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Abstract

Colorectal cancer (CRC) screening reduces CRC incidence and mortality. Risk models based on 

phenotypic variables have relatively good discrimination in external validation and may improve 

efficiency of screening. Models incorporating genetic variables may perform better. In this review 

we updated our previous review by searching Medline and EMBASE from the end date of that 

review (January 2014) to February 2019 to identify models incorporating at least one single 

nucleotide polymorphism (SNP) and applicable to asymptomatic individuals in the general 

population. We identified 23 new models, giving a total of 29. Of those in which the SNP selection 

was based on published GWASs, in external or split-sample validation the AUROC was 0.56-0.57 

for models including SNPs alone, 0.61-0.63 for SNPs in combination with other risk factors and 

0.56 to 0.70 when age was included. Calibration was only reported for four. The addition of SNPs 

to other risk factors increases discrimination by 0.01-0.05. Public health modelling studies suggest 

that, if determined by risk models, the range of starting ages for screening would be several years 

greater than using family history alone. Further validation and calibration studies are needed 

alongside modelling studies to assess the population-level impact of introducing genetic risk-based 

screening programme.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death in Europe and 

the United States (1). There is good evidence that screening adults in the general population 

who are at average risk with faecal occult blood testing, flexible sigmoidoscopy or 

colonoscopy reduces CRC incidence and mortality (2–7). However, as with all screening 

programmes, CRC screening has the potential to cause harm, both directly to those screened 

and indirectly through diversion of resources away from other services. Targeted or stratified 

screening could potentially provide a way of reducing complication rates and demand on 

services while still ensuring those at greatest risk are effectively screened. For example, the 

U.S. Multi-Society Task Force on Colorectal Cancer endorse a risk-stratified approach with 

faecal immunochemical testing (FIT) screening in populations with an estimated low 

prevalence of advanced neoplasia and colonoscopy screening in high prevalence 

populations(8).

We have previously published a systematic review of risk prediction models for CRC and 

identified 40 models that have been developed and could potentially be used for risk 

stratification(9). These range from models including only data routinely available from 

electronic health records, such as age, sex and body mass index, to more complex models 

containing detailed information about lifestyle factors and genetic information. Using the 

UK Biobank cohort for external validation we have shown that several of those including 

only phenotypic risk factors and/or family history exhibit reasonable discrimination in a UK 

population (10). At the time of the literature search for that review (January 2014) only six 

risk models incorporating genetic risk factors and predicting future risk of developing CRC 

had been published, and their performance was similar to models including only phenotypic 

information. Since then, findings from genome-wide association studies have resulted in a 

rapid rise in the number of published risk models incorporating genetic information. 

Simulation studies have also shown that using genetic information to stratify screening has 

the potential to improve efficiency (11) by reducing the number of individuals screened 

while still detecting as many cases (12). It is not clear, however, which genetic risk models 

perform best, how much combining common genetic variants with phenotypic risk factors 

improves model performance, or the potential public health impact of incorporating these 

models into screening programmes.

In order to inform future stratification of CRC screening using genetic data, we have updated 

our previous systematic review to identify and synthesize the performance of all published 

CRC prediction risk models that include common genetic variants and estimates of the 

potential public health impact of stratifying populations for screening based on genetic risk.

Materials And Methods

We updated a previous systematic review following a published study protocol (PROSPERO 

2018 CRD42018089654 Available from: http://www.crd.york.ac.uk/PROSPERO/

display_record.php?ID=CRD42018089654).
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Search strategy

We searched Medline, EMBASE and the Cochrane Library from January 2014 (the end date 

of the search in our previous review) to February 2019 applying the same search strategy 

used in our previous review, with no language limits (see Supplementary Materials and 

Methods S1, for complete search strategy for Medline and EMBASE). We subsequently 

manually screened the reference lists of all included papers.

Study selection

We included studies if they met all of the following criteria: (i) were published as a primary 

research paper in a peer-reviewed journal; (ii) provided a measure of relative or absolute risk 

using a combination of two or more risk factors, including at least one single-nucleotide 

polymorphism (SNP), that allows identification of individuals at higher risk of colon, rectal 

or colorectal cancer, or advanced colorectal neoplasia; (iii) reported a measure of 

discrimination (e.g. C-statistic, area under the receiver operating characteristic curve 

(AUROC)), or calibration (e.g. Hosmer-Lemeshow statistic, Observed/Expected ratio), or a 

quantitative estimate of the implications of using the risk model for stratified screening; and 

(iv) included data applicable to the general population (i.e. the risk model was not 

specifically designed for individuals known to carry specific high-risk mutations or from 

families with a known cancer syndrome, such as familial adenomatous polyposis or 

hereditary nonpolyposis colorectal cancer). As in our previous review, studies including only 

highly selected groups, for example immunosuppressed patients, organ transplant recipients, 

or those with a previous history of colon and/or rectal cancer were excluded. We also 

included studies published prior to January 2014 that had been identified in our previous 

review if they met the above criteria.

One reviewer (LM) performed the search and screened 67% of the titles and abstracts to 

exclude papers that were clearly not relevant. The remaining 33% of titles and abstracts were 

divided between four reviewers (JUS, SG, JE, FW) for screening. The four reviewers also 

each independently assessed a random selection of 3% of the papers screened by LM. The 

full-text of all papers for which a definite decision to reject could not be made from the title 

and abstract alone were independently assessed by two reviewers (LM and JUS/SG/JE/FW). 

Those assessed as not meeting the inclusion criteria by both researchers were excluded. 

Those for which it was not clear were discussed with the wider research team. One paper 

was translated into English for assessment and subsequent data extraction.

Data extraction and synthesis

Data were extracted independently by two researchers (LM and JUS/SG/JE) directly into 

data tables to minimize bias. These tables included details on: (i) the development of the 

model, including potential sources of bias such as the selection processes for participants 

and SNPs; (ii) the risk model itself, including the variables included; (iii) the methods of 

model development (genetic and phenotypic components); (iv) the performance measures 

(discrimination (e.g. C-statistic, AUROC), or calibration (e.g. Hosmer-Lemeshow statistic, 

Observed/Expected ratio) of the risk model in the development population; (v) any external 

validation studies of the risk model, including the study design and performance of the risk 

model; and (vi) any public health modelling of the potential impact of using the risk models 
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in practice. In papers that reported performance data for multiple step-wise models 

developed in the same population we included only the best performing model in our main 

analysis. If performance data were presented separately for a model including only SNPs 

and a model including both SNPs and phenotypic variables in the same paper, these were 

considered as two models. If performance data were presented separately for models that 

incorporated the same SNPs but were developed using unweighted allele counting or with 

allele weights derived either from the literature or the study population, we extracted both 

sets of data. To assess the incremental effect on performance of incorporating SNPs into the 

risk models, we additionally extracted data on the performance of the models including only 

phenotypic risk factors and/or family history, where they were reported.

At the same time as data extraction, an overall assessment of risk of bias was performed 

using four domains from the CHARMS checklist (study population, predictors, outcome and 

sample size and missing data)(13). We also classified studies into the following groups 

according to the TRIPOD guidelines(14):

• development only (1a);

• development and validation using resampling (1b);

• random (2a) or non-random (2b) split-sample development and validation;

• development and validation using separate data (3); or

• validation only (4).

For the models including only SNPs, a model developed using SNPs selected from the 

literature, either with unweighted allele counting, or with allele weights derived from the 

literature, was considered as group 3 (development and validation using separate data). 

However, if the model used weights derived from the study population, or if the model 

included only the SNPs found to be significantly associated with CRC in the study 

population, we assigned it to either group 1b, 2a, 2b or 3, depending on the relationship 

between the study population and the testing population. Simulated populations were 

considered external populations.

Results

From 12,394 papers we excluded 12,277 at title and abstract level and a further 103 after 

full-text assessment. After title and abstract screening by the first reviewer, no additional 

papers met the inclusion criteria in the random 12% screened by a second reviewer. There 

was also complete agreement amongst researchers at the full-text level with the most 

common reasons for exclusion being that the papers did not include a risk score (n=43), 

were conference abstracts (n=19) or did not include any performance measures (n=23) 

(Supplementary Figure S1). Four were also excluded as they described models that were 

developed to detect prevalent undiagnosed disease rather than estimate future incident 

disease risk.

A further four papers were identified through citation searching. The addition of four papers 

(six risk models) which had been included in our previous systematic review gave a total of 

McGeoch et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 April 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



22 papers describing 29 risk models for inclusion in the analysis. Table 1 summarizes these 

29 risk models. Except for the model by Weigl et al., (15) that included CRC or advanced 

adenoma as the outcome, all had CRC as the outcome. The paper by Jung et al., (16) 

developed separate models for colorectal, colon and rectal cancer. As these were the only 

models for colon and rectal cancer, we included only the model for colorectal cancer in the 

analysis. Nine models included only SNPs, six included SNPs plus phenotypic factors but 

not age, and 14 a combination of SNPs, phenotypic factors and age. The number of SNPs 

included in the models ranged from 3 to 95.

Development of the risk models and risk of bias

Details of the methods used to select the predictors and develop each of the risk models are 

given in Table 1, with additional details of the setting, design, participants, outcome and 

sample size for each study in Supplementary Table S1. The majority of the risk models (n = 

18) were developed or validated in white or European individuals. The others were 

developed or validated in Japanese (n = 4), Korean (n = 3), Chinese (n = 3) and Taiwanese (n 

= 1) populations.

A summary of the assessment of the risk of bias based on the four domains from the 

CHARMS checklist (study population, predictors, outcome and sample size and missing 

data) is shown in Table 2. Overall we found 12 risk models to be at low risk of bias, 10 at 

unclear risk and five at high risk.

Risk of bias within the study participant domain was variable between studies. Those judged 

to be at unclear or high risk of bias reflected limited or missing details on the inclusion and 

exclusion criteria used to define study participants and/or use of cases or controls not 

representative of the general population, for example recruiting spouses or individuals 

attending outpatient hospital clinics as controls, or recruiting cases from adjuvant 

chemotherapy clinical trials.

When considering selection of predictors, the majority of the models (n = 18) included SNPs 

identified for inclusion from new or previously published genome-wide association studies 

(GWAS) in European or Asian-ancestry populations. In six, the authors had used GWAS 

studies from European or Asian populations to identify SNPs associated with CRC risk and 

then selected a subset of these SNPs for inclusion in the risk model on the basis of the 

associations with disease risk in an independent Japanese or Taiwanese population. 

Although this method was used to identify SNPs that may be associated with risk in non-

European populations, given the small sample sizes of many of the studies and low statistical 

power this approach potentially excludes SNPs that are associated with risk in these 

populations. Two models(17) were developed on the basis of a GWAS study in a Korean 

population by selecting SNPs with evidence of association at the p<10-6 significance level 

(which is less conservative than the conventionally accepted genome-wide level of 

significance, p<5x10-8 level for a GWAS study). A further three studies (18–20) selected 

SNPs based on plausible biological mechanisms leading to CRC and epidemiological studies 

(folate metabolism, DNA repair and breakdown of carcinogenic compounds, insulin-like 

growth factor and insulin).
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One of these, the model by Jung et al.,(20) included both SNPs related to insulin metabolism 

and dietary fatty acids, potentially overestimating the risk for individuals with the risk allele. 

Of the 20 models which include phenotypic risk factors, with or without age, in addition to 

SNPs, four used regression analyses to select which factors to include(15,18,20,21), one a 

bootstrap forest prediction model(19), and three(22,23) used risk factors identified from 

previous risk models. However, for the majority (n = 12) of models the publications included 

few details about how phenotypic factors were selected, and whether all those that had been 

considered were included in the final model. As a consequence, many do not include 

established risk factors for CRC.

The outcome (CRC) was defined histologically or from cancer registries in all studies, 

reducing the risk of bias due to case misclassification All studies reported numbers of cases 

and controls used in their development and/or validation analyses. Three included fewer than 

150 cases (and hence had low statistical power). Only five studies adequately described how 

they dealt with missing data, so we cannot be certain that this was done appropriately in the 

remaining studies.

Discrimination and calibration of the risk models

Discrimination, as measured by the AUROC or C-statistic, was reported for 27 of the 29 risk 

models and calibration reported for four. The discrimination values are summarized 

graphically in Figure 1 and given in Supplementary Table S2, in which models are divided 

into those that include SNPs only and those that combine SNPs with phenotypic variables 

with or without age and whether the discrimination was assessed in the development 

population, bootstrap or a random-split sample, or in an external population or non-random 

split sample. Where multiple AUROCs or C-statistics for the same model were reported for 

more than one method, measurement in the development populations always gave the 

highest discrimination, followed by that in bootstrapping or random split-sample validation 

studies and then in external populations. Where model performance was included for both 

men and women, discrimination was higher in men (0.59 in men compared with 0.56 in 

women(24), 0.63 in men compared with 0.62 in women(25), and 0.70 in men compared with 

0.60 in women(17)).

Among the eight models that include only SNPs, the discrimination of seven was reported in 

external populations. This ranged between 0.56 and 0.60 in real-life populations and 0.63 in 

simulated populations. Of those assessed in real-life populations, the three considered at low 

risk of bias (Dunlop et al.,(26) Ibanez-Sanz et al.(21), and Smith et al.(23)) all have reported 

AUROCs of 0.56-0.57. Of the 19 risk models incorporating both SNPs and phenotypic 

variables, the models created by Procopciuc et al.(18), Jung et al., (20) and Shiao et al., (19), 

have the highest reported discrimination with AUROCs of 0.90 (95% CI, 0.86 - 0.93) in the 

development population, 0.93 in the development population and 0.85 in cross-validation 

respectively. In all three cases the SNPs were selected on the basis of candidate-gene 

association studies as opposed to GWAS studies. The models by Procopciuc et al. and Shiao 

et al were also developed in a small case-control studies with only 150 and 53 cases and 162 

and 53 controls respectively, thus the resulting models are likely subject to a high degree of 

overfitting.
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In the remaining models, in which the SNP selection was based on published GWASs, the 

AUROC in split sample validation or external validation in independent datasets ranged 

between 0.61 to 0.63 in models excluding age and 0.56 to 0.70 in those including age. The 

best performing model in an independent validation population was the model by Smith et 
al. (23). Calibration was reported for only four of the 29 risk models. In three, the numbers 

of predicted colorectal cancers were in line with the observed numbers with non-significant 

p values of 0.086(18) and 0.336(27) under a Hosmer–Lemeshow statistic and 0.09 under a 

Grønnesby and Borgan test(22) respectively. Smith et al.,(23) assessed calibration 

graphically and found that the genetic risk score alone (Smith 2018a) was poorly calibrated, 

with over-estimation of risk for those in the top decile of risk. After re-calibration, however, 

both the genetic risk score alone and the genetic plus phenotypic models were well 

calibrated.

Incremental improvement of genetic over family history and/or phenotypic risk factors

Of the models that combined SNPs with family history and/or phenotypic risk factors, 15 

compared the discrimination of models including SNPs, family history and phenotypic risk 

factors either alone or in combination(Table 3). Together these showed that adding SNPs to 

family history and/or phenotypic variables, and vice versa, leads to an increase in the 

AUROC of between 0.01 to 0.06. For example, in a cross-validation sample of a Spanish 

population, Ibanez-Sanz et al., report an AUROC of 0.61 (95% CI, 0.59-0.64) for their 

environmental risk score comprising alcohol use, family history of CRC, BMI, physical 

exercise, red meat and vegetable intake, and NSAIDs/aspirin use and an AUROC of 0.56 

(95% CI, 0.54-0.58) for their genetic risk score comprising 21 SNPs. For the combined risk 

score, they report an AUROC of 0.63 (95% CI, 0.60-0.66)(21). Iwasaki et al., (22), Xin et 
al., (27) and Weigl et al.,(15) additionally reported that adding genetic risk factors to a 

model including phenotypic risk factors increased the mean integrated discrimination 

improvement (IDI) by 0.015 (95% CI 0.0044 to 0.027), 0.031 (95% CI 0.023 to 0.039) and 

0.04 (95% CI 0.03-0.05) respectively and the mean continuous net reclassification index 

(NRI) by 0.39 (95% CI 0.17 to 0.58), 0.317 (95% CI 0.225 to 0.408) and 0.29 (95% CI 0.14 

to 0.43) respectively. The study by Smith et al., in which a genetic risk score incorporating 

41 SNPs identified from previous GWAS studies was added to two previously published 

phenotypic risk scores including age and family history of CRC (28,29) found that the 

genetic risk score did not meaningfully improve model discrimination. They did not report 

the IDI or NRI but overall the addition of genetic information resulted in 4-5% of 

individuals having a change in absolute risk of ≥ 0.3%. For those with an initial estimated 

absolute risk of <1%, this percentage was 3% and for those with an estimated absolute risk 

≥1% 25-33% had a change in absolute risk of ≥ 0.3%.

Impact of stratifying populations for screening based on genetic risk

Eight studies assessed the potential impact of using the risk models to determine the starting 

age for screening. Seven of these calculated either the difference in recommended starting 

age for those at low or high risk or the years earlier those at high risk would be invited. 

These are summarised in Table 4. Considering SNPs alongside family history would result 

in individuals in the highest quintile of risk, for example, being invited between 13 and 21 

years earlier, with the difference between the invitation ages of the highest quintile being and 
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lowest quintile between 13 and 27 years. In all cases where estimates were provided for 

SNPs alone, family history alone, or SNPs and family history combined, the range was 

greater for SNPs than family history and greater for both combined than for either 

individually. Jenkins et al., (30) additionally estimated that if those in the highest quintile of 

risk were invited for screening at age 46 and those in the lowest quintile at age 59, 3.32 

million people would be screened earlier, of which 8000 of those would be diagnosed with 

CRC, and 8.76 million would be screened later, of which 18,000 would be diagnosed with 

CRC.

The eighth study compared the size of the English population eligible for screening and the 

number of CRC cases potentially detectable using age-based screening and personalised 

screening in which eligibility is determined by absolute risk calculated using age and the 

Frampton et al. risk score(12). In a simulated population aged 55-69, 61% of men and 62% 

of women would be eligible for age-based screening (≥ 60 years) and 79% and 77% 

respectively of CRC cases would be diagnosed in this subset. With screening based on the 

genetic risk score (≥ average risk for an individual aged 60 (men 1.96%, women 1.19%)), 

45% of men and 45% of women would be eligible for screening with 69% and 69% of CRC 

cases being identified. This translates into 16% fewer men and 17% fewer women being 

eligible for screening at the cost of detecting 10% and 8% fewer cases respectively.

Discussion

Key findings

We have identified 29 risk models that incorporate common genetic variants to estimate 

future incidence of CRC in average-risk populations and that have either published measures 

of performance or estimates of the implications of using them for stratified screening. In 

external independent validation datasets, the three models considered at low risk of bias that 

include SNPs identified from GWAS studies all had similar discrimination (AUROC 

0.56-0.57) (Dunlop et al.,(26) Ibanez-Sanz et al.(21), and Smith et al.(23)). Among the 

models that included SNPs in combination with other risk factors, the AUROC in split 

sample or external validation ranged between 0.61 to 0.63 in models excluding age and 0.56 

to 0.70 in those including age. The model with the highest reported discrimination in an 

independent validation population was the model by Smith et al. that included 41 SNPs 

alongside age, diabetes, multi-vitamin usage, family history, years of education, BMI, 

alcohol intake, physical activity, NSAID usage, red meat intake, smoking and oestrogen use 

in women(23).

Only four reported data on model calibration. The addition of SNPs to risk scores already 

including family history and/or phenotypic variables increased discrimination by 0.01 to 

0.06. Although this represents a modest increase in discrimination measured in terms of the 

AUROC, such differences can lead to substantial changes in risk stratification in the 

population, as illustrated by continuous NRI values of 0.3 to 0.4 seen in this review and 

demonstrated in the context of other diseases(31). Public health modelling within the studies 

suggest that if the models were used to determine the starting age for screening, this would 

result in individuals in the top 20% for risk being invited up to 23 years earlier than if 

determined by age-based criteria only, with the difference in age at invitation between the 
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highest and lowest risk quintiles being several years greater for models including SNPs 

alone than for models including family history alone, and the difference for models 

including both SNPs and family history greater than that for models including either SNP or 

family history.

Strengths and Limitations

The main strengths of this review are the comprehensive literature search that included both 

subject headings and free text, and the systematic approach we used to screen papers for 

inclusion. The inclusion of more than one risk model from many of the published papers 

also enabled us to make comparisons between models that included different groups of risk 

factors or had been developed using different statistical methods. Although this approach 

enabled us to identify 23 risk models that have been published since our earlier review, we 

cannot exclude the possibility that there are others that we did not identify. Genetic research 

is also a rapidly advancing field with new papers reporting new genetic variants that could 

be incorporated into future risk scores being published regularly.

Other limitations of this review relate to the studies themselves. Most of the risk models 

were developed and/or tested in case-control studies. Estimates of absolute risk of 

developing CRC are therefore not possible and the collection of phenotypic risk factors will 

be subject to both recall and responder bias, potentially increasing the apparent 

discrimination. Conversely, in many, the matching variables were not included as covariates 

within the risk models and this may have resulted in underestimation of discrimination(32). 

The risk models also varied substantially in relation to size, selection of cases and controls 

and variables considered for inclusion. This heterogeneity meant it was not possible to 

assess whether, for example, the number of SNPs affected the performance of the models. 

Furthermore, most risk models were developed and/or tested in either European, Chinese or 

Japanese populations. The risk models in this review may therefore not be applicable to 

other population groups.

There was also heterogeneity in how the SNPs and phenotypic factors were selected and 

combined into risk scores, which ultimately impacts their performance in independent 

samples. For several models SNP selection was based on small sizes and/or there was 

limited detail on how lifestyle/hormonal risk factors were selected. Similarly, several models 

did not include well-established risk factors for CRC. Almost all, however, assumed that the 

associations of the SNPs are independent from each other and that risk follows an additive 

model on the log-Risk scale. These assumptions are generally considered to be robust(33) 

and many of the authors describe how they had sought to remove SNPs in linkage 

disequilibrium or associated with factors on the genetic pathway. In the absence of evidence 

of interactions, the models also assume that the strengths of associations for each SNP with 

CRC are constant with age. This may not be true and further studies are needed to assess for 

possible interactions.

Finally, in relation to the performance measures for the models, discrimination for many had 

only been assessed in the development population, no data on discrimination has been 

published for the genetic model with the largest number of SNPs(34), only four models 

reported data on calibration, and only two included estimates of net reclassification. As 
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illustrated by the lower AUROCs seen in development populations when compared with the 

performance of the same models from bootstrapping or cross-validation, the performance of 

all prediction models is overestimated due to overfitting when both model development and 

performance assessment use the same data set, particularly in studies with small sample 

sizes(35). Additionally, while the AUROC or other measures of discrimination are important 

when considering how well individuals can be ranked in terms of predicted risk, without 

measures of calibration or reclassification it is not possible to assess how closely the 

estimated risks match the observed risks, how much including different factors in the risk 

scores influences the classification of individuals or whether the models stratify correctly 

into high/low categories of absolute risk that are of clinical importance.

Implications for future research

This review shows that a large number of risk scores incorporating common genetic markers 

have been developed to estimate future risk of CRC and suggests that many of these are 

better at discriminating between those at higher and lower risk of CRC than age alone, 

family history alone, or risk scores incorporating only phenotypic risk factors. As has been 

described previously(9,36), risk models such as these could be used to stratify the general 

population into risk categories, based either on estimates of absolute risk for those models 

including age or relative risk for those excluding age, to allow screening and preventive 

strategies to be targeted at those most likely to benefit. While the findings of this review 

therefore suggest that future risk prediction in colorectal cancer will improve with the 

inclusion of polygenic risk factors, it remains uncertain how these models would perform in 

real-life settings and whether the increase in discriminatory performance and wider range of 

ages at which individuals would become eligible for screening that could be achieved 

through the inclusion of genetic variables translates into improved health of the population 

or the cost effectiveness of a screening programme.

Firstly, many of these models have not been externally validated and very few have had 

calibration assessed. As described above, these steps are essential before risk models can be 

incorporated into practice. To enable direct comparisons between the models, ideally the 

models identified in this review with the greatest number of SNPs and those with the highest 

reported discrimination would be assessed in a single independent cohort. However, the 

predictive ability of risk models is known to vary between populations and the risk of 

developing CRC varies substantially worldwide(37). The choice of models for independent 

validation will therefore depend on the population of interest and these analyses should be 

performed in populations similar to those in which use of the model is being considered. 

This is particularly important in the context of genetic risk models. Comparisons between 

the population genetics of different ethnic groups have shown that the estimated associated 

risks and population frequencies of SNPs can vary substantially with ethnicity(38,39) and 

the overall magnitude of association of polygenic risk scores derived from GWAS in 

European-ancestry populations, as is the case for most models for CRC, may differ when 

applied to other populations(40). As highlighted by De La Vega and Bustamante, to avoid 

further inequities in health outcomes, the inclusion of diverse populations in CRC research, 

unbiased genotyping, and methods of bias reduction in genetic risk scores are critical(41).
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Secondly, further methodological studies are required to improve genome-wide risk 

prediction in order to understand the potential benefits of including increasing numbers of 

SNPs, together with other rare moderate/high risk genetic variants and established or new 

lifestyle/environmental risk factors, as has been done for other cancers(42). These also 

include exploring more sophisticated statistical methods for developing polygenic risk 

scores(43), and novel methods such as machine learning approaches for combining the 

effects of diverse risk factors(40). Thirdly, there was substantial variation in the reporting of 

the studies in this review. Encouraging the use of reporting guidelines, such as the Genetic 

Risk Prediction Studies (GRIPS) statement(44,45) that includes a checklist of 25 items, 

would improve the transparency, quality, and completeness of the reporting of new models 

and facilitate future syntheses in this field.

Finally, the assessment of model performance is only one component when considering 

whether risk models are ready for clinical use; the context in which the model will be used, 

including the costs of measuring additional risk factors and the risk-benefit of any 

interventions offered, and the wider ethical, legal and social issues around implementation 

must also be considered. To our knowledge, only one study has modelled the potential 

impact of CRC screening based on age and SNPs on preventing deaths from CRC (11). 

Using agespecific crude rate of deaths due to CRC in a hypothetical population based on the 

Australian population in 2011 and assuming a 100% attendance rate at screening, that study 

showed that the net effect of inviting individuals for biennial FOBT based on their genetic 

risk would be 0.4% more colorectal cancer deaths and 0.2% more years of life lost per 

person invited to screen than inviting those aged between 50 and 74, against a background of 

4.9% fewer screens, resulting in a 3.1% overall improved efficiency. The risk model used in 

that study was the model by Jenkins et al., 2006 that includes 45 SNPs and had an AUROC 

of 0.63 in a simulated population. It is likely, therefore, that similar improvements in 

efficiency would be seen with other models, many of which have reported AUROCs of 

greater than 0.63. However, that study did not consider the costs of implementing stratified 

screening, competing risks of death or the psychological harms associated with screening, 

uniform attendance across risk groups was assumed, and no data was included on the 

calibration of the model. Further modelling studies are therefore needed to assess the cost-

effectiveness and differences in quality adjusted life years (QALYs) and implementation 

studies to asses risk-appropriate screening participation and the psychosocial consequences 

of this approach.

By identifying the published risk models for CRC that include common genetic variants and 

demonstrating the potential public health benefits of using such models to determine the 

starting age for screening, this study provides valuable evidence to support investment in this 

further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative discriminative performance of the risk scores grouped by those including only 

SNPs, those including SNPs plus family history and/or phenotypic risk factors without age 

and those including SNPs plus family history and/or phenotypic risk factors and age. Within 

each of these groups, the models are ordered according to sample size, with larger studies 

being those towards the bottom of each risk model category.
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Table 1
Summary of risk models

Author, 
year

Country Outcome Factors 
included in 

score

Selection of 
SNPs

Method of 
development of 

GRS

Selection 
of 

phenotypic 
factors

Method of 
development 
of combined 

model

TRIPOD 
level*

Genetic risk factors alone

Dunlop 
2013a

UK, Canada, 
Australia, USA and 
Germany (d) Sweden 
and Finland (v)

CRC 10 SNPs Published 
GWAS studies 
from 
European 
populations

Unweighted 
allele counting 
model

--- --- 3

Frampton 
2016

UK (v) CRC 37 SNPs Published 
GWAS studies 
from 
European 
populations

Weighted allele 
model weighted 
by published 
log odds

--- --- 3

Hosono 
2016a

Japan (d, v) CRC 6 SNPs Published 
GWAS studies 
from 
European 
populations 
followed by 
logistic 
regression

Unweighted 
allele counting 
model

--- --- 2b

Huyghe 
2019

European (91.7%) and 
East Asian (8.3%) (d)

CRC 95 SNPs GWAS study Weighted allele 
model weighted 
by study 
derived weights

--- --- 1a

Ibanez-
Sanz 
2017a

Spain (d, v) CRC 21 SNPs Published 
GWAS studies 
included 
within 
European 
Bioinformatics 
Institute

Unweighted 
allele counting 
model 
(weighted allele 
models 
weighted by 
published log-
odds and study 
derived log-
odds similar so 
not reported)

--- --- 3

Jenkins 
2016

Australia,Canada,USA 
(v)

CRC 45 SNPs Published 
GWAS studies 
from 
European 
populations

Weighted allele 
model weighted 
by published 
log odds

--- --- 3** 4**

Smith 
2018a

UK (d, v) CRC 41 SNPs Published 
GWAS studies 
from 
predominantly 
European and 
white 
populations

Weighted allele 
model weighted 
by published 
log odds

--- --- 3

Wang 
2013

Taiwan (d, v) CRC 16 SNPs Published 
GWAS studies 
from Asian 
populations 
followed by 
replication 
analysis and 
jackknife 
selection

Logistic 
regression

--- --- 1b

Xin 2018a China (d, v) CRC 14 SNPs Published 
GWAS studies 
from 

Unweighted 
allele counting 
model;Weighted 

--- --- 3
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Author, 
year

Country Outcome Factors 
included in 

score

Selection of 
SNPs

Method of 
development of 

GRS

Selection 
of 

phenotypic 
factors

Method of 
development 
of combined 

model

TRIPOD 
level*

European or 
Asian 
populations

allele model 
weighted by 
published log 
odds; Weighted 
allele model 
weighted by 
study derived 
weights

Genetic plus phenotypic risk factors excluding age

Ibanez-
Sanz 
2017b

Spain (d, v) CRC 21 SNPs, 
family history 
of CRC, 
alcohol use, 
BMI, physical 
exercise, red 
meat and 
vegetable 
intake, 
NSAIDs/aspirin 
use

Published 
GWAS studies 
included 
within 
European 
Bioinformatics 
Institute

Unweighted 
allele counting 
model 
(weighted allele 
models 
weighted by 
published log-
odds and study 
derived log-
odds similar so 
not reported)

Logistic 
regression

Logistic 
regression

1b

Jeon 
2018a

Australia, Canada, 
Germany, Israel and 
USA (d, v)

CRC 
(female)

63 SNPs, 
height, BMI, 
education, 
history of type 
2 diabetes 
mellitus, 
smoking status, 
alcohol 
consumption, 
regular aspirin 
use, regular 
NSAID use, 
regular use of 
postmenopausal 
hormones, 
smoking, intake 
of fibre, 
calcium, folate, 
processed meat, 
red meat, fruit, 
vegetables, 
totalenergy, 
physical 
activity

Published 
GWAS studies 
from 
predominantly 
European and 
Asian 
populations

Weighted allele 
model weighted 
by study 
derived 
estimated 
regression 
coefficients

No details 
given - all 
considered 
included

Logistic 
regression

2a

Jeon 
2018b

Australia, Canada, 
Germany, Israel and 
USA. (d, v)

CRC 
(male)

63 SNPs, 
height, BMI, 
education, 
history of type 
2 diabetes 
mellitus, 
smoking status, 
alcohol 
consumption, 
regular aspirin 
use, regular 
NSAID use, 
smoking, intake 
of fibre, 
calcium, folate, 
processed meat, 
red meat, fruit, 
vegetables, 
total-energy, 
physical 
activity

Published 
GWAS studies 
from 
predominantly 
European and 
Asian 
populations

Weighted allele 
model weighted 
by study 
derived 
estimated 
regression 
coefficients

No details 
given - all 
considered 
included

Logistic 
regression

2a
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Author, 
year

Country Outcome Factors 
included in 

score

Selection of 
SNPs

Method of 
development of 

GRS

Selection 
of 

phenotypic 
factors

Method of 
development 
of combined 

model

TRIPOD 
level*

Procopciuc 
2017

Romania(d) CRC 7 SNPs, gender, 
alcohol, fried 
red meat

Candidate 
genes on 
metabolic 
pathway

Logistic 
regression

Logistic 
regression

Logistic 
regression

1a

Xin 2018b China(d, v) CRC 14 SNPs, 
smoking status

Published 
GWAS studies 
from 
European or 
Asian 
populations

Unweighted 
allele counting 
model

No details 
given - all 
considered 
included

Logistic 
regression

3

Yarnall 
2013

UK (v) CRC 14 SNPs, BMI, 
smoking, 
alcohol, fibre 
intake, red meat 
intake, physical 
activity

Published 
GWAS studies 
from 
predominantly 
European 
populations

Simulation 
based procedure 
using REGENT 
software

Literature 
review - all 
considered 
included

Simulation 
based 
procedure 
using 
REGENT 
software

3**

Genetic plus phenotypic risk factors including age

Abe 2017 Japan(d, v) CRC 11 SNPs, age, 
sex, referral 
pattern, current 
BMI, smoking, 
alcohol 
consumption, 
regular 
exercise, family 
history of 
colorectal 
cancer in a first 
degree relative, 
and dietary 
folate intake

Published 
GWAS studies 
from 
European and 
East Asian 
populations 
followed by 
logistic 
regression

Unweighted 
allele counting 
model

No details 
given - all 
considered 
included

Logistic 
regression

2b

Dunlop 
2013b

UK, Canada, 
Australia, USA and 
Germany (d) Sweden 
and Finland (v)

CRC 10 SNPs, age, 
gender, first 
degree relative 
with CRC

Published 
GWAS studies 
from 
European 
populations

Unweighted 
allele counting 
model

No details 
given - all 
considered 
included

Logistic 
regression

3

Hosono 
2016b

Japan (d, v) CRC 6 SNPs, age, 
referral pattern, 
current BMI, 
smoking, 
alcohol 
consumption, 
regular 
exercise, family 
history of CRC, 
dietary folate 
intake

Published 
GWAS studies 
from 
European 
populations 
followed by 
logistic 
regression

Unweighted 
allele counting 
model

No details 
given - all 
considered 
included

Logistic 
regression

2b

Hsu 2015 USA and Germany (d, 
v)

CRC 27 SNPs, age, 
sex, family 
history of CRC, 
history of 
endoscopic 
examinations

Previous 
GWAS studies 
from 
European and 
East Asian 
populations

Unweighted 
allele counting 
model 
(weighted 
model weighted 
by published 
log-odds similar 
so not reported)

No details 
given - all 
considered 
included

Logistic 
regression

3

Iwasaki 
2017

Japan (d, v) CRC 
(male)

6 SNPs, age, 
BMI, alcohol, 
smoking status

Previous 
published 
model and 
GWAS from 
European and 
East Asian 
populations 
followed by 
cox 

Weighted allele 
model weighted 
by study 
derived log-
transformed per 
allele HR

From 
previous 
model 
(Ma) 
except for 
physical 
activity

Weighted 
cox 
proportional 
hazards 
regression

1b
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Author, 
year

Country Outcome Factors 
included in 

score

Selection of 
SNPs

Method of 
development of 

GRS

Selection 
of 

phenotypic 
factors

Method of 
development 
of combined 

model

TRIPOD 
level*

proportional 
hazards 
modelling

Jo 2012a Korea (d, v) CRC 
(female)

5 SNPs, age, 
family history 
of CRC

GWAS study 
in Korean 
population 
with 
significance 
level of p<10-6

Unweighted 
allele counting 
model; 
weighted allele 
model weighted 
by study 
derived beta-
coefficients

No details 
given - all 
considered 
included

Logistic 
regression

1b

Jo 2012b Korea (d, v) CRC 
(male)

3 SNPs, age, 
family history 
of CRC

GWAS study 
in Korean 
population 
with 
significance 
level of p<10-6

Unweighted 
allele counting 
model; 
weighted allele 
model weighted 
by study 
derived beta-
coefficients

No details 
given - all 
considered 
included

Logistic 
regression

1b

Jung 2015 South Korea(d) CRC, 
colon 
and 
rectal 
cancer

7 SNPs, age, 
sex, smoking 
status, exercise 
status, fasting 
serum glucose, 
family history 
of CRC

Published 
GWAS studies 
from 
predominantly 
European and 
Asian 
populations 
followed by 
logistic 
regression

Unweighted 
allele counting 
model; 
weighted allele 
model weighted 
by study 
derived beta-
coefficients

No details 
given - all 
considered 
included

Cox 
proportional 
hazards 
regression

1a

Jung 2019 USA(d) CRC 4 SNPs, age, 
percentage 
calories from 
saturated fatty 
acids

Candidate 
genes related 
to insulin-
growth like 
factor and 
insulin

Weighted allele 
model weighted 
by predictive 
value assessed 
via minimal 
depth method in 
nested random 
survival forest 
models

Multi-
collinearity 
testing and 
univariate 
and 
stepwise 
regression 
analyses 
for final set 
to be 
included.

Random 
survival 
forest 
analysis

1a

Li 2015 China (d) CRC 7 SNPs, age, 
sex, smoking, 
drinking

NHGRI 
GWAS 
database

Unweighted 
allele counting 
model; 
weighted allele 
model weighted 
by study 
derived beta-
coefficients

No details 
given - all 
considered 
included

Logistic 
regression

1a

Shiao 
2018

USA (d, v) CRC 5 SNPs, age, 
gender, BMI, 
thiamine, 
MTHFRR 677 
expression 
level, HEI score 
(calories, total 
fruit, whole 
fruit, 
vegetables, 
dark green, 
total grains, 
whole grains, 
dairy, protein, 
oil and nuts, 
saturated fat, 

Candidate 
genes related 
to folate 
metabolism

Unweighted 
allele counting 
model

Bootstrap 
forest 
prediction 
modelling

Generalised 
regression 
elastic net 
model 
(penalised 
regression)

1b
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Author, 
year

Country Outcome Factors 
included in 

score

Selection of 
SNPs

Method of 
development of 

GRS

Selection 
of 

phenotypic 
factors

Method of 
development 
of combined 

model

TRIPOD 
level*

sodium, empty 
calories)

Smith 
2018b

UK (d, v) CRC 41 SNPs, age, 
family history

Published 
GWAS studies 
from 
predominantly 
European and 
white 
populations

Weighted allele 
model weighted 
by published 
log odds

Factors 
included in 
Taylor et 
al. model

Standard 
model: log 
GRS 
combined 
with 
predicted log 
hazard ratio 
original 
model.

3

Smith 
2018c

UK (d, v) CRC 41 SNPs, age, 
diabetes, multi-
vitamin usage, 
family history, 
years of 
education, 
BMI, alcohol 
intake, physical 
activity, 
NSAID usage, 
red meat intake, 
smoking, 
oestrogen use 
(women only)

Published 
GWAS studies 
from 
predominantly 
European and 
white 
populations

Weighted allele 
model weighted 
by published 
log odds

Factors 
included in 
Wells et al. 
model

Standard 
model: log 
GRS 
combined 
with 
predicted log 
hazard ratio 
original 
model.

3

Weigl 
2018

Germany (d) CRC or 
advanced 
adenoma

48 SNPs, age, 
sex, previous 
colonoscopy, 
physical 
activity, BMI

Published 
GWAS studies 
from 
European 
populations

Unweighted 
allele counting 
model

Factors 
statistically 
associated 
with 
genetic risk 
categories 
in controls

Logistic 
regression

1a

*
Tripod level - 1a – Development only; 1b – Development and validation using resampling; 2a – Random split-sample development and validation; 

2b – Non-random split-sample development and validation; 3 – Development and validation using separate data; 4 – external validation. CRC – 
colorectal cancer, SNP - single-nucleotide polymorphism, BMI – body mass index, NSAID – non-steroidal anti-inflammatory drug, wGRS – 
weighted genetic risk score. d = development; v - validation

**
Simulated population
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Table 2
Assessment of risk of bias of included articles

Author, year Study Participants Predictors Outcome Sample size and missing data Overall

Genetic risk factors alone

Dunlop 2013a + + + + +

Frampton 2016 ? + + ? ?

Hosono 2016a ? ? + ? ?

Huyghe 2019 + + + ? +

Ibanez-Sanz 2017a + + + ? +

Jenkins 2016, 2019 + + + ? +

Smith 2018a + + + + +

Wang 2013 ? − + ? −

Xin 2018a ? + + ? ?

Genetic plus phenotypic risk factors excluding age

Ibanez-Sanz 2017b + + + ? +

Jeon 2018a and b + + + ? +

Procopciuc 2017 − ? + − −

Xin 2018b ? ? + ? ?

Yarnell 2013 ? + + ? ?

Genetic plus phenotypic risk factors plus age

Abe 2017 ? + + ? ?

Dunlop 2013b + ? + + +

Hosono 2016b ? ? + ? ?

Hsu 2015b + ? + ? ?

Iwasaki 2017b + + + ? +

Jo 2012 a and b ? − + − −

Jung 2015 + ? + ? ?

Jung 2019 + − + ? −

Li 2015 ? ? + ? ?

Shiao 2018 − ? + − −

Smith 2018b + + + + +

Smith 2018c + + + + +

Weigl 2018 + + + ? +

+ = low risk;? = unclear risk; - = high risk
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Table 3
Discriminatory performance of models including genomic risk factors only with those 
including family history and/or phenotypic risk factors only or genetic and family history 
and/or phenotypic risk factors combined

Author, year Genetic risk 
factors only 

(AUROC 
(95% CI))

Family 
history 
alone 

(AUROC 
(95% CI))

Phenotypic 
risk factors 

only 
(AUROC 
(95% CI))

Genetic risk 
factors and 

family 
history 

(AUROC 
(95% CI))

Phenotypic risk 
factors and 

family history 
(AUROC (95% 

CI))

Genetic and 
phenotypic 
risk factors 
combined 
(AUROC 
(95% CI))

Genetic risk 
factors, family 

history and 
phenotypic risk 

factors 
combined 

(AUROC (95% 
CI))

Dunlop 2013 0.57 0.59

Hosono 2016 0.60 0.70 0.72

Hsu 2015 Women 0.55 
Men 0.60

Women 0.52 
Men 0.51

Women 0.56 
Men 0.59

Ibanez-Sanz 
2017

0.56 
(0.54-0.58)

0.60 
(0.57-0.61)

0.61 (0.59-0.64) 0.63 (0.60-0.66)

Iwasaki 2017
0.63

a
0.60

a
0.66

a

Jeon 2018a 
(female)

0.54 
(0.52-0.55)

0.59 
(0.58-0.60)

0.60 (0.59-0.61) 0.62 (0.61-0.63)

Jeon 2018b 
(male)

0.53 
(0.52-0.54)

0.59 
(0.58-0.60)

0.60 (0.59-0.61) 0.63 (0.62-0.64)

Jo 2012 Women: 0.60 
(0.57-0.64)
Men: 0.69 
(0.65-0.73)

Women:0.65 
(0.62-0.68)
Men: 0.73 
(0.68-0.77)

Jung 2015 0.73 (0.69-0.78) 0.74 (0.70-0.78)

Smith 2018a 
and b

0.56 
(0.55-0.58)

0.67 (0.65-0.68)
Excluding age: 

0.52
(0.51-0.53)

0.68 (0.66-0.69)

Smith 2018a 
and c

0.57 
(0.55-0.58)

0.68 (0.67-0.69)
Excluding age: 

0.58
(0.57-0.60)

0.69 (0.67-0.70)

Li 2015 0.57 
(0.55-0.59)

0.59 
(0.57-0.61)

Weigl 2018 0.62 0.67

Xin 2018b 0.52 
(0.50-0.54)

0.61 
(0.58-0.63)

a
All models include age in addition to genomic and/or phenotypic risk factors
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Table 4
Results of population modelling studies showing the difference in recommended starting 
age or estimated number of years earlier that individuals would be invited to screening if 
the age of invitation was determined by a risk threshold based on a genetic or phenotypic 
model

Author, year Model specific 
risk threshold 

used to determine 
starting age for 

screening

Type of risk 
model / 

included risk 
factors

Difference in years in recommended starting age for screening between those in 
the highest and lowest percentiles of risk

Papers selecting 
the top and 

bottom 1% of 
risk for 

comparison

Papers selecting the 
top and bottom 
10% of risk for 

comparison

Papers selecting 
the top and 

bottom 20% of 
risk for 

comparison

Papers 
selecting the 

top and 
bottom 33% of 

risk for 
comparison

Hsu 2015
Average 10 year 
risk of a 50 year 
old (0.91%)

FH --- Men: 5 (44 to 49)*
Women: 4 (50 to 

54)*

--- ---

FH +SNPs --- Men: 10 (42 to 52)
Women: 11 (47 to 
58)

--- ---

Jenkins 2019 0.3% 5 year 
estimated risk

SNPs --- --- Men: 10 (45-55)
Women: 14 (47 to 
61)

---

FH +SNPs --- --- Men: 22 (35 to 57)
Women: 27 (35 to 
62)

---

Jenkins 2016 
(USA)

1% 5 year 
estimated risk

FH + SNPs --- Men: 27 (46 to 73)
Women: 32 (48 to 
80)

Men: 18 (48 to 66)
Women: 21 (52 to 
73)

---

Jenkins 2016 
(Australia)

1% 5 year 
estimated risk

FH + SNPs --- Men: 17 (46 to 63)
Women: 23 (53 to 
76)

Men: 13 (48 to 61)
Women: 17 (55 to 
72)

Jeon 2018 Average 10 year 
risk of a 50 year 
old (0.97%)

FH + SNPs + 
phenotypic

Men:17 (38 to 
55)
Women:21 (43 to 
64)

Men: 11 (40 to 51)
Women: 13 (46 to 
59)

--- ---

Huyghe 2018 Average 10 year 
risk of a 50 year 
old (1.13% for 
men and 0.68% for 
women)

SNPs Men: 18 (41 to 
59)
Women: 24 (45 
to 69)

Men: 10 (range 44 to 
54)
Women: 12 (range 49 
to 61)

--- ---

Weigl 2018 Average relative 
risk for a 60 year 
old with medium 
genetic risk

SNPs --- --- --- 17.5 (56 to 73)

Author, year Risk threshold Risk factors
Years earlier for recommended starting age for those in the highest percentiles

1% 10% 20% 33%

Dunlop 2013 5% 10 year 
estimated risk

FH Men: >15 (from 
>75)
Women: > 12 
(from >80)

--- --- ---

FH + SNPs Men: > 23 (from 
>75)
Women: >22 
(from >80)

--- --- ---
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Author, year Model specific 
risk threshold 

used to determine 
starting age for 

screening

Type of risk 
model / 

included risk 
factors

Difference in years in recommended starting age for screening between those in 
the highest and lowest percentiles of risk

Papers selecting 
the top and 

bottom 1% of 
risk for 

comparison

Papers selecting the 
top and bottom 
10% of risk for 

comparison

Papers selecting 
the top and 

bottom 20% of 
risk for 

comparison

Papers 
selecting the 

top and 
bottom 33% of 

risk for 
comparison

Jenkins 2016 
(USA)

1% 5 year 
estimated risk

FH --- Men: 12 (from 67)*
Women: 12 (from 

73)*

--- ---

SNPs --- Men: 14 (from 67)
Women: 14 (from 
73)

Men: 10 (from 67)
Women: 11 (from 
73)

---

FH + SNPs --- Men: 21 (from 67)
Women: 25 (from 
73)

Men: 19 (from 67)
Women 21 (from 
73)

---

Jenkins 2016 
(Australia)

1% 5 year 
estimated risk

FH --- Men: 9 (from 61)*
Women: 12 (from 

71)*

--- ---

SNPs --- Men: 9 (from 61)
Women: 12 (from 
71)

Men: 6 (from 61)
Women: 9 (from 
71)

---

FH +SNPs --- Men: 15 (from 61)
Women: 18 (from 
71)

Men: 13 (from 61)
Women 16 (from 
71)

---

*
based on presence or absence of family history (FH), not top and/or bottom 10%.
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