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Abstract

Purpose—There is potential for faecal microbiome profiling to improve CRC screening. This 

has been demonstrated by research studies, but it has not been quantified at scale using samples 

collected and processed routinely by a national screening programme.

Experimental Design—Between 2016-2019, the largest of the NHS Bowel Cancer Screening 

Programme (NHSBCSP) hubs prospectively collected processed gFOBT with subsequent 

colonoscopy-outcomes: blood-negative (n=491 (22%)); CRC (n=430 (19%)); adenoma (n=665 

(30%)); colonoscopy-normal (n=300 (13%)); non-neoplastic (n=366 (16%)). Samples were 

transported and stored at room temperature. DNA underwent 16S rRNA gene V4 amplicon 

sequencing. Taxonomic profiling was performed to provide features for classification via random 

forests (RFs).
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Results—Samples provided 16S amplicon-based microbial profiles, which confirmed previously 

described CRC-microbiome associations. Microbiome-based RF models showed potential as a 

first-tier screen, distinguishing CRC or neoplasm (CRC or adenoma) from blood-negative with 

AUC 0.86 (0.82-0.89) and AUC 0.78 (0.74-0.82), respectively. Microbiome-based models also 

showed potential as a second-tier screen, distinguishing from among gFOBT blood-positive 

samples, CRC or neoplasm from colonoscopy-normal with AUC 0.79 (0.74-0.83) and AUC 0.73 

(0.68-0.77), respectively. Models remained robust when restricted to fifteen taxa, and performed 

similarly during external validation with metagenomic datasets.

Conclusions—Microbiome features can be assessed using gFOBT samples collected and 

processed routinely by a national CRC screening programme to improve accuracy as a first 

or second-tier screen. The models required as few as fifteen taxa, raising the potential of an 

inexpensive qPCR test. This could reduce the number of colonoscopies in countries that use faecal 

occult blood test screening.
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Introduction

Globally, CRC is the third most common cause of cancer deaths. 1 Screening reduces 

mortality by detecting asymptomatic adenomas or early-stage CRC. 2 Countries have 

adopted different screening approaches. In England, the NHS Bowel Cancer Screening 

Programme (NHSBCSP) tests for occult faecal blood; if detected, participants are referred 

for colonoscopy. Until June 2019, the NHSBCSP used the guaiac faecal occult blood 

test (gFOBT). Specificity is limited, with only 40% of screening colonoscopies detecting 

adenoma and 10% CRC; 3 4 this represents a significant cost, resource, and patient burden.

Research suggests that faecal microbiome analysis may serve as an improvement or adjunct 

to current CRC screening. 5 However, previous studies have not yet bridged the gap between 

pre-clinical, basic scientific discovery and the population-scale necessary for translation to 

a national screening programme. These limitations were outlined in a systematic review: 

many had small numbers of participants (the largest had 490, of which 120 were CRC 

patients); many collected samples in a manner incompatible with national screening 

(refrigerated/frozen samples); some used post-colonoscopy samples (bowel preparation 

alters the microbiome); and few had the opportunity to externally validate their models. 5 

We aimed to quantify the utility of integrating microbiome analysis into a national CRC 

screening programme by analysing microbiome features from large numbers of routinely 

processed NHSBCSP gFOBT samples. Technical studies have shown that it is possible to 

measure a subset of clinically-relevant microbiome features from gFOBT stored at room 

temperature. 6–13 Two studies have analysed large numbers of bowel-preparation naïve 

individuals, but neither performed microbiome analysis directly from screening samples; one 

study has performed preliminary analysis of screening faecal immunochemical test (FIT) 

samples, but did not determine diagnostic performance of the microbiome. 14 15 16 To our 

Young et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



knowledge, our study is the first to analyse microbiome features from large numbers of 

routinely processed gFOBT screening samples.

To reflect the aims of the NHS Bowel Cancer Screening Programme, we explored the 

potential of microbiome-based RF models to detect CRC alone, or to detect CRC and 

adenoma (a group we term ‘neoplasm’). We investigated the potential to use these 

microbiome-based RF models as a first-tier screen, equivalent to the use of gFOBT; we 

used gFOBT blood-negative samples as the control group, as 98% of screening gFOBT yield 

a blood-negative result. Additionally, we explored the potential to use the microbiome-based 

RF models as a second-tier screen; a second-tier represents an opportunity to triage those 

samples with a blood-positive gFOBT result, in order to reduce the number of unnecessary 

screening colonoscopies. As a second-tier screen, we explored the potential of microbiome-

based RF models to distinguish gFOBT blood-positive samples associated with CRC or 

neoplasm, from gFOBT blood-positive samples associated with a normal colonoscopy 

result. We used ‘colonoscopy-normal’ samples as the control group, as although a proportion 

of screening colonoscopies yield a ‘non-neoplastic’ diagnosis (e.g. diverticulosis, non-

dysplastic polyp), this is a heterogeneous group. We found that microbiome-based RF 

models show potential as a first-tier screen for the detection of CRC (AUC 0.86 (0.82-0.89)) 

or neoplasm (AUC 0.78 (0.74-0.82)), and as a second-tier screen, for the detection of CRC 

(AUC 0.79 (0.74-0.83)) or neoplasm (AUC 0.73 (0.68-0.77).

Materials and Methods

Study design and participants

The NHSBCSP Southern Hub (Guildford, UK) prospectively collected a convenience series 

of routinely processed gFOBT October 2016-August 2019: this included all ‘blood-positive’ 

gFOBT (blue discolouration affecting five or six squares) processed by the Southern 

Hub (n=3700), and a random sample of ‘blood-negative’ (no blue discolouration) gFOBT 

(n=530). Of the samples collected, 3601 (85%) had complete basic clinical data recorded on 

the NHS Bowel Cancer Screening Programme database at the time of the final data extract. 

From this group, we selected samples to achieve sample sizes that were approximately equal 

across the different clinical groups (Fig.1, Supplementary_Methods).

This enabled profiling of 2,252 samples: samples whereby haemoglobin was not detected 

i.e. ‘blood-negative’(n=491 (22%)) and ‘blood-positive’(n=1,761 (78%)). Blood-positive 

samples had the following colonoscopy-diagnoses: CRC (n=430 (19%)), adenoma (n=665 

(30%)), colonoscopy-normal (n=300 (13%)), non-neoplastic condition (n=366 (16%)). 

Whilst the composition of our overall study group does not reflect the composition of the 

NHS Bowel Cancer Screening Programme population (2% of gFOBT are blood-positive; 

10% of screening colonoscopies reveal CRC, 40% adenoma and 50% reveal a normal 

colon or non-neoplastic condition), we required these respective sample numbers in order to 

adequately profile the CRC and neoplasm-associated microbiome and to train RF models. 3 4 

Test statistics that are affected by disease prevalence would be different in the NHS Bowel 

Cancer Screening Programme population, for example PPV would be lower.
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Samples were transported to the University of Leeds at room temperature, and stored at 

room temperature prior to DNA extraction. The NHSBCSP asks participants to record 

the date of faecal collection; this information was available for 2,167 samples. Of these, 

1,363 recorded three consecutive days; 95 recorded a single date (implying a single stool), 

and maximum duration between collections was 16 days. Time between faecal collection 

and DNA extraction was 46-706 days (median 374 days) (Supplementary_Methods). To 

determine whether prolonged storage at room temperature prior to DNA extraction altered 

results, a set of DNA extraction replicates was created. Three squares were dissected and 

combined to make a sample and, after a period of time (6-23 months), the alternate three 

squares were dissected and combined to make a replicate (n=26 pairs). For comparison, 

a set of ‘same-day’ DNA extraction replicates were created, whereby three squares of 

faecally-loaded card were dissected and combined to make a sample and, at the same time, 

the alternate three squares were dissected and combined to make a replicate (n=48 pairs).

Data was extracted from the NHSBCSP database: age, sex, screening-round, episode-

outcome, and for blood-positive gFOBT: diagnosis (normal, adenoma (low, intermediate 

or high-risk) 17 , CRC, non-neoplastic condition), and lesion location. In cases of more than 

one lesion, only the most advanced was recorded. Data is based on information collected and 

quality assured by Public Health England (PHE) Population Screening Programmes. Access 

to the data was facilitated by the PHE Office for Data Release.

The screening age is 60-74 inclusive. People aged over 74 can self-refer to the programme. 

The study cohort contained 35 older participants (ages 75-89) and one younger participant 

(aged 59, one week before their birthday). A power calculation was performed using the R 

package pwr (based on a variance-stabilised linear model) using effect sizes from the Human 

Microbiome Project (RRID:SCR_012956) with Bonferroni correction. 18 Assuming 900 

samples with 50 thousand reads/sample, we anticipated power 0.95 to detect a 0.055-unit 

difference in common taxa (0.003 relative abundance), and a 0.022-unit difference in rare 

taxa (0.0004 relative abundance).

Ethical approval: Tyne & Wear South REC(IRAS:188007; REC:16/NE/0210), BCSP 

Research Committee(BCSPID_160), Office for Data Release(ODR1617_126). Patients and 

the public were not involved in the study design but have since been involved in the study 

and will be involved in the dissemination of results.

Laboratory methods

From each developed gFOBT (Hema Screen, Immunostics, Inc), three alternate squares of 

faecally-loaded card were dissected and processed as a combined sample. This approach 

subsamples a larger volume of stool, ensuring adequate material even from thinly-smeared 

cards, and leaves three residual squares for alternative analysis or extraction replicates. DNA 

was extracted using a modified version of the QIAamp DNA Mini Kit protocol (Qiagen, 

Germany) (detailed in Supplementary_Methods). DNA extraction was performed in batches 

of up to 24 samples; to limit batch effects, batches were designed to contain samples 

representing the different clinical groups. Library preparation was according to the Earth 

Microbiome Project (EMP) 16S Illumina Amplicon methodology with single PCR reactions 

of 20ng DNA/sample and additional indexes to increase multiplexing capacity. 19 Samples 
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were pooled and sequenced across two runs, each comprising one lane of an Illumina 

HiSeq3000, for 2x150bp sequencing, with a 10bp single index read.

Bioinformatic and statistical analysis

During quality control, 16 samples had fewer than 10,000 reads and were removed from 

analysis. With these samples removed, read count/sample was 14,635-555,465 (median 

123,265).

Reads were stripped of adaptors using cutadapt and trimmed to maximum 145bp. 20 Pairs 

were merged, denoised and representative sequences chosen using DADA2. 21 Further 

processing was conducted in QIIME2 (version 2019.4). 22 Differences of Shannon index 

were assessed by Kruskal-Wallis test. Taxa were assigned by the QIIME2 feature classifier 

using the BLAST+ algorithm 23 24 using the SILVA version 132 99% similarity database 

(RRID:SCR_006423). 25 Principle coordinate analysis (PCoA) of Bray-Curtis distances 

was performed. Further analysis was performed using R (version 3.5.1). Differences in 

beta diversity were assessed by PERMANOVA analysis of Bray-Curtis distances using 

Adonis. 26 Differences in beta diversity between sample groups were further explored 

by PERMANOVA analysis of Bray-Curtis distances performed using the beta-group-

significance function within QIIME2. 27 Taxa differing significantly between groups were 

obtained using LEfSe (Linear discriminant analysis Effect Size) (RRID:SCR_014609). 28 

Random Forest (RF) models and AUC were generated using randomForest 

(RRID:SCR_015718) and pROC. 29–31 For the neoplasm models, the neoplasm group 

contained an approximately equal number of randomly selected low, intermediate and 

high-risk adenomas and CRC. Alternate samples were assigned to test or validation 

models (Supplementary_Table.3); when used, total sample sets were also bootstrapped 

by randomForest during training. Each forest was built with 1,000 trees. Mtry was 

determined based on the lowest out-of-bag error. 95% confidence intervals for the receiver 

operating characteristic (ROC) curves and AUC were created using 2,000 stratified bootstrap 

replicates. AUC were compared using roc.test, using the method of DeLong. 32 Confusion 

matrices were created using the predict function of randomForest using the default vote 

proportion cutoff of 50%.

Taxa were compared to nine CRC faecal metagenomic datasets 33–40 , processed using 

MetaPhlAn version 3.0 (RRID:SCR_004915). 41 42 43 The majority of the datasets have 

been comprehensively profiled in two recent meta-analyses. 33 34 Datasets were collapsed to 

genus-level for comparison. The Thomas_c 34 and Yachida 35 datasets were merged as they 

originated from the same cohort. RF models were built as above, using taxa present in all 

datasets. For within-dataset comparisons, each study was randomly split 20 times into equal 

sized training and validation sets, and mean AUC recorded. For the leave-one-dataset-out 

(LODO), models were built using all but one dataset, and validated on the missing dataset. 

For each test/validation pair of cohorts, confusion matrices were created using the predict 

function of randomForest using the default vote proportion cutoff of 50%. Sensitivity was 

calculated as the proportion of CRC samples called as CRC within the validation dataset, 

based on the test dataset RF model. Specificity was calculated as the proportion of control 
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samples called as control. For the self-validation comparisons, the mean sensitivity and 

specificity of the 20 repetitions was recorded.

To compare our gFOBT-derived biomarker with microbial taxonomic biomarkers from 

existing datasets, we used the genus-summarised profiles to calculate a single, meta-

analysed biomarker. This used the ‘metafor’ R package with a random effects model 

incorporating standardised mean differences from these taxonomic profiles and sample 

sizes from all ten datasets (including either gFOBT CRC vs blood-negative or CRC vs 

colonoscopy-normal).

Data is available: PRJEB37635 (http://www.ebi.ac.uk/ena/data/view/PRJEB37635).

Role of the funding source

The funders had no role in study design, data collection, analysis, interpretation, or writing. 

The corresponding author had full access to all the data and final responsibility for the 

decision to submit for publication.

Results

Summary of population characteristics and microbiome profiling

We profiled the faecal microbiomes of 2,252 NHSBCSP participants using gFOBT 

samples, confirming that NHSBCSP gFOBT contained adequate material for V4 16S 

rRNA gene amplicon sequencing. Samples retained after quality control represented 

phenotypes of blood-negative gFOBT (n=491 (22%)) and blood-positive (n=1761 (78%)). 

The blood-positive samples were grouped according to subsequent colonoscopy diagnosis: 

CRC (n=430 (19%)), adenoma (n=665 (30%)), colonoscopy-normal (n=300 (13%)), non-

neoplastic diagnosis (n=366 (16%))(Table.1). The male preponderance of CRC and adenoma 

samples (67% and 65%) likely reflects the male-preponderance of colorectal neoplasia; 44 in 

later analysis we show that sex has minimal effect on overall microbiome structure.

Of the CRC samples, lesion data was available for 359/430 (83%), corresponding to 378 

colorectal cancers (342 (95%) samples resulted in a single colorectal cancer being detected 

at colonoscopy; 17 (5%) samples resulted in more than one synchronous colorectal cancer 

being detected at colonoscopy). Where type was recorded (n=298 (79%)), the majority were 

adenocarcinoma (n=297 (99%)); and one rectal tumour was a squamous cell carcinoma 

(<1%). Where grade was recorded (n=253 (67%)), the majority were well/moderately 

differentiated (n=224 (89%)); 29 (11%) were poorly differentiated. The commonest tumour 

location was sigmoid/rectum (Table.2). Unfortunately, tumour stage was not available. Of 

the non-neoplastic samples, lesion data was available for 333/366 (91%). Many had more 

than one diagnosis, the commonest being ‘diverticulosis’ (Supplementary_Methods).

Pairs of technical DNA extraction replicates extracted after prolonged storage had similar 

microbiome structures, equivalent to ‘same-day’ DNA extraction replicates, confirming that 

time until DNA extraction has minimal effect on results (Supplementary_Fig.1).
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Gut microbiome profiles of the NHSBCSP cohort

While the amount of biomass and resolution of amplicon-based taxonomic profiling 

from these samples was limited, it was more than sufficient to establish overall faecal 

microbiome structure, as well as to subsequently classify by phenotype. As expected, 

microbial structure was dominated by a gradient trade-off between Bacteroidetes versus 

Firmicutes phylum members, with beta diversity minimally influenced by clinical group 

(~1% variation in microbiome structure, by Bray-Curtis PERMANOVA), and even less by 

sex and age (Supplementary_Table.1 & Fig.2). Microbiome structure differed significantly 

between individual clinical groups by Bray-Curtis PERMANOVA (Supplementary_Table.2). 

Similarly, alpha diversity was significantly higher in blood-negative and CRC samples, 

although with very small effect size difference between groups (Kruskal-Wallis p = 4.50 

x 10-25)(Supplementary_Table.3 & Fig.2). This suggested a combination of both global 

and taxon-specific differences in the microbiome during CRC, in agreement with previous 

studies. 45 

We thus went on to identify specific taxa that were significantly enriched/depleted between 

clinical groups, which proved to include CRC-microbiome associations described in the 

existing literature. Both inflammation-associated and oral microbes were enriched, such as 

Escherichia-Shigella, Peptostreptococcus, Porphyromonas, Fusobacterium and Parvimonas 
(Supplementary_Fig.3). Interestingly, 43 taxa were significantly enriched and 43 depleted 

in the blood-negative group compared with the blood-positive colonoscopy-normal group. 

Existing studies usually compare CRC to either healthy volunteers (equivalent to the blood-

negative group) or controls with a normal colonoscopy; it is rare for both groups to be 

available within a study. Thus, notably, choice of control group was shown to affect which 

taxa were CRC-enriched relative to controls (Supplementary_Fig.3). Of the CRC-enriched 

taxa, seven featured in both comparisons (including Porphyromonas, Parvimonas and 

Peptostreptococcus), and of the CRC-depleted taxa, only one featured in both comparisons 

(Anaerotruncus). An inverse association with CRC was shown for 25 taxa between the 

two choices of control group (including Fusobacterium and Escherichia-Shigella). These 

findings indicate that choice of control group can have an important bearing on results, and 

suggest that certain taxa (especially typically oral taxa e.g. Porphyromonas, Parvimonas and 

Peptostreptococcus) may have an association with CRC that is independent of the presence 

of faecal-blood (at least at the level detectable by gFOBT), whereas others (Fusobacterium 
and Escherichia-Shigella) may not.

Microbiome analysis of NHSBCSP samples has the potential to improve CRC screening

To determine whether microbiome profiles from NHSBCSP gFOBT samples could 

improve screening accuracy, we created random forest (RF) classifiers using relative 

abundances of genera (Fig.1). Whilst LEfSe analysis indicates taxa which are significantly 

enriched or depleted between groups, RF classifiers identify taxa which have predictive 

associations. 28 29 30 We assessed four models, the first two of which investigated whether 

microbiome analysis could be used as a first-tier screen - that is, to distinguish CRC 

or neoplasm from blood-negative gFOBT. Based on a randomly selected 50% training-

validation split, CRC outcomes were separated from blood-negative gFOBTs (“CRC vs 

blood-negative”) with AUC 0.86 (0.82-0.89)(Supplementary_Table.4-6). The second model 
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distinguished neoplasm (a group comprising an approximately equal ratio of CRC, low, 

intermediate and high-risk adenoma) from blood-negative gFOBTs (“Neoplasm vs blood-

negative”) with AUC 0.78 (0.74-0.82)(Supplementary_Table.5&6). Neither model showed a 

significant difference between AUCs of the test or validation sets (Supplementary_Table.5).

The next two models assessed whether microbiome profiles could distinguish, strictly 

among the blood-positive samples, CRC or neoplasm from subsequently colonoscopy-

normal samples (i.e. a second-tier screen, to identify gFOBT false positives). As 

expected, these more biologically similar outcomes were more difficult to differentiate, 

but were still accessible via microbiome measures. The third model distinguished CRC 

from colonoscopy-normal gFOBT (“CRC vs colonoscopy-normal”) with AUC 0.79 

(0.74-0.83)(Supplementary_Table.5 & 6 & Fig.4). The last model differentiated neoplasms 

from colonoscopy-normal gFOBT (“Neoplasm vs colonoscopy-normal”) with AUC 0.73 

(0.68-0.77)(Supplementary_Table.5 & 6 & Fig.4). Again, neither model showed a significant 

difference between AUCs of the test or validation sets (Supplementary_Table.5).

All of the models performed significantly better than models generated for comparison 

which used age and sex. Combining age and sex with relative abundances of genera led 

to a small improvement in AUC for three of the models (Supplementary_Table.5). Model 

performance remained similar after restricting the models to a small number of taxa, 

mimicking what might be possible by qPCR; for all four models, AUC increased as the 

number of taxa increased up to fifteen, after which the AUC approximately stabilised (Fig.2, 

Supplementary_Table.5 & Fig.4). Interestingly, the fifteen most important taxa for the “CRC 

vs blood-negative” and “CRC vs colonoscopy-normal” models featured eight of the same 

taxa, including Fusobacterium, Peptostreptococcus, Parvimonas, Gemella, Odoribacter and 

Faecalibacterium, and three taxa (Faecalibacterium, Akkermansia and Escherichia-Shigella) 

were shared between the “Neoplasm vs blood-negative” and “Neoplasm vs colonoscopy-

normal” models (Supplementary_Fig.4). Several of the same taxa appeared in the fifteen 

taxa most important to the “CRC vs blood-negative” and “Neoplasm vs blood-negative”, and 

“CRC vs colonoscopy-normal” and “Neoplasm vs colonoscopy-normal” models respectively 

(Supplementary_Fig.4).

Finally, we compared the performance of these 16S-based RF models to similar models 

using existing faecal shotgun metagenomic datasets (Fig.2, Supplementary_Fig.5). 33–40 As 

the majority of these existing studies had only profiled CRC, we restricted the comparison 

to the two CRC RF models. Within-study cross-validation of the “CRC vs blood-negative” 

model produced an AUC of 0.86, which compared favourably with the AUCs of the external 

datasets (range 0.59-0.95)(Fig.2, Supplementary_Fig.5). Between-study performance of 

the model also fell within the range of performances of the models built using the 

external datasets, and the majority of the most important taxa paralleled those of the 

external studies, indicating a degree of generalisability. The “CRC vs. colonoscopy-normal” 

model had a within-study cross-validation AUC that was within the range of the models 

built using external datasets, but between-study validation performance was lower (Fig.2, 

Supplementary_Fig.5). Taxa which were of highest importance to the model were shared by 

many of the models built using external datasets, indicating both their potential underlying 

biological importance and their ability to be consistently detected by a variety of assays.

Young et al. Page 8

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



For completeness, we also explored the ability of microbial RF models to detect adenoma. 

Performance was generally comparable; models distinguished CRC from adenoma with 

AUC 0.71 (0.66-0.76), adenoma from colonoscopy-normal with AUC 0.72 (0.67-0.77) and 

adenoma from blood-negative with AUC 0.84 (0.80-0.87) (Supplementary_Table.7-10). The 

taxa of greatest importance to the RF models included several ‘CRC-associated’ taxa. Lastly, 

we investigated the performance of bacteria RF models using a ‘colonoscopy-control’ 

group, comprising an approximately equal ratio of non-neoplastic and colonoscopy-normal 

samples (Supplementary_Table.7-10). CRC was detected with an AUC 0.76 (0.72-0.80), 

similar to the RF model which used colonoscopy-normal samples alone as the control 

group. However, the models designed to detect adenoma and neoplasm performed inferiorly 

compared with RF models built using colonoscopy-normal samples alone. This could reflect 

the heterogeneous nature of the non-neoplastic group, or greater microbiome similarity 

between the adenoma and non-neoplastic groups.

Discussion

To our knowledge, this is the first study to profile the microbiome of large numbers 

of CRC screening samples, collected and processed routinely by a national screening 

programme, and to demonstrate the potential of microbiome analysis as an accurate adjunct 

to early screening. We profiled the faecal microbiome of 2,252 processed NHSBCSP 

gFOBT samples, representing blood-negative results, colonoscopy-normal outcomes, CRC, 

adenomas and non-neoplastic diagnoses. Using random forest models as a simple 

classification method, microbiome taxonomic profiles were able to serve as accurate 

first and second-tier screens, the former separating CRC/neoplasm from blood-negative 

results, and the latter separating CRC/neoplasm from normal-colonoscopy results. All four 

microbiome-based models performed significantly better than models built using the only 

clinical data available - age and sex - and were robust to hold-out validation and in 

comparison to external data.

As a baseline for translational applications, the first-tier “CRC vs blood-negative” model 

performed similarly to existing screening methods. This includes those that rely on low-

dimensional or high-dimensional biomarkers. For example, a meta-analysis of FIT and 

a separate study of FIT for CRC screening reported an AUC for the detection of CRC 

as high as 0.95. 46 47 Separately, a trial of the FDA-approved Cologuard reached an 

AUC of 0.94 for the discrimination of CRC vs ‘non-advanced neoplasia/lesser findings’, 

and with FIT an AUC of 0.89. 48 Our microbiome-based “Neoplasm vs blood-negative” 

model again performed similarly (possibly superiorly) to existing methods (AUCs from 

the aforementioned studies of 0.72(FIT), 0.67(FIT) and 0.73(Cologuard)), 47 48 although 

differences in the composition of the case and control groups between the studies should 

be borne in mind. Importantly, in comparison with Cologuard, which requires whole stool 

and costs approximately $600/test, amplicon-based microbiome profiling requires very little 

biomaterial and would be easier to translate to a national screening programme. The fact 

that model performance required as few as fifteen taxa, in agreement with existing studies, 

raises the potential of a rapid qPCR-based test which could be integrated into a screening 

programme at low cost. 34 49–52 Although we were not able to assess it in our study, it has 
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been shown that microbiome-analysis is able to detect lesions missed by FIT, suggesting a 

potential role as an adjunct to FIT for the detection of non-bleeding CRC. 53 

The second-tier models perhaps showed the greatest clinical potential, as they were able 

to identify CRC and neoplasms from among the blood-positive gFOBT cohort. Currently 

all NHSBCSP participants with a blood-positive gFOBT are referred for colonoscopy, yet 

50% reveal a normal bowel or non-neoplastic condition. The high number of unnecessary 

colonoscopies carries associated risks and strains endoscopy capacity. There are limited 

examples of second-tier screens in the existing literature. A study from the NHSBCSP 

programme demonstrated second-tier performance for the detection of neoplasm by FIT 

with AUC 0.63, improved to 0.66 by incorporating screening data. 54 A similar study 

reported an equivalent AUC of 0.69 (FIT), improved to 0.76 by questionnaire-collected 

data. 55 The advantage of a microbiome-based second-tier screen that could be performed 

using existing screening samples is that it would not require additional tests, nor would it 

place extra burden on screening participants, something which can potentially jeopardise 

screening uptake.

Given that we profiled the microbiome directly from gFOBT screening samples, 

we were interested to compare the performance of our models with the existing 

microbiome literature, most of which has used shotgun metagenomics and/or frozen 

whole stool. Performance compared favourably: meta-analyses and a systematic review 

reported AUCs of 0.68-0.95 (detection of CRC), and AUCs of 0.59-0.94 (detection of 

neoplasm - many studies, like ours, report inferior detection of neoplasms compared 

with CRC, due to the reduced discriminatory power of microbiome-based models to 

detect adenomas 34 ). 5 33 34 49 50 56–59 It is remarkable that our models performed so 

well in light of the fact that samples were prepared routinely by screening participants 

in their own homes (in the majority of instances over three days), transported through 

the routine post, stored at room temperature (for on average one year prior to DNA 

extraction), and the following variables, all of which affect the microbiome, were 

unknown: antibiotic/medication-use, diet, comorbidities, smoking status, and BMI. 60 While 

this technical variability and missing information will unavoidably affect the precision 

of microbiome measurements feasible from gFOBT, and their applicability to general 

microbiome epidemiology, it is noteworthy that they do not impede gFOBT microbiome 

use for CRC screening. We further confirmed this in a quantitative manner, by comparing 

the performance of our CRC models with models built using nine external metagenomic 

datasets. Validation of the gFOBT-based models among studies showed similar performance 

and, interestingly, identification of many of the same discriminatory taxa.

These taxa included those previously described as CRC-associated, including 

Fusobacterium, Escherichia-Shigella, Peptostreptococcus, Porphyromonas, Parvimonas, 

Alistipes, and Gemella, and those that have previously been shown to be inversely 

associated with CRC, including Faecalibacterium 61 and Lactobacillus. 49 Although we 

limited ourselves to analysis at the genus level for simplicity, these genera contain 

species which have been associated with CRC, including inflammation-associated and oral-

taxa: Fusobacterium nucleatum, 49 pks+Escherichia coli, 62 Peptostreptococcus stomatis, 36 

Peptostreptococcus anaerobius, 35 Porphyromonas asaccharolytica, 49 Porphyromonas 
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somerae, 33 Porphyromonas uenonis, 33 Parvimonas micra, 49 Alistipes finegoldii, 49 and 

Gemella morbillorum. 33 It is hypothesised that oral taxa may increase colonic mucosal 

permeability, allowing bacterial invasion, with resulting inflammation, and subsequent 

epithelial proliferation. 63 64 65 Certain taxa have also been shown to be capable of inducing 

and/or promoting tumourigenesis: colibactin, produced by pks+Escherichia coli, is able 

to damage DNA, 62 whilst Fusobacterium nucleatum promotes tumour proliferation and a 

pro-tumour inflammatory state. 66 It was interesting that some (but not all) of these taxa 

remained CRC-enriched even in comparisons with the blood-positive colonoscopy-normal 

group, suggesting that certain CRC-microbiome associations may act independently of the 

presence of faecal blood.

Among this study’s potential limitations, two stand out. The first is that participants in the 

blood-negative group did not undergo colonoscopy, as this would disrupt routine screening. 

As the sensitivity of gFOBT for CRC is estimated to be 50%, the blood-negative group may 

have included undiagnosed adenomas or CRC. 67–69 However, because the incidence of CRC 

is low, the absolute number of undiagnosed CRC is predicted to have been small, with little 

effect on the performance of the RF models, except perhaps to have made the result more 

conservative. This leads to an arguably minor, but still systematic, difference between these 

controls and a broader population: the specific models evaluated here will under-predict 

non-bleeding cancers and should be further generalised prior to application. The second is 

that the majority of the blood-negative samples were collected within a short time-frame 

at the beginning of the study. However, any effect due to prolonged storage prior to DNA 

extraction is likely to have been minimal, as DNA extraction replicates created after 6-23 

months storage at room temperature demonstrated similar microbiome structures, equivalent 

to ‘same-day’ DNA extraction replicates.

In addition to the refinements that would be necessary to translate these results into a 

screening product, including investigation of sensitivity, consistency and cost-effectiveness 

analysis, future work aims to replicate the study using NHSBCSP FIT samples. The 

advantage of having performed the current study is that, should microbiome analysis of 

FIT (which collects a much smaller volume of faeces) not produce adequate accuracy, a 

gFOBT-based microbiome screening test could still be used as an adjunct to the NHSBCSP. 

We also plan to investigate whether screening accuracy could be improved further by the 

incorporation of additional clinical data, FIT concentration, and faecal mutation, bacterial 

virulence-factor or toxin testing. 33 34 49 52 70 71 In conclusion, this study has confirmed that 

microbiome analysis can be performed on samples collected and processed routinely by a 

national CRC screening programme to improve accuracy. Models required as few as fifteen 

taxa, making this practical to implement as an inexpensive qPCR-based test. This could 

reduce the number of unnecessary colonoscopies in countries which use faecal occult blood 

test screening.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Young et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Acknowledgements

This work was funded by a Wellcome Trust Clinical Research Training Fellowship (203524/Z/16/Z) to C Young, 
a Pathological Society of Great Britain & Ireland ‘Visiting Fellowship’ (2234) to C Young and a Cancer Research 
UK Grand Challenge Initiative (OPTIMISTICC C10674/A27140) to P Quirke and C Huttenhower. P Quirke is a 
National Institute of Health Research Senior Investigator.

Funding

This work was funded by a Wellcome Trust Clinical Research Training Fellowship (203524/Z/16/Z) to CY, a 
Pathological Society of Great Britain & Ireland ‘Visiting Fellowship’ (2234) to CY and a Cancer Research UK 
Grand Challenge Initiative (OPTIMISTICC C10674/A27140) to PQ and CH. PQ is a National Institute of Health 
Research Senior Investigator.

References

1. Ferlay J, E M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global 
Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 
2018. accessed 9.8.20 2020 Available from: https://gco.iarc.fr/today 

2. Koo S, Neilson LJ, Von Wagner C, et al. The NHS Bowel Cancer Screening Program: current 
perspectives on strategies for improvement. Risk Manag Healthc Policy. 2017; 10: 177–87. DOI: 
10.2147/rmhp.S109116 [PubMed: 29270036] 

3. Bowel cancer screening: the facts (FOB test kit). accessed 24.9.19 Available from: https://
www.gov.uk/government/publications/bowel-cancer-screening-benefits-and-risks 

4. Scottish Bowel Screening Programme Statistics for invitations between 1 May 2016 
and 30 April 2018. 2019. accessed 20.7.19 https://www.isdscotland.org/Health-Topics/
Cancer/Publications/2019-02-05/2019-02-05-Bowel-Screening-Publication-Summary.pdf Available 
from: https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-02-05/2019-02-05-
Bowel-Screening-Publication-Summary.pdf 

5. Amitay EL, Krilaviciute A, Brenner H. Systematic review: Gut microbiota in fecal 
samples and detection of colorectal neoplasms. Gut Microbes. 2018; 9 (4) 293–307. DOI: 
10.1080/19490976.2018.1445957 [PubMed: 29543545] 

6. Vogtmann E, Chen J, Amir A, et al. Comparison of Collection Methods for Fecal Samples in 
Microbiome Studies. Am J Epidemiol. 2017; 185 (2) 115–23. DOI: 10.1093/aje/kww177 [PubMed: 
27986704] 

7. Sinha R, Chen J, Amir A, et al. Collecting Fecal Samples for Microbiome Analyses 
in Epidemiology Studies. Cancer Epidemiol Biomarkers Prev. 2016; 25 (2) 407–16. DOI: 
10.1158/1055-9965.epi-15-0951 [PubMed: 26604270] 

8. Dominianni C, Wu J, Hayes RB, et al. Comparison of methods for fecal microbiome biospecimen 
collection. BMC Microbiol. 2014; 14: 103. doi: 10.1186/1471-2180-14-103 [PubMed: 24758293] 

9. Wong WSW, Clemency N, Klein E, et al. Collection of non-meconium stool on fecal occult blood 
cards is an effective method for fecal microbiota studies in infants. Microbiome. 2017; 5 (1) 114. 
doi: 10.1186/s40168-017-0333-z [PubMed: 28870234] 

10. Taylor M, Wood HM, Halloran SP, et al. Examining the potential use and long-term stability of 
guaiac faecal occult blood test cards for microbial DNA 16S rRNA sequencing. Journal of Clinical 
Pathology. 2017; 70 (7) 600–06. DOI: 10.1136/jclinpath-2016-204165 [PubMed: 28011577] 

11. Vogtmann E, Chen J, Kibriya MG, et al. Comparison of Fecal Collection Methods for Microbiota 
Studies in Bangladesh. Appl Environ Microbiol. 2017; 83 (10) doi: 10.1128/aem.00361-17 

12. von Huth S, Thingholm LB, Bang C, et al. Minor compositional alterations in faecal microbiota 
after five weeks and five months storage at room temperature on filter papers. Scientific Reports. 
2019; 9 (1) 19008. doi: 10.1038/s41598-019-55469-0 [PubMed: 31831829] 

13. Byrd DA, Sinha R, Hoffman KL, et al. Comparison of Methods To Collect Fecal Samples for 
Microbiome Studies Using Whole-Genome Shotgun Metagenomic Sequencing. mSphere. 2020; 5 
(1) e00827–19. DOI: 10.1128/mSphere.00827-19 

Young et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://gco.iarc.fr/today
https://www.gov.uk/government/publications/bowel-cancer-screening-benefits-and-risks
https://www.gov.uk/government/publications/bowel-cancer-screening-benefits-and-risks
https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-02-05/2019-02-05-Bowel-Screening-Publication-Summary.pdf
https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-02-05/2019-02-05-Bowel-Screening-Publication-Summary.pdf
https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-02-05/2019-02-05-Bowel-Screening-Publication-Summary.pdf
https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-02-05/2019-02-05-Bowel-Screening-Publication-Summary.pdf


14. Amitay EL, Werner S, Vital M, et al. Fusobacterium and colorectal cancer: Causal factor or 
passenger? Results from a large colorectal cancer screening study. Carcinogenesis. 2017; 38 (8) 
781–88. DOI: 10.1093/carcin/bgx053 [PubMed: 28582482] 

15. Eklof V, Lofgren-Burstrom A, Zingmark C, et al. Cancer-associated fecal microbial markers 
in colorectal cancer detection. International Journal of Cancer. 2017; 141 (12) 2528–36. DOI: 
10.1002/ijc.31011 [PubMed: 28833079] 

16. Grobbee EJ, Lam SY, Fuhler GM, et al. First steps towards combining faecal immunochemical 
testing with the gut microbiome in colorectal cancer screening. United European gastroenterology 
journal. 2020; 8 (3) 293–302. DOI: 10.1177/2050640619890732 [PubMed: 32213018] 

17. Logan RFA, Patnick J, Nickerson C, et al. Outcomes of the Bowel Cancer Screening Programme 
(BCSP) in England after the first 1 million tests. Gut. 2011. 1439–46. 

18. A framework for human microbiome research. Nature. 2012; 486 (7402) 215–21. DOI: 10.1038/
nature11209 [PubMed: 22699610] 

19. Earth Microbiome Project. accessed 11.2.19 Available from: http://www.earthmicrobiome.org 

20. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnetjournal. 2011; 17 (1) 10–12. DOI: 10.14806/ej.17.1.200 

21. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from 
Illumina amplicon data. Nature methods. 2016; 13: 581. doi: 10.1038/nmeth.3869 [PubMed: 
27214047] 

22. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible 
microbiome data science using QIIME 2. Nature Biotechnology. 2019; 37 (8) 852–57. DOI: 
10.1038/s41587-019-0209-9 

23. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene 
amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018; 6 (1) 90. doi: 
10.1186/s40168-018-0470-z [PubMed: 29773078] 

24. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC 
Bioinformatics. 2009; 10 (1) 421. doi: 10.1186/1471-2105-10-421 [PubMed: 20003500] 

25. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved 
data processing and web-based tools. Nucleic acids research. 2012; 41 (D1) D590–D96. DOI: 
10.1093/nar/gks1219 [PubMed: 23193283] 

26. Oksanen J, Blanchet FG, Friendly M, et al. vegan: Community Ecology Package. 2018. 
accessed 13.8.19 R package version 2.5-3. 2018 [Available from: https://CRAN.R-project.org/
package=vegan].

27. Anderson MJ. A new method for non-parametric multivariate analysis of variance. 2001; 26 (1) 
32–46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x 

28. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome 
biology. 2011; 12 (6) R60–R60. DOI: 10.1186/gb-2011-12-6-r60 [PubMed: 21702898] 

29. Breiman L. Random Forests. Machine Learning. 2001; 45 (1) 5–32. DOI: 10.1023/
A:1010933404324 

30. Wiener ALaM. Classification and Regression by randomForest. R News. 2002; 2 (3) 18–22. 

31. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze 
and compare ROC curves. BMC Bioinformatics. 2011; 12 (1) 77. doi: 10.1186/1471-2105-12-77 
[PubMed: 21414208] 

32. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated 
receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44 (3) 837–
45. published Online First: 1988/09/01 [PubMed: 3203132] 

33. Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial 
signatures that are specific for colorectal cancer. Nat Med. 2019; 25 (4) 679–89. DOI: 10.1038/
s41591-019-0406-6 published Online First: 2019/04/03 [PubMed: 30936547] 

34. Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets 
identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nature 
Medicine. 2019; 25 (4) 667–78. DOI: 10.1038/s41591-019-0405-7 

Young et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.earthmicrobiome.org
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan


35. Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct 
stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019; 25 (6) 968–
76. DOI: 10.1038/s41591-019-0458-7 published Online First: 2019/06/07 [PubMed: 31171880] 

36. Gupta A, Dhakan DB, Maji A, et al. Association of Flavonifractor plautii, a Flavonoid-Degrading 
Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. mSystems. 2019; 4 
(6) e00438–19. DOI: 10.1128/mSystems.00438-19 [PubMed: 31719139] 

37. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-
carcinoma sequence. Nat Commun. 2015; 6: 6528. doi: 10.1038/ncomms7528 published Online 
First: 2015/03/12 [PubMed: 25758642] 

38. Vogtmann E, Hua X, Zeller G, et al. Colorectal Cancer and the Human Gut Microbiome: 
Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One. 2016; 11 (5) e0155362. 
doi: 10.1371/journal.pone.0155362 [published Online First: 2016/05/14] [PubMed: 27171425] 

39. Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards 
targeted non-invasive biomarkers for colorectal cancer. Gut. 2017; 66 (1) 70–78. DOI: 10.1136/
gutjnl-2015-309800 [PubMed: 26408641] 

40. Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal 
cancer. Mol Syst Biol. 2014; 10 (11) 766. doi: 10.15252/msb.20145645 [published Online First: 
2014/11/30] [PubMed: 25432777] 

41. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique 
clade-specific marker genes. Nature methods. 2012; 9 (8) 811–14. DOI: 10.1038/nmeth.2066 
[PubMed: 22688413] 

42. Pasolli E, Truong DT, Malik F, et al. Machine Learning Meta-analysis of Large Metagenomic 
Datasets: Tools and Biological Insights. PLoS computational biology. 2016; 12 (7) e1004977–e77. 
DOI: 10.1371/journal.pcbi.1004977 [PubMed: 27400279] 

43. Bernau C, Riester M, Boulesteix AL, et al. Cross-study validation for the assessment of 
prediction algorithms. Bioinformatics. 2014; 30 (12) i105–12. DOI: 10.1093/bioinformatics/
btu279 [published Online First: 2014/06/17] [PubMed: 24931973] 

44. White A, Ironmonger L, Steele RJC, et al. A review of sex-related differences in colorectal cancer 
incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC cancer. 
2018; 18 (1) 906–06. DOI: 10.1186/s12885-018-4786-7 [PubMed: 30236083] 

45. Yan Y, Drew DA, Markowitz A, et al. Structure of the Mucosal and Stool Microbiome in 
Lynch Syndrome. Cell Host Microbe. 2020; 27 (4) 585–600. e4 doi: 10.1016/j.chom.2020.03.005 
[published Online First: 2020/04/03] [PubMed: 32240601] 

46. Lee JK, Liles EG, Bent S, et al. Accuracy of fecal immunochemical tests for colorectal cancer: 
systematic review and meta-analysis. Annals of internal medicine. 2014; 160 (3) 171. doi: 
10.7326/m13-1484 [published Online First: 2014/03/25] [PubMed: 24658694] 

47. Brenner H, Chen H. Fecal occult blood versus DNA testing: indirect comparison in a colorectal 
cancer screening population. Clin Epidemiol. 2017; 9: 377–84. DOI: 10.2147/CLEP.S136565 
[PubMed: 28761377] 

48. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-
cancer screening. N Engl J Med. 2014; 370 (14) 1287–97. DOI: 10.1056/NEJMoa1311194 
[published Online First: 2014/03/22] [PubMed: 24645800] 

49. Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome 
identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018; 6 
(1) 70. doi: 10.1186/s40168-018-0451-2 [PubMed: 29642940] 

50. Sze MA, Schloss PD. Leveraging Existing 16S rRNA Gene Surveys To Identify Reproducible 
Biomarkers in Individuals with Colorectal Tumors. mBio. 2018; 9 (3) e00630–18. DOI: 10.1128/
mBio.00630-18 [PubMed: 29871916] 

51. Ai D, Pan H, Li X, et al. Identifying Gut Microbiota Associated With Colorectal Cancer Using a 
Zero-Inflated Lognormal Model. Front Microbiol. 2019; 10: 826. doi: 10.3389/fmicb.2019.00826 
[published Online First: 2019/05/10] [PubMed: 31068913] 

52. Gao R, Wang Z, Li H, et al. Gut microbiota dysbiosis signature is associated with the 
colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. Journal of 
Gastroenterology and Hepatology. 2020; doi: 10.1111/jgh.15077 

Young et al. Page 14

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



53. Baxter NT, Ruffin MT, Rogers MAM, et al. Microbiota-based model improves the sensitivity of 
fecal immunochemical test for detecting colonic lesions. Genome Medicine. 2016; 8 (1) 37. doi: 
10.1186/s13073-016-0290-3 [PubMed: 27056827] 

54. Cooper JA, Parsons N, Stinton C, et al. Risk-adjusted colorectal cancer screening using the FIT and 
routine screening data: development of a risk prediction model. British journal of cancer. 2018; 
118 (2) 285–93. DOI: 10.1038/bjc.2017.375 [PubMed: 29096402] 

55. Stegeman I, de Wijkerslooth TR, Stoop EM, et al. Combining risk factors with faecal 
immunochemical test outcome for selecting CRC screenees for colonoscopy. Gut. 2014; 63 (3) 
466–71. DOI: 10.1136/gutjnl-2013-305013 [PubMed: 23964098] 

56. Zhang B, Xu S, Xu W, et al. Leveraging Fecal Bacterial Survey Data to Predict Colorectal Tumors. 
Frontiers in genetics. 2019; 10: 447–47. DOI: 10.3389/fgene.2019.00447 [PubMed: 31191599] 

57. Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial 
community survey data to identify a composite biomarker for colorectal cancer. Gut. 2018; 67 
(5) 882–91. DOI: 10.1136/gutjnl-2016-313189 [PubMed: 28341746] 

58. Huang Q, Peng Y, Xie F. Fecal fusobacterium nucleatum for detecting colorectal cancer: a 
systematic review and meta-analysis. The International journal of biological markers. 2018; doi: 
10.1177/1724600818781301 

59. Zhang X, Zhu X, Cao Y, et al. Fecal Fusobacterium nucleatum for the diagnosis of colorectal 
tumor: A systematic review and meta-analysis. Cancer Med. 2019; 8 (2) 480–91. DOI: 10.1002/
cam4.1850 [published Online First: 2019/01/14] [PubMed: 30636375] 

60. Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals 
markers for gut microbiome composition and diversity. Science. 2016; 352 (6285) 565–9. DOI: 
10.1126/science.aad3369 [PubMed: 27126040] 

61. Guo S, Li L, Xu B, et al. A simple and novel fecal biomarker for colorectal cancer: Ratio of 
Fusobacterium nucleatum to probiotics populations, based on their antagonistic effect. Clinical 
Chemistry. 2018; 64 (9) 1327–37. DOI: 10.1373/clinchem.2018.289728 [PubMed: 29914865] 

62. Pleguezuelos-Manzano C, Puschhof J, Huber AR, et al. Mutational signature in colorectal 
cancer caused by genotoxic pks+ E. coli. Nature. 2020; 580 (7802) 269–73. DOI: 10.1038/
s41586-020-2080-8 [PubMed: 32106218] 

63. Dejea, CM; Wick, EC; Hechenbleikner, EM; , et al. Microbiota organization is a distinct feature 
of proximal colorectal cancers. Proceedings of the National Academy of Sciences of the United 
States of America; 2014. 18321–26. 

64. Drewes JL, White JR, Dejea CM, et al. High-resolution bacterial 16S rRNA gene profile 
meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ biofilms and 
microbiomes. 2017; 3: 34. doi: 10.1038/s41522-017-0040-3 [PubMed: 29214046] 

65. Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or 
colon cancer hosts are carcinogenic. J Clin Invest. 2019; 130: 1699–712. DOI: 10.1172/jci124196 
[published Online First: 2019/03/12] 

66. Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. 
Nature reviews Microbiology. 2019; 17 (3) 156–66. DOI: 10.1038/s41579-018-0129-6 [PubMed: 
30546113] 

67. Moss S, Mathews C, Day TJ, et al. Increased uptake and improved outcomes of bowel cancer 
screening with a faecal immunochemical test: results from a pilot study within the national 
screening programme in England. Gut. 2017; 66 (9) 1631–44. DOI: 10.1136/gutjnl-2015-310691 
[PubMed: 27267903] 

68. Blanks R, Burón Pust A, Alison R, et al. Screen-detected and interval colorectal cancers in 
England: Associations with lifestyle and other factors in women in a large UK prospective 
cohort. International journal of cancer. 2019; 145 (3) 728–34. DOI: 10.1002/ijc.32168 [PubMed: 
30694563] 

69. Morris EJA, Whitehouse LE, Farrell T, et al. A retrospective observational study examining the 
characteristics and outcomes of tumours diagnosed within and without of the English NHS Bowel 
Cancer Screening Programme. British Journal of Cancer. 2012; 107 (5) 757–64. DOI: 10.1038/
bjc.2012.331 [PubMed: 22850549] 

Young et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



70. Zhao D, Liu H, Zheng Y, et al. A reliable method for colorectal cancer prediction based on feature 
selection and support vector machine. Medical & biological engineering & computing. 2019; 57 
(4) 901–12. DOI: 10.1007/s11517-018-1930-0 [PubMed: 30478811] 

71. Zhai RL, Xu F, Zhang P, et al. The Diagnostic Performance of Stool DNA Testing for Colorectal 
Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2016; 95 (5) e2129. doi: 
10.1097/md.0000000000002129 [PubMed: 26844449] 

Young et al. Page 16

Clin Cancer Res. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Translational Relevance

To assess the utility of microbiome profiles for national-scale colorectal cancer (CRC) 

screening, we assessed 2,252 routinely processed NHS Bowel Cancer Screening 

Programme guaiac faecal occult blood test (gFOBT) samples. We generated four 

microbiome-based random forest classification models, each showing potential to 

improve accuracy. Two distinguished either CRC or neoplasm (CRC or adenoma) from 

gFOBT blood-negative samples (equivalent to first-tier screening). Two distinguished 

CRC or neoplasm from samples that had tested positive for blood by gFOBT, with 

participants referred for colonoscopy, but at colonoscopy no-lesion was found (second-

tier screening to rule out gFOBT false positives). Each model remained robust to 

validation and when restricted to fifteen taxa, raising the possibility of an inexpensive 

qPCR-test. The models performed favourably compared with existing microbiome 

studies, FIT and Cologuard. These results suggest that microbiome analysis could be 

integrated into national CRC screening to improve accuracy and reduce the number of 

unnecessary screening colonoscopies.
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Figure 1. Microbiome taxonomic profiling demonstrates potential to improve CRC screening 
accuracy.
(A) Overview of the NHS Bowel Cancer Screening Programme (NHSBCSP) and the design 

of this study. Briefly, we used 16S amplicon-based microbiome profiling from routinely 

collected gFOBT specimens to supplement first-tier (CRC/neoplasm vs. blood-negative) 

or second-tier (CRC/neoplasm vs. colonoscopy-normal) opportunities for early cancer 

screening. (B) Microbiome profiles improve CRC or neoplasm classification versus blood-

negative gFOBT samples (first-tier screening application) or blood-positive colonoscopy-

normal samples (second-tier screening application) relative to purely clinical characteristics 

(age and sex). Classification used random forest (RF) models and shows the performance 

of the ‘total’ RF models bootstrapped from the total datasets. Shading represents the 95% 

CI. Clinical = RF models based on age & sex. Bacteria = RF models based on relative 

abundances of genera. Neoplasm = a group comprising an approximately equal ratio of 

CRC, low-risk adenoma, intermediate-risk adenoma and high-risk adenoma samples.
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Figure 2. Microbiome-based gFOBT CRC/neoplasm classification requires as few as 15 taxa and 
compares favourably with models built using external shotgun metagenomic datasets.
(A) Genus-level bacteria only ‘total’ RF classification models were built using an increasing 

number of taxa of decreasing RF importance score. Shading represents the 95% CI of the 

AUC. Neoplasm = a group comprising an approximately equal ratio of CRC, low-risk 

adenoma, intermediate-risk adenoma and high-risk adenoma samples. For each model, 

the AUC plateaus at approximately 15 taxa. (B) Performance of the amplicon-based 

“CRC vs blood-negative” total RF model compared to models built using external faecal 

shotgun metagenomic datasets. The matrix displays cross-prediction AUCs. LODO (leave-

one-dataset-out) denotes AUC generated by training a model using all but the dataset of 

the associated column and testing it using the dataset of that column. Within-study and 

cross-study performance of the “CRC vs blood-negative” model falls within the range of 

performances of the external models, indicating a degree of generalisability. (C) Specific 

taxa prioritised by gFOBT amplicon-based regression models (at the genus level) are 
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strikingly similar to genera prioritised from shotgun metagenomic taxonomic profiles in 

complementary populations.
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Table 1
Table of participant characteristics.

Clinical group Mean age (SD)

Number of samples

Total Male (%) Female (%)

gFOBT blood-negative 67.0 (4.5) 491 (22%) 205 (42%) 286 (58%)

gFOBT blood-positive, with the following diagnosis at colonoscopy:

     CRC 68.1 (5.0) 430 (19%) 289 (67%) 141 (33%)

     Adenoma 66.3 (4.7) 665 (30%) 432 (65%) 233 (35%)

     Normal colonoscopy 66.6 (4.3) 300 (13%) 155 (52%) 145 (48%)

     Non-neoplastic diagnosis 66.7 (4.7) 366 (16%) 188 (51%) 178 (49%)
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Table 2
Table of CRC locations.

CRC tumour location Number

Ileum 1 (<1%)

Caecum 43 (11%)

Ascending colon 40 (11%)

Hepatic flexure 21 (6%)

Transverse colon 32 (8%)

Splenic flexure 15 (4%)

Descending colon 12 (3%)

Sigmoid 90 (24%)

Recto-sigmoid 27 (7%)

Rectum 96 (25%)

Anus 1 (<1%)
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