and learning. Inference 

minimizes F t by modifying xi, tl , following a unified rule for both stages:

Song et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2021 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Δxi, tl =

0 if l = lmax

γ ⋅ −εi, tl + f′ xi, tl ∑k = 1
nl − 1

εk, t
l − 1θk, i

l if l ∈ 1, . . . , lmax − 1

γ ⋅ −εi, tl if l = 0 during prediction
0 if l = 0 during learning

(7)

where xi, t + 1
l = xi, tl + Δxi, tl , and γ is the integration step for xi, tl . Here, Δxi, tl  is different 

between prediction and learning only for l = 0, as the output value nodes xi, t0  are left 

unconstrained during prediction and are fixed to siout during learning. Δxi, tl  is zero for l = l 

max, as xi, t
lmax is fixed to siin in both stages. Eqs. (5) and (7) can be evaluated in a network of 

simple neurons, as illustrated in Fig. 1.

Prediction: Given an input s̅ in, the value nodes xi, t
lmax in the input layer are set to siin. Then, 

all the error nodes εi, tl  are optimized by the inference process and decay to zero as t → ∞. 

Thus, the value nodes xi, tl  converge to μi, tl , the same values as yil of the corresponding ANN 

with the same weights.

Learning: Given a pair (s̅ in, s̅ out) from the training set, the value nodes of both the input 

and the output layers are set to the training pair (i.e., xi, t
lmax = siin and xi, t0 = siout); thus,

εi, t0 = xi, t0 − μi, t0 = siout − μi, t0 . (8)

Optimized by the inference process, the error nodes εi, tl  can no longer decay to zero; instead, 

they converge to values as if the errors had been backpropagated. Once the inference 

converges to an equilibrium (t = t c), where t c is a fixed large number, a weight update is 

performed. The weights θi, j
l + 1 are updated to minimize the same objective function F t; thus,

Δθi, j
l + 1 = − α ⋅ ∂Ft/ ∂θi, j

l + 1 = α ⋅ εi, tl f xj, t
l + 1 , (9)

where α is the learning rate. By Eqs. (7) and (9), all computations are local (local plasticity) 

in IL, and, as stated, the model can autonomously switch between prediction and learning 

(some autonomy), via running inference. However, a control signal is still needed to trigger 

the weights update at t = t c; thus, full autonomy is not realized yet. The learning of IL is 

summarized in Algorithm 1. Note that detailed derivations of Eqs. (7) and (9) are given in 

the supplementary material (and in [48]).
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3 IL with Zero Divergence from BP and with Local Plasticity

We now first describe the temporal training dynamics of BP in ANNs and IL in PCNs. 

Based on this, we then propose IL in PCNs with zero divergence from BP (and local 

plasticity), called Z-IL.

Temporal Training Dynamics. We first describe the temporal training dynamics of BP in 

ANNs and IL in PCNs; see Fig. 2. We assume that we train the networks on a pair (s̅ in, s̅ out) 

from the dataset, which is presented for a period of time T, before it is changed to another 

pair, moving to the next training epoch h. Within a single training epoch h, (s̅ in, s̅ out) stays 

unchanged, and t runs from 0. As stated before, t is the time axis during inference, which 

means that IL (also Z-IL and Fa-Z-IL, proposed below) in PCNs run inference starting from 

t = 0. In Fig. 2, squares and rounded rectangles represent nodes in one layer and connection 

weights between nodes in two layers of a neural network, respectively: BP (first row) only 

conducts weights updates in one training epoch, while IL (second row) conducts inference 

until it converges (t = t c) and updates weights (assuming T ≥ t c).

Algorithm 1 Learning one training pair sin, sout  (presented for the duration 

T) with IL

Require: x0
lmax is fixed to sin, x0

0 is fixed to sout.

  1:   for t = 0 to T do                                          // presenting a training pair

  2:     for each neuron i in each level l do           // in parallel in the brain

  3:       Update xi, t
l  to minimize Ft via Eq. (7)   // inference

  4:       if t = tc then                                           // external control signal

  5:         Update each θi, j
l + 1 to minimize Ft via Eq. (9)

  6:         return                                                 // the brain rests

  7:       end if

  8:     end for

  9:   end for

In the rest of this section and in Section 4, we introduce zero-divergent IL (Z-IL) and fully 
autonomous zero-divergent IL (Fa-Z-IL) in PCNs, respectively: Z-IL (third row) also 

conducts inference but until specific inference moments t = l and updates weights between 

the layers l and l + 1, while Fa-Z-IL (fourth row) conducts inference all the time and weights 

update is trigged autonomously at the same inference moments as Z-IL.

Zero-divergent IL. We now present three conditions C1 to C3 under which IL in a PCN, 

denoted zero-divergent IL (Z-IL), produces exactly the same weights as BP in the 

corresponding ANN (having the same initial weights as the given PCN) applied to the same 

datapoints s = (s̅ in, s̅ out). In the following, we first describe the three conditions C1 to C3, 
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and then formally state (and prove in the supplementary material) that Z-IL produces exactly 

the same weights as BP.

C1: Every and every xi, tl , and every μi, tl , l ∈ 1, . . . , lmax − 1 , at t = 0 is equal to yil in the 

corresponding ANN with input s̅ in. In particular, this also implies that εi, tl = 0 at t = 0, for l ∊ 

{1,..., l max –1}. This condition is naturally satisfied in PCNs, if before the start of each 

training epoch over a training pair (s̅ in, s̅ out), the input s̅ in has been presented, and the 

network has converged in the prediction stage (see Section 2.2). This condition corresponds 

to a requirement in BP, that it needs one forward pass from s̅ in to compute the prediction 

before conducting weights updates with the supervision signal s̅ out. Note that neither the 

forward pass for BP nor this initialization for IL are shown in Fig. 2. Note that this condition 

is also applied in [48].

Algorithm 2 Learning one training pair sin, sout  (presented for the duration 

T) Fa-Z-IL

Require: x0
lmax is fixed to sin, x0

0 is fixed to sout.

Require: xi, 0
l = μi, 0

l for l ∈ 1, …, lmax − 1  (C1), and γ = 1 (C3).

  1:   for t = 0 to T do                                          // presenting a training pair

  2:     for each neuron i in each level l do           // in parallel in the brain

  3:       Update xi, t
l  to minimize Ft via Eq. (7)   // inference

  4:       Update each θi, j
l + 1 to minimize Ft via Eq. (9) with learning rate α ⋅ ϕ εi, tl

  5:     end for

  6:   end for

C2: Every weight θi, j
l + 1, l ∊ {0,...,l max – 1}, is updated at t = l, that is, at a very specific 

inference moment, related to the layer that the weight belongs to. This may seem quite strict, 

but it can actually be implemented with full autonomy (see Section 4).

C3: The integration step of inference γ is set to 1. Note that solely relaxing this condition 

(keeping C1 and C2 satisfied) results in BP with a different learning rate for different layers, 

where γ is the decay factor of this learning rate along layers (see supplementary material).

To prove the above equivalence statement under C1 to C3, we develop two theorems in order 

(proved in the supplementary material). The following first theorem formally states that the 

prediction error in the PCN with IL on s under C1 to C3 is equal to the error term in its ANN 

with BP on s.

Theorem 3.1. Let M be a PCN, M′ be its corresponding ANN (with the same initial weights 
as M), and let s be a datapoint. Then, every prediction error 
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εi, tl at t = l, l ∈ 0, . . . , lmax − 1 , in M trained with IL on s under C1 and C3 is equal to the 

error term δi
l in M′ trained with BP on s.

We next formally state that every weights update in the PCN with IL on s under C1 to C3 is 

equal to the weights update in its ANN with BP on s. This then immediately implies that the 

final weights of the PCN with IL on s under C1 to C3 are equal to the final weights of its 

ANN with BP on s.

Theorem 3.2. Let M be a PCN, M' be its corresponding ANN (with the same initial weights 

as M), and let s be a datapoint. Then, every update Δθi, j
l + 1 at t = l, l ∈ 0, . . . , lmax − 1 , in 

M trained with IL on s under C1 and C3 is equal to the update Δwi, j
l + 1 in M′ trained with BP 

on s.

4 Z-IL with Full Autonomy

Both IL and Z-IL in PCNs optimize the unified objective function of Eq. (6) during 

prediction and learning. Thus, they both enjoy some autonomy already. Specifically, they 

can autonomously switch between prediction and learning by running inference, depending 

only on whether xt
0 is fixed to s ̅ out or left unconstrained. However, when to update the 

weights still requires the control signal at t = t c and t = l for IL and Z-IL, respectively.

Targeting at removing this control signal from Z-IL, we now propose Fa-Z-IL, which 

realizes Z-IL with full autonomy. Specifically, we propose a function ϕ(·), which takes in εi, tl

and modulates the learning rate α, producing a local learning rate for θi, j
l + 1. As can be seen 

from Fig. 1, εi, tl  is directly connected to θi, j
l + 1, meaning that ϕ(·) works locally at a neuron 

scale. For each θi, j
l + 1, ϕ εi, tl  produces a spike of 1 at exactly the inference moment of t = l, 

which equals to triggering θi, j
l + 1 to be updated at t = l. In this way, we can let the inference 

and weights update run all the time with ϕ(·) modulating the local learning rate with local 

information; thus, the resulting model works fully autonomously, performs all computations 

locally, and updates weights at t = l, i.e., producing exactly Z-IL/BP, as long as C1 and C3 

are satisfied. Fa-Z-IL is summarized in Algorithm 2.

As the core of Fa-Z-IL, we found that quite simple functions ϕ(·) can detect the inference 

moment of t = l from εi, tl . Specifically, from Lemma A3 in the supplementary material, we 

know that εi, tl  under C1 diverges from its stable states at exactly t = l, i.e., εt < 1
l = 0. Thus, 

ϕ(·) can take in εi, tl  and return 1 only if εi, t − td
l = 0, εi, t − td + 1

l = 0, …, εi, t − 1
l = 0, εi, tl ≠ 0, 

where t d is a hyperparameter. In this way, ϕ εi, tl  detects the inference moment of t = l and 

produces a spike of 1 at exactly t = l. In special cases where εi, t = l
l = 0, the detection fails, 

however, by Eq. (9), Δθi, j
l + 1 produced at t = l is also zero, since εi, t = l

l = 0, so the failure 

does no harm. Since it is possible for εi, tl  to go across zero, having a larger t d means a more 

accurate detection. In experiments, ϕ(·) of t d = 4 is already capable of detecting with 100% 
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success rate; see Table 3. Furthermore, the function ϕ, as the only additional component 

introduced in Fa-Z-IL to realize full autonomy, is highly plausible that such a computation 

could be performed by biological neurons, because some types of neurons are well-known to 

respond predominantly to changes in their input [63].

However, Fa-Z-IL does require the input to be presented before the teacher to satisfy C1, 

i.e., the convergence of a prediction phase before t = 0 is still needed. We consider this to be 

a requirement of the learning setup. Also, such a requirement is much weaker, compared to 

switching computational rules (BP) and detecting the convergence of global variables (IL). 

We leave the study of removing this requirement or putting it inside an autonomous neural 

system as future research. During this prediction phase before t = 0, it is notable that the 

error nodes change due to feedforward input, while during learning, the error nodes change 

due to feedback input. In order to prevent learning during prediction, ϕ is equal to 1 only if 

the change in error nodes is caused by feedback input. Furthermore, experiments of 

classification with Fa-Z-IL have been conducted, and Fa-Z-IL produces exactly the same 

result as Z-IL and BP, the numbers of which can be found in the supplementary material. It 

should also be noted that Fa-Z-IL loses formal equivalence to BP, but with t d > 4, empirical 

equivalence always remains.

All proposed models are summarized in Table 2 (schematic algorithms are given in the 

supplementary material), where Fa-Z-IL is the only model that is not only equivalent to BP, 

but also performs all computations locally and fully autonomously.

5 Experiments

In this section, we complete the picture of this work with experimental results, providing 

ablation studies on MNIST and measuring the running time of the discussed approaches on 

ImageNet.

5.1 MNIST

We now show that zero-divergence cannot be achieved when strictly weaker conditions than 

C1, C2, and C3 in Section 3 are satisfied only. Specifically, with experiments on MNIST, we 

show the divergence of PCNs trained with ablated variants of Z-IL from ANNs trained with 

BP.

Setup. We use the same setup as in [48]. Specifically, we train for 64 epochs with α = 0.001, 

batch size 20, and logistic sigmoid as f. To remove the stochasticity of the batch sampler, 

models in one group within which we measure divergence are set with the same seed. We 

evaluate three of such groups, each set with different randomly generated seeds 

({1482555873, 698841058, 2283198659}), and the final numbers are averaged over them. 

The divergence is measured in terms of the error percentage on the test set summed over all 

epochs (test error, for short), as in [48, 37, 58, 53, 59], and of the final weights, as in [59]. 

The divergence of the test error is the L1 distance between the corresponding test errors, 

averaged over 64 training iterations (the test error is evaluated after each training iteration). 

The divergence of the final weights is the sum of the L2 distance between the corresponding 

weights, after the last training iteration. We conducted experiments on MNIST (with 784 
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input and 10 output neurons; the other settings are as in [64]). We investigated three different 

network structures with 1, 2, and 3 hidden layers, respectively (i.e., l max ∊ {2,3,4}), each 

containing 32 neurons.

Ablation of C1. Assuming C2 and C3 satisfied, to ablate C1, we consider situations when 

the network has not converged in the prediction stage before the training pair is presented, 

i.e., xi, 0
l ≠ μi, 0

l . To simulate this, we sampled xi, 0
l  around the mean of μi, 0

l  with different 

standard deviations σ, where σ = 0 corresponds to satisfying C1. We swipe σ = {0, 0.0001, 

0.001,0.01, 0.1,1,10,100}. Fig. 3, right column, shows that zero divergence is only achieved 

when σ = 0, i.e., C1 is satisfied. A larger version of Fig. 3 is given in the supplementary 

material.

Ablation of C2 and C3. Assuming C1 satisfied, to ablate C3, we swipe γ = {0.01, 0.1, 0.5, 

1, 5, 10}, and to ablate C2, we swipe t = {l, 0,1, 2,3,4,16, 64}. Here, setting t to a fixed 

number is exactly the implementation of IL with t c set to this fixed number. We set t = l 
between t = l max – 2 and t = l max – 1 (as argued in the supplementary material). Fig. 3, 

three left columns, shows that zero divergence is only achieved when t = l and γ = 1, i.e., C2 

and C3 are satisfied. Note that the settings of t ≥ 16 and γ ≤ 0.5 are typical for IL in [20].

5.2 ImageNet

We further conduct experiments on ImageNet to measure the running time of Z-IL and Fa-Z-

IL on large datasets. In detail, we show that Z-IL and Fa-Z-IL create minor overheads over 

BP, which supports their scalability. The detailed implementation setup is given in the 

supplementary material.

Table 4 shows the averaged running time of each weights update of BP, IL, Z-IL, and Fa-Z-

IL. For IL, we set t c = 20, following [48]. As can be seen, IL introduces large overheads, 

due to the fact that it needs at least t d inference steps before conducting a weights update. In 

contrast, Z-IL and Fa-Z-IL run with minor overheads compared to BP, as they require at 

most l max inference steps to complete one update of weights in all layers. Comparing Fa-Z-

IL to Z-IL, it is also obvious that the function ϕ creates only minor overheads. These 

observations support the claim that Z-IL and Fa-Z-IL are indeed scalable.

6 Related Work

We now review several lines of research that approximate BP in ANNs with BL models, 

each of which corresponds to an argument for which BP in ANNs is considered to be 

biologically implausible.

One such argument is that BP in ANNs encodes error terms in a biologically implausible 

way, i.e., error terms are not encoded locally. It is often discussed along with the lack of 

local plasticity. How error terms can be alternatively encoded and propagated locally has 

been one of the most intensively studied topics. One promising assumption is that the error 

term can be represented in dendrites of the corresponding neurons [35, 65, 66]. Such efforts 

are unified in [21], with a broad range of works [36, 37] encoding the error term in activity 

differences. IL and Z-IL in PCNs also do so. In addition, Z-IL shows that the error term in 
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BP in ANNs can be encoded with its exact value in the prediction error of IL in PCNs at 

very specific inference moments.

BP in ANNs is also criticized for requiring an external control (e.g., the computation is 

changed between prediction and learning). An important property of PCNs trained with IL, 

in contrast, is that they autonomously [48] switch between prediction and learning. PCNs 

trained with Z-IL also have this property. But IL requires an external control over when to 

update weights (t = t c), and Z-IL requires control to only update weights at very specific 

inference moments (t = l). However, Z-IL can be realized with full autonomy, leading to the 

proposed Fa-Z-IL.

Finally, BP in ANNs is also criticized for backward connections that are symmetric to 

forward connections in adjacent layers and for using unrealistic models of (non-spiking) 

neurons. A common way to remove the backward connections [8, 39, 67] is based on the 

idea of zeroth-order optimization [68]. However, the latter needs many trials depending on 

the number of weights [69] and can be further improved by perturbing the outputs of the 

neurons instead of the weights [70]. Admitting the existence of backward connections, more 

recent works show that asymmetric connections are able to produce a comparable 

performance [38, 71, 54]. In the predictive coding models (IL, Z-IL, and Fa-Z-IL), the errors 

are backpropagated by correct weights, because the model includes feedback connections 

that also learn. The weight modification rules for corresponding feedforward and feedback 

weights are the same, which ensures that they remain equal if initialized to equal values (see 

[48]). As for the models of neurons, BP has recently also been generalized to spiking 

neurons [72]. Our work is orthogonal to the above, i.e., we still use symmetric backward 

connections and do not consider spiking neurons.

Furthermore, [46] also analyzes the first steps during inference after a perturbation caused 

by turning on the teacher, starting from a prediction fixpoint, which may serve similar 

general purposes. However, the obtained learning rule differs substantially from that of our 

Z-IL, since the energy function is not the one which governs PCNs. A section outlining the 

differences of learning rules between [46] and Z-IL is included in the supplementary 

material.

Some features of PCNs are inconsistent with known properties of biological networks, but it 

has recently been shown that variants of PCNs can be developed without three of these 

implausible elements, which retain high classification performance. The first unrealistic 

feature are 1-to-1 connections between value and error nodes (Fig. 1). However, it has been 

proposed that errors can be represented in apical dendrites of cortical neurons [62], and the 

equations of predictive coding networks can be mapped on such an architecture [10]. 

Alternatively, it has been demonstrated how these 1-to-1 connections can be replaced by 

dense connections [73]. The other two unrealistic features of PCNs are symmetric forward-

backward weights and non-linear functions affecting only some outputs of the neurons. 

Nevertheless, it has been demonstrated that these features may be removed without 

significantly affecting the classification performance [73].
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7 Summary and Outlook

In this paper, we have presented for the first time a framework to BL that (1) produces 

exactly the same updates of the neural weights as BP, while (2) employing local plasticity. 

Based on the above framework, we have additionally presented a BL model that (3) also 

works fully autonomously. This suggests a positive answer to the long-disputed question 

whether the brain can perform BP.

As for future work, we believe that the proposed Fa-Z-IL model will open up many new 

research directions. Specifically, it has a very simple implementation (see Algorithm 2), with 

all computations being performed locally, simultaneously, and fully autonomously, which 

may lead to new architectures of neuromorphic computing.

Broader Impact

This work shows that backpropagation in artificial neural networks can be implemented in a 

biologically plausible way, providing previously missing evidence to the debate on whether 

backpropagation could describe learning in the brain. In machine learning, backpropagation 

drives the contemporary flourish of machine intelligence. However, it has been doubted for 

long that though backpropagation is indeed powerful, its computational procedure is not 

possible to be implemented in the brain. Our work provides strong evidence that 

backpropagation can be implemented in the brain, which will solidify the community’s 

confidence on pushing forward backpropagation-based machine intelligence. Specifically, 

the machine learning community may further explore if such equivalence holds for other or 

more complex BP-based networks.

In neuroscience, models based on backpropagation have helped to understand how 

information is processed in the visual system [15, 16]. However, it was not possible to fully 

rely on these insights, as backpropagation was so far seen unrealistic for the brain to 

implement. Our work provides strong confidence to remove such concerns, and thus could 

lead to a series of future works on understanding the brain with backpropagation. 

Specifically, the neuroscience community may now use the patterns produced by BP to 

verify if such computational model can explain learning in brain. Also, our work may inspire 

researchers to look for the existence of the function φ, which completes the biological 

foundation of Fa-Z-IL.

As for ethical aspects and future societal consequences, we consider our work to be an 

important step towards understanding biological intelligence, which indicates at least no 

harm on the ethical aspects. Instead, being able to understand biological intelligence 

potentially leads to advances in medical research, which will substantially benefit the well-

beings of humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ANNs and PCNs trained with BP and IL, respectively.
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Figure 2. 
Comparison of the temporal training dynamics of BP, IL, Z-IL, and Fa-Z-IL. We assume that 

we train the networks on a pair (s̅ in, s̅ out) from the dataset, which is presented for a period 

of time T, before it is changed to another pair, moving to the next training epoch h. Within a 

single training epoch h, (s̅ in, s̅ out) stays unchanged, and t runs from 0. As stated before, t is 

the time axis during inference, which means that IL (also Z-IL and Fa-Z-IL) in PCNs run 

inference starting from t = 0. The squares and rounded rectangles represent nodes in one 

layer and connection weights between nodes in two layers of a neural network, respectively: 

BP (first row) only conducts weights updates in one training epoch, while IL (second row) 

conducts inference until it converges (t = t c ) and updates weights (assuming T ≥ t c). Note 

that C1 is omitted in the figure for simplicity.
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Figure 3. Ablation of C2, C3, and C1, where divergence is measured on test error and final 
weights.
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Table 1
Notation for ANNs and PCNs.

Value-
node 

activity

Predicted 
value-
node 

activity

Error 
term 

or 
node

Weight Objective 
function

Activation 
function

Layer 
size

Number 
of 

layers

Input 
signal

Supervision 
signal

Learning 
rate for 
weights

Integration 
step for 

inference

ANNs yil – δi
l wi, jl E f n l l max+1 siin siout α –

PCNs xi, tl μi, tl εi, tl θi, j
l F t γ
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Table 2
Models and their properties.

Equivalence to BP Local plasticity Partial autonomy Full autonomy

BP ✔ ✘ ✘ ✘

IL ✘ ✔ ✔ ✘

Z-IL ✔ ✔ ✔ ✘

Fa-Z-IL ✔ ✔ ✔ ✔
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Table 3
Success rate of detecting inference moments t = l with ϕ(·) of different t d.

t d 1 2 3 4 5 6 7 8 16

Success rate 93.4% 92.4% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Table 4
Average runtime of each weights update (in ms) of BP, IL, Z-IL, and Fa-Z-IL.

Devices BP IL Z-IL Fa-Z-IL

CPU 3.1 19.2 3.6 3.6

GPU 3.7 56.3 4.1 4.2
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