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Abstract

The aim of this study was to compare and externally validate risk scores developed to predict 

incident colorectal cancer (CRC) that include common genetic variants (single nucleotide 

polymorphisms, SNPs), with or without established lifestyle/environmental (questionnaire-based/

classical/phenotypic) risk factors. We externally validated 23 risk models from a previous 

systematic review in 443,888 participants aged 37-73 from the UK Biobank cohort who had 6 year 

prospective follow-up, no prior history of CRC and data for incidence of CRC through linkage to 

national cancer registries. There were 2,679 (0.6%) cases of incident CRC. We assessed model 

discrimination using the Area Under the Curve (AUC) and relative risk calibration. The AUC of 

models including only SNPs increased with the number of included SNPs and was similar in men 

and women: the model by Huyghe with 120 SNPs had the highest AUC of 0.62(95%CI 0.59-0.64) 

in women and 0.64(95%CI 0.61-0.66) in men. Adding phenotypic risk factors without age 

improved discrimination in men but not in women. Adding phenotypic risk factors and age 

increased discrimination in all cases (p<0.05), with the best performing models including SNPs, 

phenotypic risk factors and age having AUCs between 0.64-0.67 in women and 0.67-0.71 in men. 

Relative risk calibration varied substantially across the models. Among middle-aged people in the 

UK, existing polygenic risk scores discriminate moderately well between those who do and do not 

develop colorectal cancer over six years. Consideration should be given to exploring the feasibility 

of incorporating genetic and lifestyle/environmental information in any future stratified CRC 

screening program.
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Introduction

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies worldwide. 

Incidence is rising in many countries[1], particularly among younger individuals[2]. There is 

good evidence that population screening reduces CRC incidence and mortality[3–6], and in 

most countries with a high frequency of CRC screening has now been introduced[7].

As for other cancers, including breast[8], lung[9] and ovarian[10], there is increasing interest 

in using risk models to predict who is at highest and lowest risk of developing CRC and 
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guide screening decisions. By identifying those who are more likely to benefit from 

screening and inviting them earlier, more frequently or for different screening tests, this 

approach has the potential to increase net benefit of CRC screening at lower cost.

We, and others, have previously shown that several risk models based on phenotypic 

variables have relatively good discrimination in external validation and could, therefore, be 

used for this purpose[11,12]. Advances in genetic research and technology mean that it will 

soon be possible to provide a relatively cheap, quick and accurate assessment of an 

individual’s genetic risk of CRC. Models incorporating genetic variables may, therefore, be 

simpler to implement. Previous work has also shown that using such genetic information to 

stratify screening has the potential to improve efficiency of screening[13] and reduce the 

number of individuals screened while still detecting as many cases[14]. Of the 29 models 

identified in our review, however, many had only been assessed in the development 

population. The comparative performances of these models in the same population and the 

added value of including phenotypic risk factors together with genetic risk factors in the UK 

population are not known.

In order to inform future risk stratified screening approaches in the UK, in this study we 

assessed the performance of risk scores that include common genetic variants and predict 

future CRC, with or without phenotypic risk factors, in a cohort of 443,888 individuals.

The identification of genetic risk factors for common diseases has been disproportionately 

focused in white / European populations[15]. Consequently, there is concern that risk 

stratified screening in the UK could increase inequalities in health. We therefore also 

additionally assessed the performance of genetic risk scores among ethnic minorities in an 

exploratory analysis.

Materials and Methods

We performed an external validation of genetic (GRS) and combined GRS plus phenotypic 

risk models for prediction of incident CRC, following the TRIPOD (Transparent Reporting 

of a multivariable prediction model for Individual Prognosis Or Diagnosis) guideline[16].

Validation cohort

For our validation cohort we used UK Biobank, the largest population-based cohort in the 

UK[17]. Women and men aged 37-73 years, who were registered with the National Health 

Service and lived within approximately 25 miles of one of 22 study assessment centres 

across the UK, were invited to participate between 2006-2011. From 9.2 million invitations 

503,325 were recruited (5.5%) and attended a baseline assessment when data were collected 

using touchscreen questionnaires, interviews and physical measurements, and blood samples 

provided.

CRC diagnosis in the validation cohort

CRC cancer diagnosis is recorded for UK Biobank participants through linkage to national 

cancer registries. The most recent cancer record in UK Biobank has a diagnosis date of 27th 

October 2016. We censored all follow up at 31st March 2016 to ensure that late registrations 
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were not missed. We included 451,171 out of 502,326 UK Biobank participants who had 6 

years of complete follow up from date of baseline assessment until 31st March 2016, 

excluding people who had less than 6 years follow up but including those who died during 

the follow-up period. For this validation we identified CRC with the following diagnosis 

codes: ICD9 153.0-153.9, 154.0, 154.1 and 154.8 and ICD10 C18.0-C18.9, C19, C20 and 

C21.8. We excluded from all analyses 2,489 participants who had a diagnosis of CRC prior 

to the baseline assessment. 659 included participants had a CRC diagnosis after the end of 

the included 6 years of follow-up and are included in this analysis as non-cancer cases. As 

participants with previous colorectal polyps, n=1,473, or a diagnosis of inflammatory bowel 

disease (IBD), n=4,231, would likely be in surveillance programmes, we also excluded 

individuals with a self-reported history at baseline. Of the 443,888 participants included in 

our primary analysis there were 2,679 (0.6%) cases of incident CRC within the complete 6 

year follow-up period.

The only exception to this was for the validation of one model (Huyghe et al.) [18] for which 

UK Biobank CRC cases from September 2014 and earlier formed part of the original 

analysis data set for this risk prediction model. For this model we included all UK Biobank 

participants without a history of colorectal polyps or IBD who were still alive and without a 

CRC diagnosis on 30th September 2014, and followed them up until 31st March 2016. For 

this model we included 482,089 participants and 842 cases of CRC in the 18 month follow 

up period.

Selection of risk prediction models

In our systematic review[19] we identified 29 genetic only (GRS) or combined GRS and 

phenotypic models for CRC from 20 publications. After contacting authors if insufficient 

data were provided in the original publications, we excluded 11 models because either 

details of the risk alleles were not available[20,21], the relative risk parameters associated 

with predictors included in the model were not published[22–24], they included variables 

not available in UK Biobank[25–27] or biochemical risk factors[28], or if the model was 

developed separately for proximal and distal colon and rectal cancers[29].

After these exclusions, we included 17 models from our systematic review[18,22,24,30−39]. 

We additionally separately included the GRS component from five of these 

models[29−31,36,39] that were developed only as combined GRS plus phenotypic models. 

For the Hsu model[29], only the GRS was included as the GRS plus phenotypic versions 

were developed separately for proximal and distal colon, and rectal cancers. From the Smith 

publication we considered only the model incorporating the Wells phenotypic risk score[40]. 

We further included the GRS plus phenotypic risk model developed by Jenkins et al.,[41] 

that was published separately from the genes-alone GRS developed by the same team.

Details of these 23 models, including the study design, development method and the risk 

factors used in the prediction of CRC risk for each are given in Table 1. Fourteen models 

were GRSs including only SNPs, four included SNPs plus phenotypic factors, but not age, 

and five a combination of SNPs, phenotypic factors and age.
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Genotyping

For all UK Biobank participants blood samples were genotyped using Affymetrix UK 

BiLEVE Axiom array and Affymetrix UK Biobank Axiom array and imputed to the 

combined 1000 Genomes Project v.3 and UK10K reference panels using SHAPEIT3 and 

IMPUTE3. The lowest imputation info score for the SNPs used in these analyses was 

0.86[42].

Coding of risk models in UK Biobank

Full details of the definition of each risk factor and how we operationalised them in the UK 

Biobank dataset and handled missing data are given in Supplementary Tables 1 (SNPs) and 

2 (phenotypic risk factors).

Ethnicity

Race/ethnicity, hereafter ethnicity, as this is the terminology used in the UK, was quantified 

using categories from the UK Office of National Statistics 2001 16 group classification[43], 

summarised in 5 groups; White/European, (response options: English/Welsh/Scottish/

Northern Irish/British, Irish, and Any other White background), Mixed (White and Black 

Caribbean, White and Black African, White and Asian, Any other Mixed/multiple ethnic 

background), South Asian (Indian, Pakistani, Bangladeshi, Any other Asian background), 

Black (African, Caribbean, Any other Black/African/Caribbean background), Other 
(Chinese, Any other ethnic group).

Analysis

For all of the models, we computed the predicted risk score for developing CRC for each 

participant using data collected at baseline assessment. Only one score (Dunlop et al) 

predicted an absolute risk of CRC over a specific time frame, all other scores predicted 

relative, rather than absolute risk (RR).

We assessed model performance in terms of discrimination and relative risk calibration. For 

GRS scores we calculated standardized versions of the scores and estimated the odds ratio 

(OR) for CRC associated with a 1 standard deviation (SD) increase in the standardized risk 

scores as a measure of discrimination; discrimination was further assessed using the area 

under the curve (AUC) for all models.

Calibration was assessed graphically by comparing the expected with observed relative risk 

of developing CRC over the six-year follow-up period. We stratified our analysis cohort by 

deciles of predicted relative risk (with decile 5 as the baseline). The observed relative risk in 

each decile was calculated as the proportion of cases in the decile divided by the proportion 

of cases in the entire sample, divided by the same estimate in decile 5. The expected RR in 

each decile was calculated as the geometric mean (because log RR rather than RR is 

normally distributed) of the predicted RR in the decile divided by the mean predicted RR in 

decile 5.

We also calculated sensitivity, specificity, positive and negative likelihood ratios (LR+ and 

LR-) and the positive and negative predictive values (PPV and NPV) using a cut-off value 
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for each risk score chosen such that 10% of the population had values above the cut-off; the 

procedure was then repeated using cut-offs for which 20%, 80% and 90% had values above 

the cut-off.

In a further analysis we compared the performance of the GRS scores with models 

additionally including age (categorized as above and below age 60, the current UK CRC 

screening threshold age) and family history in order to provide a preliminary evaluation to 

inform whether there would be a benefit to incorporate GRS into clinical practice.

Our first analysis considering the discrimination of GRSs alone was stratified by ethnicity, 

and considered all UK Biobank participants without stratification by sex, because of the 

relatively small numbers of people reporting non-white/European ethnicity in UK Biobank. 

Discrimination using AUC and RR calibration were assessed among people from all ethnic 

backgrounds and stratified by sex. All analyses were carried out in Stata 15 (StataCorp 

2017).

Missing data

For our primary analyses we used a “complete-case” approach including only those 

individuals for whom all of the risk factors in a particular prediction model were available. 

The sample size is therefore consistent across all genetic models, except for the model of 

Wang et al (that incorporated genotypes which, in a small number of samples, could not be 

ascertained from imputed allele counts), and the model of Huyghe et al. as described above, 

but sample sizes varied between models which included non-genetic risk factors, as the 

amount of missing data for phenotypic risk factors – particularly dietary ones – varied 

between models (Supplementary table 3).

Sensitivity analyses

We primarily focused our sensitivity analyses on areas not previously addressed[11] and 

those particularly relevant to genetic risk models. Accordingly, we compared the 

performance of risk scores after excluding people with high degree of relatedness to other 

cohort members (people with >10 relatives, estimated using genetic data), and randomly 

excluding one of each pair of first degree relatives. We also compared the performance in a 

cohort excluding all individuals with any cancer diagnosis prior to baseline. For both these 

analyses we followed the methods from previous work[44]. We carried out an additional 

sensitivity analysis comparing discrimination for the GRS models among people 60 and 

under, and over 60. In a further sensitivity analysis we excluded all people with a history of 

colonoscopy at baseline.

For GRS plus phenotypic models we carried out a further sensitivity analysis restricting our 

sample for the GRS models to those individuals in whom the GRS plus phenotypic version 

of the risk score could be estimated (i.e. only among those individuals with complete 

phenotype characterization for each score).

For the Huyghe model[18] we carried out a further sensitivity analysis including the 6 years 

of follow used for the other models. For the model from Abe[30] we additionally compared 
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results including and excluding folate, because of the large amount of missing data for this 

variable.

Results

The characteristics of the study population are shown in Supplementary Table 4. Compared 

to those who did not develop CRC, those who did were more likely to be male, older, and 

have a family history of CRC. Although the number of SNPs varied across models, the 

median number of risk alleles among CRC cases was typically one higher than among those 

who did not develop cancer.

Discrimination

GRS discrimination, stratified by ethnicity—Among the 441,141 participants who 

self-reported their ethnicity, 419,579 (95%) were White. Mean standardized GRS among 

people with CRC varied between 0.02 and 0.45 in the whole validation cohort, and among 

the whole cohort varied from -1.44 to 0.85 when stratified by ethnicity (Supplementary table 

5). The Huyghe GRS had the highest OR per 1SD of GRS, 1.60 (1.50-1.72) among all UK 

Biobank participants and 1.60 (1.50-1.72) among people reporting a white/European ethnic 

background. Five of the GRSs showed some discriminative ability among people with non-

white ethnicity[22,24,29,31,35] (Table 2).

GRS discrimination, stratified by sex— Figure 1 and Supplementary Table 6 show the 

discrimination, measured by AUC, for all models in the whole UK Biobank population, 

stratified by sex. Discrimination for the 14 GRS models is similar in men and women and 

ranges from 0.50 to 0.63. The AUC increased with the number of SNPs included within the 

risk models (Figure 2), with the 120-SNP model by Huyghe having the highest AUC of 0.62 

(95% CI 0.59-0.64) in women and 0.64 (95% CI 0.61-0.66) in men. In general, the GRSs 

based on newer genome-wide association (GWA) studies (GWA) also performed better than 

those based on candidate genes or older GWA studies. These analyses stratified by White-

European/non-White-European ethnicity are presented in Supplementary Table 7.

GRS-plus phenotype discrimination, stratified by sex—Among the four models 

that incorporated both genetic and phenotypic risk factors but not age[31,34,38,41], adding 

phenotypic factors, including BMI, smoking, family history, alcohol intake, red meat intake 

and physical activity, either did not change the AUC[31,34] or reduced it[38,41] in women. 

In men, however, the AUC improved from 0.55 (0.54-0.57) to 0.59 (0.57-0.6) with the 

addition of smoking, BMI, alcohol, fibre intake, red meat intake and physical activity in the 

Yarnall model[34] and from 0.55 (0.54-0.57) to 0.58 (0.56-0.59) with the addition of family 

history, BMI, alcohol intake, physical exercise, red meat and vegetable intake and NSAIDs/

aspirin use in the Ibanez-Sanz model[38].

Considering only people in whom it was possible to calculate a risk-score based on both the 

GRS and GRS plus phenotypic versions of the same models confirmed these differences, 

with significant (p<0.05) improvements in AUC observed only with the addition of 

phenotypic risk factors in the Yarnall and Ibanez-Sanz models in men (Supplementary Table 

8).
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By comparison, the discrimination of models including age was greater (p<0.05) than for 

GRSs alone for all models in both women and men, with a relatively greater improvement in 

performance in men than women (Figure 1). The models with highest AUC were those 

developed by Abe, Hosono, Dunlop and Smith[24,30,32,36], with AUCs between 0.67-0.71 

in men and 0.64-0.67 in women.

The sensitivity, likelihood ratios and PPV and NPV for thresholds at which varying 

percentages of the population are classified as high risk are presented in full in 

Supplementary Tables 9 and 10. Within the 10% of the population with the highest risk, the 

top performing GRS[18] identified 18.6% of women and 22.3% of men who went on to 

develop CRC. Among those with the highest 20% risk, this increased to 30.7% for women 

and 35.7% for men. For the four best performing GRS plus phenotypic models that also 

included age[24,30,32,36], in women the top 10% of the population included between 

19.7% and 20.7% of those who went on to develop CRC and the top 20% 33.8% to 38.1%. 

In men, the corresponding values are 21.1% to 26.9% and 38.2% to 47.9%. The NPVs were 

high and comparable (>99.3) for all models.

Calibration

Results from the relative risk calibration are presented for women and men in Figures 3 and 

4 and Supplementary Tables 11 and 12. There is variation in calibration across models, with 

some models having very poor calibration. There is a consistent pattern that models tend to 

over-estimate relative risk at higher levels of risk. Calibration did not substantially improve 

in models based on a GRS plus phenotypic risk factors compared with those that include 

only a GRS, except for those which incorporated age.

The additional analysis comparing the AUC of models incorporating each GRS, age and 

family history, with age and family history alone found that for all models except Wang 

adding the GRS increased the AUC by between 0.01 and 0.03 (Supplementary Table 13), i.e. 

reducing between 3-9% of the remaining error.

Sensitivity analyses

The results from the all the other sensitivity analyses were consistent with the main analysis 

(Supplementary Tables 14-19).

Discussion

Key findings

This is, to our knowledge, the first external validation to use a single cohort to directly 

compare multiple published risk prediction models for CRC that include common genetic 

markers. It shows that genetic information alone discriminates moderately well between 

those who do and do not develop CRC over a six year period. The best performing GRS by 

Huyghe et al.,[18] had an AUC of 0.62 in women and 0.64 in men and OR per 1SD of 1.60, 

comparable with polygenic risk scores in breast cancer (AUC 0.63 (95% CI 0.62-0.64), OR 

per 1SD 1.49-1.71[45]) and coronary artery disease (0.62 (95% CI: 0.62 to 0.63)[46]) and 

better than risk models including phenotypic risk factors without age[11,24].
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In contrast to risk models incorporating phenotypic risk markers for which performance in 

men is better than in women[11,12], the performance of GRSs was equivalent. Consistent 

with this, adding phenotypic risk factors without age to a GRS improved the AUC in men 

but not in women, with the best performing models including SNPs, phenotypic risk factors 

and age having AUCs between 0.67-0.71 in men and 0.64-0.67 in women.

The potential impacts of incorporating these risk scores into practice are best appreciated by 

the differences in risk classification between the models. Our previous work using UK 

Biobank identified that using the current age-based English bowel cancer screening 

threshold of 60 years to identify the population at high risk for CRC and then random 

sampling to account for ties, targeting people in the top 10% of risk would identify 17% of 

men and 16% of women who developed CRC[11]. The equivalent proportions using the 

Huyghe model with the highest discrimination for genetic risk factors alone in this study 

would be 22% for men and 19% for women, representing an increase in detection of 2-5% 

of cases for the same number of people screened. This is consistent with an analysis by 

Jenkins et al.,[13] who showed that, in a hypothetical population based on the Australian 

population in 2011, inviting individuals for screening based on their genetic risk rather than 

all those aged between 50 and 74 would result in a 3.1% overall improved efficiency.

Strengths and Limitations

The main strengths of this analysis are the use of a large cohort with nearly 3 million person-

years of follow-up, comprehensive phenotyping and genotyping and linkage to national 

cancer registries, and the inclusion of 23 risk models identified from a systematic 

review[19]. We were not only able to perform the largest external validation to date of 

multiple CRC risk models in a single population but were also able to compare the 

performance of models including only SNPs to those including SNPs plus phenotypic risk 

factors with or without age and family history.

However, despite its many strengths, the UK Biobank, has a number of limitations. In 

particular, the response rate to invitations to take part was only 5.5%[17]. As a result, 

participants are more likely to be older, to be female, and to live in less socioeconomically 

deprived areas than non-participants; incidence rates of CRC are also lower than in the 

general population[47]. We limited the effect of this ‘healthy volunteer’ bias by restricting 

our analyses to relative risk and discrimination. Analysis of SNP data may also potentially 

be less likely to be confounded by this ‘healthy volunteer’ bias than models including 

phenotypic risk factors as well. The large variation in age at baseline assessment also means 

that age has a disproportionately large impact on CRC risk compared other phenotypic 

measures. A third limitation is that CRC cases registered at Scottish cancer registries may 

not all be complete after 31/03/2015. This may impact up to 10% of the cohort and result in 

an underestimate of CRC risk overall. Finally, CRC screening at age 60 in the UK was rolled 

out during the period of recruitment to UK Biobank. Some, but not all members of the 

cohort will therefore have participated in the national screening programme during this 

period. Our sensitivity analysis excluding people with a history of colonoscopy at baseline, 

however, did not change the findings of this analysis.
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Although similar to the 2011 UK Census[47], the predominantly White population within 

the UK Biobank cohort also means that AUC estimates when restricted to participants from 

ethnic minorities have wide confidence intervals and assessing the model performance is 

challenging. Any small differences between White and non-White populations should, 

therefore, not be over-interpreted. In our primary analysis we have applied the GRS/GRS 

plus phenotypic risk models to everyone, regardless of the population in which they were 

developed. We acknowledge the issue of population stratification leading to spurious 

associations between genetic risk factors and disease when people from diverse ethnicities 

are analysed in the same cohort. Nonetheless, in practice any policy for developing stratified 

screening will be applied across the whole country; these results present the performance of 

these models in this scenario.

There are also limitations with our analysis. Firstly, we excluded two models identified from 

our systematic review because they included variables not present in UK Biobank and we 

had to derive proxy variables if there were no exact matches for variables included in the 

risk models. We also only assessed RR calibration. Although this does not allow us to assess 

how closely the predicted absolute risk matches the observed absolute risk, it illustrates the 

variation in calibration across the models and highlights that models would need to be 

calibrated to the population in which they are going to be used.

Comparison with existing literature

When compared with findings of validation studies in external populations or non-random 

split samples[19], our results for discrimination are similar for the genetic risk models by 

Dunlop, Ibanez-Sanz and Smith, but lower for the genetic risk models by Hosono and Xin. 

The lower discrimination seen in this cohort for the Hosono and Xin models likely reflects 

differences in the ethnicity of the populations: the model by Hosono was developed using 

logistic regression and subsequently validated in a Japanese cohort and the model by Xin 

used published GWAS studies from European and Asian populations and validated the 

model in a Chinese cohort. Our results for the Smith model that combined genetic risk 

factors with phenotypic risk factors and age from the model by Wells were also consistent 

with the evaluation of that model in an earlier release of UK Biobank data. For the 

remaining three models (Abe, Dunlop and Hosono) our results showed better discrimination. 

In all three cases the previous validation studies had been performed in case-control studies 

matched by age, effectively removing the effect of age from the models, and highlighting the 

strength of age as a risk factor. This effect of age may also explain why Smith et al. found in 

UK Biobank that addition of a GRS to either the models by Taylor[48] or Wells[40], both of 

which include age, did not improve discrimination and did not result in a substantive change 

in the predicted probability for the majority of participants[24].

Conclusions and implications for future research

This study shows that existing GRSs are able to discriminate moderately well between those 

who develop CRC and those that do not and, unlike phenotypic risk scores, they do not 

perform differentially in men and women. Genetic risk scores may also be easier to 

implement than phenotypic risk scores as they do not change over time and are not 

associated with the same degree of measurement error and bias as phenotypic risk factors. 
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With on-going GWAS studies and increasingly comprehensive imputation panels that allow 

for improved low-frequency and rare genetic variant imputation, it is expected that new 

SNPs associated with CRC will be identified in the future[35,49]. Alongside these efforts to 

identify further SNPs, future studies are needed to develop and validate GRSs in non-

European populations and model the potential impact of incorporating them into screening 

programmes, as is being done for other cancers[8]. There are a number of other issues that 

also need to be considered before stratified screening based on genetic risk can be 

implemented. These include the need for fundamental changes in the infrastructure and 

mechanisms for genetic data collection, storage and sharing[50], and ethical, legal and social 

considerations such as equity of access to genetic testing, insurance issues, and whether 

screening programmes should exclude people currently eligible as a result of their age on the 

basis of low genetic risk. Further research should focus on these areas as well as modelling 

the potential health benefits and cost effectiveness of implementing stratified genetic risk 

based colorectal cancer screening. By demonstrating the current performance of risk scores 

including genetic risk information in a large UK population, this study supports the need for 

such research.
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Figure 1. Discrimination, measured by the area under the receiver operating characteristic curve 
(AUC) for the risk models in women and men.
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Figure 2. Discrimination (AUC ± 95% CI) of models including genes only plotted against 
number of SNPs included in each model
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Figure 3. Relative risk (RR) calibration in women.
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Figure 4. Relative risk (RR) calibration in men.
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Table 1
Details of the development and factors included in each of the risk scores included in 
validation study

Genetic risk score Genetic plus phenotypic risk score

Author, 
year Country Number 

of SNPs

Method of 
development 

of GRS

Developed 
in original 
publication 

as a 
“genes-

only” score

Method of 
development 
of combined 

model

Non-genetic risk factors included in score

Age Sex FH BMI Smoking Other

Abe 
2017

Japan (d, 
v)

11 Unweighted 
allele 
counting 
model

Logistic 
regression

• • • • • Referral 
pattern, 
alcohol 
consumption, 
regular 
exercise, and 
dietary folate 
intake

Dunlop 
2013

UK, 
Canada, 
Australia, 
USA and 
Germany 
(d) 
Sweden 
and 
Finland 
(v)

10 Weighted 
allele model 
weighted by 
published log 
odds

• Stratified 
absolute 
risks 
calculated 
using logistic 
regression 
applied to 
Scottish data

• • •

Frampton 
2016

UK (v) 37 Weighted 
allele model 
weighted by 
published log 
odds

•

Hosono 
2016

Japan (d, 
v)

6 Unweighted 
allele 
counting 
model

Logistic 
regression

• • • • Referral 
pattern, 
alcohol 
consumption, 
regular 
exercise, 
dietary folate 
intake

Hsu 2015 USA and 
Germany 
(d, v)

31 Weighted 
model 
weighted by 
published 
log-odds

Huyghe 
2019

European 
(91.7%) 
and East 
Asian 
(8.3%) 
(d)

120 Weighted 
allele model 
weighted by 
study derived 
weights

•

Ibanez-
Sanz 
2017

Spain (d, 
v)

21 Unweighted 
allele 
counting 
model 
(weighted 
allele models 
weighted by 
published 
log-odds and 
study derived 
log-odds 

• Logistic 
regression

• • Alcohol use, 
physical 
exercise, red 
meat and 
vegetable 
intake, 
NSAIDs/
aspirin use
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Genetic risk score Genetic plus phenotypic risk score

Author, 
year Country Number 

of SNPs

Method of 
development 

of GRS

Developed 
in original 
publication 

as a 
“genes-

only” score

Method of 
development 
of combined 

model

Non-genetic risk factors included in score

Age Sex FH BMI Smoking Other

similar so 
not reported)

Iwasaki 
2017

Japan (d, 
v)

6 Weighted 
allele model 
weighted by 
study derived 
log- 
transformed 
per allele HR

Weighted 
cox 
proportional 
hazards 
regression

• Developed 
in men 
only

• • Alcohol

Jenkins 
2016 / 
2019

Weighted 
allele 
model 
weighted 
by 
published 
log odds

49 Weighted 
allele model 
weighted by 
published log 
odds

• •

Jeon 
2018

Australia, 
Canada, 
Germany, 
Israel and 
USA.(d, 
v)

63 Weighted 
allele model 
weighted by 
study derived 
estimated 
regression 
coefficients

Logistic 
regression

Developed 
separately 
in women 
and men

• • Height, 
education, 
history of 
type 2 
diabetes 
mellitus, 
alcohol 
consumption, 
regular 
aspirin use, 
regular 
NSAID use, 
smoking, 
intake of 
fibre, 
calcium, 
folate, 
processed 
meat, red 
meat, fruit, 
vegetables, 
total-energy, 
physical 
activity 
(both) HRT 
(women)

Smith 
2018

UK (d, v) 42 Weighted 
allele model 
weighted by 
published log 
odds

• Log GRS 
combined 
with 
predicted log 
hazard ratio 
from original 
model

• • • • Diabetes, 
multi-
vitamin 
usage, years 
of education, 
alcohol 
intake, 
physical 
activity, 
NSAID 
usage, red 
meat intake, 
smoking, 
oestrogen 
use (women 
only)

Wang 
2013

Taiwan 
(d, v)

16 Logistic 
regression / 
GRS based 

•
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Genetic risk score Genetic plus phenotypic risk score

Author, 
year Country Number 

of SNPs

Method of 
development 

of GRS

Developed 
in original 
publication 

as a 
“genes-

only” score

Method of 
development 
of combined 

model

Non-genetic risk factors included in score

Age Sex FH BMI Smoking Other

on genotypes 
not alleles

Xin 2018 China (d, 
v)

14 Weighted 
allele models 
weighted by 
published log 
odds and by 
study derived 
weights

•

Yarnall 
2013

UK (v) 14 Weighted 
allele 
model / 
developed 
with a 
simulation 
based 
procedure 
using 
REGENT 
software

• OR 
estimated 
from 
simulation 
based 
procedure 
using 
REGENT 
software

• • Alcohol, 
fibre intake, 
red meat 
intake, 
physical 
activity

CRC - colorectal cancer, SNP - single-nucleotide polymorphism, BMI - body mass index, NSAID - non-steroidal anti-inflammatory drug, GRS - 
genetic risk score. d = development; v - validation
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Table 2
Genetic Risk Score (GRS) discrimination / odds ratio for colorectal cancer per standard 
deviation increase in risk score, stratified by self-reported white / non-white ethnicity

Mean standardised GRS (SD), 
n=430,511

OR (95%CI) per 1SD of 
GRS

Without CRC 
(n=427,908)

With CRC 
(n=2,603)

Only self-reported white 
ethnicity (n=419,579)

Only non-white ethnic 
backgrounds (n=21,562) All (n=430,511)

Abe 2017 -0.01 (1.00) 0.16 (0.98) 1.20 (1.15 - 1.25) 1.23 (0.98 - 1.53) 1.18 (1.14 - 1.22)

Dunlop 2013 0.00 (1.00) 0.22 (0.98) 1.25 (1.20 - 1.30) 1.22 (0.98 - 1.52) 1.25 (1.20 - 1.30)

Frampton 2016 0.00 (1.00) 0.17 (1.00) 1.18 (1.13 - 1.23) 1.40 (1.12 - 1.76) 1.18 (1.14 - 1.23)

Hosono 2016 0.00 (1.00) 0.13 (0.97) 1.16 (1.12 - 1.21) 1.10 (0.88 - 1.36) 1.14 (1.10 - 1.19)

Hsu 2015 -0.01 (1.00) 0.26 (0.98) 1.30 (1.25 - 1.35) 1.27 (1.01 - 1.61) 1.30 (1.25 - 1.35)

Huyghe 2019 -0.01 (1.00) 0.47 (0.99) 1.60 (1.50 - 1.72) 1.10 (0.73 - 1.65) 1.60 (1.50 - 1.72)

Ibanez-Sanz 
2017 0.00 (1.00) 0.19 (1.00) 1.20 (1.16 - 1.25) 1.28 (1.02 - 1.60) 1.22 (1.17 - 1.26)

Iwasaki 2017 0.00 (1.00) 0.13 (1.00) 1.15 (1.11 - 1.20) 0.96 (0.75 - 1.21) 1.14 (1.10 - 1.19)

Jenkins 2016 -0.01 (1.00) 0.23 (0.97) 1.28 (1.23 - 1.33) 1.10 (0.88 - 1.38) 1.26 (1.21 - 1.31)

Jeon 2018 0.00 (1.00) 0.29 (0.99) 1.33 (1.28 - 1.38) 1.42 (1.13 - 1.79) 1.33 (1.28 - 1.39)

Smith 2018 -0.01 (1.00) 0.23 (0.98) 1.27 (1.22 - 1.32) 1.39 (1.11 - 1.73) 1.26 (1.22 - 1.31)

Wang 2013 0.00 (1.00) 0.02 (0.98) 1.01 (0.97 - 1.05) 1.08 (0.85 - 1.36) 1.02 (0.98 - 1.06)

Xin 2018 0.00 (1.00) 0.13 (1.00) 1.15 (1.11 - 1.20) 1.24 (1.04 - 1.49) 1.14 (1.09 - 1.18)

Yarnall 2013 0.00 (1.00) 0.19 (1.01) 1.21 (1.17 - 1.26) 1.22 (0.98 - 1.53) 1.22 (1.17 - 1.26)
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