
Patient-Specific Polyvinyl Alcohol Phantom Fabrication with 
Ultrasound and X-Ray Contrast for Brain Tumor Surgery 
Planning

Eleanor C. Mackle#1,2, Jonathan Shapey#1,2,3,4, Efthymios Maneas1,2, Shakeel R. Saeed3,5,6, 
Robert Bradford3, Sebastien Ourselin4, Tom Vercauteren4, Adrien E. Desjardins1,2

1Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London

2Department of Medical Physics and Biomedical Engineering, University College London

3Department of Neurosurgery, National Hospital for Neurology and Neurosurgery

4School of Biomedical Engineering & Imaging Sciences, King’s College London

5The Ear Institute, University College London

6The Royal National Throat, Nose and Ear Hospital, London

# These authors contributed equally to this work.

Abstract

Phantoms are essential tools for clinical training, surgical planning and the development of novel 

medical devices. However, it is challenging to create anatomically accurate head phantoms with 

realistic brain imaging properties because standard fabrication methods are not optimized to 

replicate any patient-specific anatomical detail and 3D printing materials are not optimized for 

imaging properties. In order to test and validate a novel navigation system for use during brain 

tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties 

was required. Therefore, a phantom was developed using real patient data as input and 3D printing 

of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with 

both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the 

phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during 

surgery. The phantom was successfully tested during a surgical simulation in a virtual operating 

room.

The phantom fabrication method uses commercially available materials and is easy to reproduce. 

The 3D printing files can be readily shared, and the technique can be adapted to encompass many 

different types of tumor.
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Introduction

Phantoms mimicking the specific properties of biological tissues are a useful resource for 

various experimental and teaching applications. Tissue-mimicking phantoms are essential to 

characterize medical devices prior to their clinical use1, 2 and anatomical phantoms are 

frequently used in the training of medical staff in all disciplines3, 4, 5, 6, 7. Patient-specific 

anatomical phantoms made with appropriate tissue-mimicking properties are often a critical 

part of the testing environment and can increase the confidence of clinicians who are 

learning to use a new device8. However, high manufacturing costs and complex fabrication 

processes often preclude the routine use of patient-specific phantoms. Here, a method is 

described for manufacturing a durable, patient-specific brain tumor model using readily 

available, commercial materials, which can be used for the training and validation of 

intraoperative ultrasound (US) using computerized tomography (CT) imaging. The phantom 

described in this study was created using data from a patient with a vestibular schwannoma 

(a benign brain tumor arising from one of the balance nerves connecting the brain and inner 

ear) who subsequently underwent surgery and tumor resection via a retrosigmoid 

suboccipital craniotomy10. The phantom was developed in order to test and validate an 

integrated intraoperative navigation system for use during this type of brain tumor surgery.

In order to be suitable for this application, the brain tumor phantom needs to possess several 

key properties. First, it should be made of non-toxic materials, so it can safely be used in a 

clinical training environment. Second, it should have realistic imaging properties; for the 

intended application, these specifically include ultrasound attenuation and CT contrast. 

Third, it should have similar mechanical properties to human tissue so that it can be handled 

in the same way. Fourth, the phantom should be based on real patient data, so that it is 

anatomically accurate and can be used for surgical planning and training. Finally, the 

materials used must be durable, so that the phantom can be used repeatedly.

In general, the tissue-mimicking material and fabrication method chosen for a phantom 

depends on the intended application. For rigid structures like the skull, the chosen property 

should not deform or be water-soluble and it should be able to maintain an accurate level of 

anatomical detail with repeated use; this is especially important when using the phantom for 

experiments where image registration is used and for surgical simulation purposes. Mineral 

oil based materials such as gel wax have been promising for ultrasound9, 11, 12 and 

photoacoustic13 imaging applications, however, when subjected to repeated mechanical 

deformation they become friable, so cannot withstand extended use, especially with standard 

microsurgical neurosurgery instruments. Agar and gelatin are aqueous materials that are also 

commonly used as tissue-mimicking materials. The additives needed to adjust the acoustic 

properties of these materials are well known14, but they have limited mechanical strength 

and are not particularly durable so are not suitable for this application, where the phantom 

needs to be repeatedly handled.

Polyvinyl alcohol cryogel (PVA-c) is a popular choice of tissue-mimicking material, because 

its acoustic and mechanical properties can easily be tuned by varying its freeze-thaw cycles. 

It has been shown that the properties of PVA-c are similar to those of soft tissues15, 16, 17, 18. 

PVA-c based brain phantoms have been used successfully for ultrasound and CT imaging19. 
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The material is strong enough to be used repeatedly, and it has a high degree of elasticity, so 

phantom tissue made of PVA-c can be manipulated without being permanently deformed. 

Polylactic acid (PLA) is a readily available rigid material and was used to manufacture the 

skull, however, a different printing material can be used in place of PLA, if it has similar 

mechanical properties and is not water soluble.

Brain phantoms in particular have been fabricated using different methods, depending on the 

level of complexity required and the tissues that need to be replicated20, 21, 22, 23. Usually, a 

mold is used, and liquid tissue-mimicking material poured into it. Some studies have used 

commercial molds24 whilst others use 3D-printed custom molds of a healthy brain, and 

simulate brain lesions by implanting marker spheres and inflatable catheters19, 25. To the 

best of the author’s knowledge, this is the first report of a 3D-printed patient-specific brain 

tumor phantom model created with tissue-mimicking ultrasound and X-ray properties. The 

total fabrication is visualized by the flowchart in Figure 1; the whole process takes around a 

week to complete.

Protocol

This study was conducted according to the principles expressed in the Declaration of 

Helsinki and was approved by the NHS Health Research Authority and Research Ethics 

Committee (18/LO/0266). Informed consent was obtained, and all imaging data were 

completely anonymized before analysis.

1 Data

1. Obtain pre-operative contrast-enhanced T1-weighted Magnetic Resonance 

Imaging (MRI) and volumetric computed tomography (CT) data.

1. If acquired in Digital Imaging and Communications in Medicine 

(DICOM) format, convert to Neuroimaging Informatics Technology 

Initiative26 (NiFTI) format for processing and analysis.

2. Obtain intraoperative ultrasound data.

2 Segmentation

1. Install software to segment the patient data with.

2. Skull segmentation

NOTE: The steps involved in segmenting the skull broadly follow those outlined 

by Cramer and Quigley27 on https://radmodules.com/, but are adapted to create 

an appropriately-sized craniotomy.

1. Load the patient’s volumetric CT scan in segmentation software, open 

the Segment Editor module and create new segmentation named 

‘Skull’.

2. Use the ‘Threshold’ function to highlight the skull.
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3. Remove any unwanted segmentations (e.g., skin calcifications, 

mandible, C1/2, styloid process, the CT patient frame, and any 

annotations embedded within the image). Use the ‘Scissors’ function to 

remove parts when viewing the model in 3D and make use of the 

‘Islands’ function after manually disconnecting any unwanted 

structures using the ‘Erase’ function.

4. Manually correct any gaps in the segmentation that were missed during 

thresholding using the ‘Paint’ and ‘Draw’ functions (e.g., lamina 

papyracea, cortical edge of the mastoid bone and ethmoid bone).

5. Use the ‘Paint’ and ‘Draw’ functions to fill in the foramen magnum 

and create a 5 mm protruding spike upon which the lower part of 

phantom model can be secured.

NOTE: The location of the spike is best determined on the coronal and 

sagittal image planes.

6. Apply the ‘Smoothing’ function. Use a median smoothing setting of 

1.0 mm (3 × 3 × 1 pixels) to minimize the amount of detail lost.

NOTE: If the phantom model must include a complete intact skull (e.g., 

to facilitate surgical simulation of creating an appropriately located 

craniotomy), move to step 2.2.15; however, if a craniotomy is required 

in the model, complete steps 2.2.7 to 2.2.14.

7. Click ‘Add’ to add a new segmentation and name it ‘Skull 

Craniotomy’.

8. In the ‘Segmentations’ module, copy the ‘Skull’ segmentation across 

to ‘Skull Craniotomy’ using the ‘Copy/Move Segments’ tab.

NOTE: Both the ‘Skull’ and ‘Skull Craniotomy’ segmentations are 

needed in order to be able to perform the functions described in steps 

2.2.9 to 2.2.13

9. Use the ‘Scissors’ function to remove an appropriately-sized 

craniotomy in ‘Skull Craniotomy’.

NOTE: Creating the craniotomy this way will, also, remove an addition 

portion of skull on the opposite side hence the need for steps 2.2.11 to 

2.2.14.

10. Click ‘Add’ and add a new segmentation; name it ‘Craniotomy Only’.

11. In ‘Craniotomy Only’ select the segmentation ‘Skull Craniotomy’ and 

use the ‘Logical Operator’ function to subtract ‘Skull Craniotomy’ 

from ‘Skull’.

12. Use the ‘Scissors’ function to erase everything except the desired 

craniotomy on the correct side of the tumor, saving ‘Craniotomy Only’.
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13. In ‘Skull Craniotomy’ use the ‘Logical Operator’ function to subtract 

‘Craniotomy only’ from ‘Skull’ and save.

14. Open ‘Segmentations’ module and export the ‘Skull Craniotomy’ as a 

stereolithography (STL) file.

15. Open 3D modeling software and import the STL file ‘Skull 

Craniotomy’.

NOTE: If the model appears in striped pink complete the ‘Flip 
Normals’ function by selecting the complete model (Select | Double 
click) and then ‘Edit | Flip Normals’. The model will now turn grey 

and can be edited. Ensure ‘View Objects Browser’ is turned on.

16. Reduce the number of triangles to improve the computational time.

17. Select the complete model (Select | Double click turns the model 

orange) then ‘Edit | Reduce’. The default ‘Reduce’ function is set at 

50% so repeat until the desired reduction is achieved. Aim for a total 

number of triangles < 500,000.

18. Apply ‘Smoothing’ function ensuring the ‘Shape Preserving’ box 

remains ticked. Select the complete model then ‘Deform | Smooth’.

19. Click ‘Analysis’ then ‘Inspector’ and use this function to detect any 

small defects in the model and click auto-repair (suggest ‘Flat-fill’ 
selection).

20. Cut ‘Skull’ to create a top and bottom using the ‘Edit/ Plane’ cut 

function. Select ‘Keep Both Slices’ and ‘Remeshed’ fill type. Change 

skull to transparent with ‘Shaders’ function to provide a better internal 

view of the skull and adjust the plane so that it is parallel to the skull 

base.

21. Separate shells by selecting ‘Edit | Separate shells’ and rename 

‘Skull_Top’ and ‘Skull_Bottom’ within the objects browser.

NOTE: Do not move their positions. Click the eye icon to remove one 

or the other from view.

22. Click ‘Meshmix’ then select ‘Cylinder’ to create a dowel and edit size 

to 4 mm × 10 mm × 4 mm (‘Edit | Transform’). Hide ‘Skull_Bottom’ 

by clicking the eye icon to remove from view.

23. Select ‘Edit | Align’ planes. An additional transparent cylinder will 

appear. In the ‘Align’ window, choose ‘Surface point’ (left click end 

transparent cylinder) for the ‘Source’ and ‘Surface point’ (Shift + left 
click undersurface of ‘Skull_Top’) for the ‘Destination.’

24. Using the ‘Edit | Transform’ function move dowel into skull using the 

green arrow and adjust position with blue and red arrows. Rename 

‘Dowel_Anterior’.
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25. In the object browser make 3 copies and rename ‘Dowel_Posterior’, 

‘Dowel_Left’ and ‘Dowel_Right’.

26. Move each dowel to the desired location using the ‘Edit | Transform’ 
function.

NOTE: Do not move or change the position of the dowel in the green 

plane.

27. Create copies of each but keep all copies in the same location and create 

an additional dowel and resize to 3 mm × 10 mm × 3 mm. Rename 

‘Dowel’.

28. Create holes for Dowels in the skull using the ‘Boolean Difference’ 
function. Select ‘Skull_Top’ first and then select a dowel in the object 

browser. In the ‘Boolean Difference’ tab ensure ‘Auto-reduce’ is 

switch off. Repeat for each dowel in turn.

29. Hide ‘Skull_Top’ and view ‘Skull_Bottom’ repeating the above 

‘Boolean Difference’ function for each dowel in turn.

30. Export ‘Skull_Top’, ‘Skull_Bottom’ and ‘Dowel’ as separate binary 

STL files.

3. Brain tissue segmentation

1. Upload the contrast enhanced T1 MRI of the brain to http://

niftyweb.cs.ucl.ac.uk/program.php?p=GIF and download its output. 

This is an open-source parcellation tool for T1-weighted images that 

utilizes a Geodesic Information Flow (GIF) algorithm28 to perform 

brain extraction and tissue segmentation.

2. Open segmentation software and load the contrast enhanced T1 MRI 

and GIF parcellation output file.

3. Open the ‘Segment Editor’ module and create a new segmentation.

4. Select the appropriate labels and combine them to form a single 

segmentation. For example, cerebral and diencephalon label maps can 

be combined to create one model, referred to as ‘Brain’ and midbrain, 

brainstem, cerebellum and vermian structures can be combined to 

create a second model referred to as ‘Cerebellum’.

5. Use the ‘Smoothing’ function (suggested median 2.00 mm, 5 × 5 × 3 

pixels).

6. Use the ‘Scissors’ function to remove any unwanted or erroneous 

segmentations.

7. Save ‘Brain’ and ‘Cerebellum’ segmentations.

8. Open ‘Segmentations’ module and export ‘Brain’ and ‘Cerebellum’ as 

STL files.
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4. Tumor segmentation

1. Open segmentation software and load the contrast enhanced T1 MRI.

2. Open the ‘Segment Editor’ module and create new segmentation 

named ‘Tumor’.

3. Use the ‘Threshold’ function to highlight the tumor.

4. Correct the segmentation using the ‘Paint’, ‘Draw’ and ‘Erase’ 
functions.

5. Apply the ‘Smoothing’ function (suggested median 2.00 mm 5 x 5 x 3 

pixels).

6. Create a new segmentation named ‘Cerebellum_Tumor’.

7. Combine the ‘Cerebellum’ model and ‘Tumor’ using the ‘Logical 
Operators | Add’ function.

8. Save ‘Tumor’ and ‘Cerebellum_Tumor’ segmentations.

9. Open ‘Segmentations’ module and export ‘Tumor’ and 

‘Cerebellum_Tumor’ as STL files.

NOTE: At the end of the segmentation process, the following files are 

available: ‘Skull_Top’, ‘Skull_Bottom’, ‘Dowel’, ‘Brain’, 

‘Cerebellum’, ‘Tumor’, ‘Cerebellum_Tumor’.

3 3D Printing of Brain/Tumor Molds and Skull

1. Create the brain and tumor molds

1. Split the ‘Brain’ segmentation into two hemispheres, using the ‘Plane 
cut’ tool in 3D modeling software.

2. Save each hemisphere as a separate STL file ‘Brain right’ and ‘Brain 

left’.

3. Import the STL file ‘Tumor’ into computer-aided design (CAD) 

software.

4. Click the ‘mesh’ tab and then use the ‘Reduce’ function to reduce the 

size of the model so that it can be handled by the program – the aim is 

to reduce the size as much as possible, whilst still retaining all the detail 

necessary.

5. Click the ‘solid’ tab and use the ‘Mesh to BRep’ tool to convert the 

imported mesh to a body that can be manipulated. If this action cannot 

be completed, the mesh was not reduced enough in step 3.1.3.

6. Click ‘Create’ then ‘Box’ and draw a box around the tumor. Select to 

create this as a ‘New Body’ and rotate the view to ensure the box 

completely encloses the tumor on all sides.
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7. In the modify tab, use the ‘Combine’ tool to cut the tumor (the ‘Tool 
Body’) from the box (the ‘Target Body’). This will then leave a box 

with a hollow shape of the tumor inside it.

8. Check that the hollowed-out box is present. Cut this box into an 

appropriate number of pieces so that once the mold is filled, it can be 

prized apart without damaging the phantom inside. For the tumor here, 

it is enough to split the box in two, but for the other parts of the 

phantom, more pieces are needed.

9. Create planes through the box in the places that the mold needs to be 

cut. Click ‘Construct’ then ‘Midplane’ to create a plane through the 

center of the box. Right click on the created plane and choose ‘Offset 
Plane’ to position the plane more precisely.

10. Use the ‘Split Body’ function in the ‘Modify’ tab to split the mold 

along the planes created.

11. Move the individual pieces of the mold, by right clicking and selecting 

‘Move/Copy’, so that all the pieces are facing outwards.

12. Add rivets to the faces of each piece of the mold (so it can fit together 

securely), by clicking ‘Create sketch’ then ‘Centre diameter circle’ 
and on each face, drawing small circles. Right click then ‘Extrude’ 
these circles outwards a few millimeters on one face and extrude them 

inwards on the corresponding face.

NOTE: The circles that are extruded inwards need to be slightly bigger 

– approximately 1.5 mm - than those that are extruded outwards, so that 

they will fit together snugly.

13. Save each piece of the mold as a separate STL file.

14. Repeat steps 3.1.4 – 3.1.14 for ‘Brain left’, ‘Brain right’ and 

‘Cerebellum tumor’.

NOTE: Using the file ‘Cerebellum tumor’ rather than just ‘Cerebellum’ 

to create the mold means that the mold will have a space in it for the 

tumor to be inserted during construction.

2. Print the 3D molds

1. Install or open 3D printing software.

2. Open the STL file for each piece of the mold in the printing software 

and rotate it so that it lies flat against the build plate. It is possible to 

add multiple mold pieces to the build plate and to print these 

simultaneously.

3. Choose a large layer height (around 0.2 mm) and low infill value 

(around 20%) for faster printing. Print the molds using a rigid material 
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such as Polylactic acid (PLA). If the molds are positioned appropriately, 

support material is not necessary.

3. Print the Skull

1. Open the ‘Skull Top’ file in the printing software and choose a large 

layer height (around 0.2 mm) and low infill value (around 20%).

2. Print the skull model in PLA but in contrast to step 3.2.3, support 

material will be required, so select to ‘Add support’ in the software. 

PVA is used as the support material as it can later be dissolved away 

with water.

3. Repeat steps 3.3.1 and 3.3.2 for ‘Skull Bottom’.

4. Once the top and bottom of the skull have been printed, submerge them 

in water overnight to dissolve away the PVA support material.

NOTE: The support material will dissolve away much faster if warm 

water is used, but if the water is too warm, it will deform the printed 

PLA. Therefore, it is preferable to use cool water and leave the print 

submerged overnight.

4 Preparation of PVA-c

1. Measure 200 g of PVA powder and set to the side.

2. Heat 1800 g of deionized water to 90 °C and add to a 2L conical flask.

NOTE: The water needs to be almost boiling so the PVA powder will dissolve 

readily, but if the water reaches 100 °C, some will be lost to evaporation, which 

is to be avoided.

3. Suspend the conical flask in a temperature-controlled water bath set at 90 °C.

4. Position an electronic stirrer in the flask, ensuring it does not touch the bottom or 

sides, and set the speed to 1500 rpm.

NOTE: Check that the water is stirring evenly and there are not stagnant points at 

the sides or bottom.

5. Gradually add the PVA powder to the conical flask, over around 30 min, then 

leave it to stir for around another 90 min. The resulting gel is the tissue-

mimicking material PVA-c.

6. Remove conical flask from the water bath and pour the contents into a beaker. 

Cover the top with cling film to prevent the formation of a skin on top of the 

PVA-c. Leave the PVA-c to cool to room temperature (around 20 °C). Once 

cooled, the PVA-c will be transparent. Tiny white crystals may be seen in the 

PVA-c, but any bubbles appearing on the surface must be gently scraped off.

7. Add 0.5 w/w% potassium sorbate to the PVA-c as a preservative, and manually 

stir well.
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8. The PVA-c can be left at room temperature if covered in cling film for a few days 

before it is poured into molds.

5 Phantom Assembly

1. Measure out enough PVA-c to fill the tumor mold into a beaker.

2. To the PVA-c for the tumor, add 1 w/w% glass microspheres for ultrasound 

contrast and 5 w/w% Barium Sulfate for X-ray contrast, and stir by hand.

NOTE: It may be necessary to measure out excess PVA-c for the tumor so that 

these percentages are a measurable amount.

3. Sonicate the beaker to ensure homogenous mixing of the additives.

4. Leave to cool and allow any bubbles formed to escape, around 10 min, then 

scrape any bubbles from the surface.

NOTE: Do not leave for extended period once the glass spheres have been added, 

no longer than around 10 min, before pouring the PVA-c into a mold, as the glass 

spheres will settle to the bottom of the beaker. Once the phantom has been 

frozen, this will no longer be a concern, and the final phantom can be used at 

room temperature.

5. Secure the tumor mold together (tape can be used to cover the joins in the mold) 

and pour in the PVA-c through the hole in the top of the mold. Leave for a few 

minutes to allow any bubbles formed in the pouring process to escape through 

the hole, then place straight into the freezer.

6. Perform two freeze-thaw cycles on the tumor; each cycle here consists of 6 h of 

freezing at -20 °C and 6 h of thawing at room temperature. Then, carefully 

remove from mold.

7. Place the tumor into the corresponding space for it in the cerebellum mold, then 

construct the rest of the cerebellum mold and secure it together.

8. To the remaining PVA-c add 0.05 w/w% glass microspheres, then repeat steps 

5.1.3 and 5.1.4.

9. Pour the PVA-c into the cerebellum mold, allowing it to surround the tumor that 

has been placed inside. Additionally, pour the mixture into the molds for each 

brain hemisphere.

10. Perform two freeze-thaw cycles on each brain hemisphere and the cerebellum; 

each cycle here consists of 24 h of freezing at -20 °C and 24 h of thawing at 

room temperature.

NOTE: Cycles with 12 h freezing followed by 12 h thawing also effective, to 

allow the phantom to be created in less time. 24 h was chosen for ease of 

application, to avoid returning to the lab every 12 h.

11. Once the phantoms have thawed for the second time, carefully remove them 

from the molds and place into the printed skull.
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NOTE: When not in use, the completed PVA-c phantoms should be stored in an 

airtight container in the fridge, and can be kept for a few weeks in this way

12. For completion, place the ‘Cerebellum tumor’ phantom on the spike at the base 

of the ‘Skull Bottom’ model. The models of two brain hemispheres (‘Brain left’ 

and ‘Brain right’) are placed on top and slot into the uppermost part of the 

‘Cerebellum tumor’.

13. Place the four dowels in each space on the ‘Skull Bottom’ model and place 

‘Skull Top’ model on top. If required, the model may then be maneuvered into 

the desired position to simulate intraoperative use in surgery.

6 Phantom Imaging

1. Ultrasound Imaging

1. Apply ultrasound gel to the imaging probe.

NOTE: Gel is not used intraoperatively but may be used in simulation 

and does not significantly change the clinical workflow or the quality of 

the acquired images.

2. Image the brain and tumor through the craniotomy, with a clinical 

scanner and burr hole probe.

2. CT Imaging

1. Image the whole phantom in a CT scanner.

Representative Results

Following the described protocol, an anatomically realistic phantom was fabricated, which 

consists of a patient-specific skull, brain and tumor. The relevant anatomical structures for 

the phantom (skull, brain, tumor) are segmented using patient MRI and CT data (Figure 

2a,b). The patient intraoperative ultrasound data (Figure 2c; Figure 2d shows the same image 

as Figure 2c, but with the tumor outlined) was used to compare the phantom images to the 

real patient images.

Meshes were created for each piece of the model (Figure 3), and these were then used to 

manufacture the 3D molds. The molds were easily printed on a commercial printer and 

assembled by slotting the pieces together. The cerebellum mold was the most complex to 

design and assemble (Figure 4). The skull (Figure 5a) was the most difficult part to print as 

it required support material, so was a slow process; the whole print took a total of three days 

to complete, which is a limiting factor in the protocol.

The completed phantom (Figure 5) was a realistic model of a patient skull, brain and tumor. 

The two brain hemispheres (Figure 5b) were produced separately, and have a realistic 

appearance, featuring the gyri and sulci of the brain. The whole phantom is white in color, as 

this is the natural color of PVA-c; this can easily be changed by adding dye but was not 

necessary for the application. The cerebellum (Figure 5c) fits comfortably into the base of 

the printed skull and the brain hemispheres sit on top of this. The tumor is easily visible in 
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the cerebellum, as the extra contrast added to the tumor results in it being an off-white color 

that separates it from the surrounding material, which is it securely attached to.

The phantom was imaged with both CT and ultrasound (Figure 6a,b). Barium sulfate was 

used to give the tumor appropriate CT contrast, and the phantom image (Figure 6a) shows 

that this was achieved, as the tumor is clearly visualized. The skull was not printed with 

100% infill, in order to reduce the time taken for printing. Therefore, the skull does not look 

entirely realistic in the CT images, because the lattice structure of the print can be seen. This 

is not a problem for the application, as only the outline of the skull is needed for the 

neuronavigation system. The skull could be printed with 100% infill to avoid this reduced 

accuracy of the CT image, but would add time onto the printing process. Glass microspheres 

were added to the cerebellum, brain hemispheres and tumor for ultrasound contrast. The 

results show that the tumor is also visible with ultrasound imaging (Figure 6b) and can be 

distinguished from the surrounding tissue. On visual inspection, the ultrasound images 

obtained from the phantom (Figure 6b), and those obtained from the patient (Figure 2c) 

show that the contrast agents used in the phantom were effective for creating realistic 

imaging properties.

The phantom was tested during surgical simulation in a virtual operating room (Figure 7). 

The phantom model was positioned on the surgical operating table using a standard skull 

clamp and the CT scan of the phantom was registered using a clinical neuronavigation 

system. A retrosigmoid approach to the tumor was simulated and the tumor was imaged 

using a clinical ultrasound system with a burr hole ultrasound transducer. During the surgical 

simulation, the phantom model proved to be stable and no damage was observed from 

manipulating the phantom in the same way the human brain would be during this procedure, 

so it could be used repeatedly under the same conditions.

Discussion

This protocol details the fabrication process of a patient specific brain phantom, which 

includes the skull, brain, and vestibular schwannoma tumor. 3D printing methods allowed 

for anatomically accurate detail to be achieved. The phantom described here was 

successfully manufactured with the desired level of anatomical detail; CT and ultrasound 

imaging were used to demonstrate that the tumor was easily visualized with both modalities. 

The tissue mimicking material, PVA-c, is well established as a tissue-mimicking material for 

ultrasonic phantoms; its acoustic and mechanical properties can be tuned with additives and 

the number of freeze-thaw cycles. The material is readily available, simple to use and 

nontoxic. With repeated use, the phantom had sufficient durability to withstand manipulation 

and contact with an ultrasound probe during physical simulations of vestibular schwannoma 

surgery.

Several key steps were identified as being critical to the fabrication process. First, the 

segmentation of structures for inclusion in the phantom must include the desired level of 

anatomical detail. The creation of accurate STL files and 3D molds then follows naturally. 

Secondly, the positioning of planes within the cerebellum mold in step 3.1.9 must be 

considered carefully, so that the phantom can be readily removed, without damage; it must 
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be cut into enough pieces to allow anatomical details to be retained, whilst enabling the 

phantom to be removed without getting stuck in the mold. In this case, several iterations 

were tested and finally the mold was cut into four separate pieces. The third key 

consideration is that during the PVA-c manufacturing process (section 4), the PVA-c must be 

left to cool to room temperature (step 4.1.6). If this step is missed and hot PVA-c is added to 

the molds, it can cause the molds to melt or distort. It is also crucial that once the glass 

spheres are added (steps 5.1.2 – 5.1.4), the PVA-c is not left to sit for more than around 10 

minutes; if left for a prolonged period of time, the glass spheres will settle to the bottom, and 

the resulting phantom will have inhomogeneous ultrasound contrast29. Once the glass 

spheres are added, the PVA-c must be added directly into the molds and placed into the 

freezer. After the first freeze cycle, the glass spheres will be secured in the place, and the 

phantom can be used at room temperature. Finally, it is important that the molds are 

carefully sealed (e.g., with tape) before the PVA-c is added, to minimize leakage of the 

mixture through gaps where the separate pieced of the mold joined together.

The protocol has several limitations. For example, some specialist equipment is required, 

including a water bath and an electronic stirrer. A sonicator is also used as part of this 

protocol, but the sonication step (5.1.3) could be replaced with additional electronic stirring; 

however, with this alternative, it would take longer to achieve a homogeneous mixture than 

is possible with the use of sonication. One limitation of PVA-c is that it degrades over time 

and becomes moldy. The addition of potassium sorbate, as described here, increases the 

phantom’s shelf-life, although it must still be kept in an airtight container. A second 

limitation of PVA-c is that freezethaw cycles are required, which increases the amount of 

time required to make a phantom. To minimize phantom fabrication time, a key 

consideration is the speed of freezing and thawing; once the phantom is either fully frozen or 

fully thawed, the time that it remains in that state does not significantly affect the final 

phantom16, 30. Therefore, the cycle lengths used can be varied, provided that the phantom is 

fully frozen and thawed at each stage in the cycle. For instance, the tumor in the phantom of 

this study is very small, so shorter cycles could be used for the tumor than for the brain. 

Finally, 3D printing the molds and skull is a time-consuming process which consumes a 

significant portion (3 days) of the total time (1 week) required to fabricate a phantom with 

this protocol. The printer used was a commercial model from 2018; the printing process 

could be completed in shorter time frames with the use of newer, faster printers.

The brain phantom presented here could be used directly for clinical training and validation 

of neuronavigation systems. As the tissue mimicking material, PVA-c enables the resulting 

phantom to be used repeatedly, for example as a training tool or for the validation of 

intraoperative ultrasound in vestibular schwannoma surgery, as it is a durable and non-toxic 

material. As such, the fabrication method is complementary to those previously described in 

which 3D printing was used to create patient specific brain phantoms20, 21, 22, 23, 24, 25. The 

use of PVA-c as the TMM makes the phantom suitable for use in simulation of neurosurgery, 

as the material can withstand repeated manual manipulation and contact from an ultrasound 

probe. This work sets the stage for further quantitative validation studies. The phantom 

method described here is very versatile and could be used to fabricate many types of patient-

specific tumor phantoms, extending from the brain to other organs, with compatibility across 

several imaging modalities.
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Figure 1. Flowchart to show the steps required to make a patient specific PVA-c brain phantom.
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Figure 2. Patient data used to create phantom model.
Data sources of a patient with a left sided vestibular schwannoma: (a) axial contrast-

enhanced T1-weighted MRI, white arrow pointing towards tumor; (b) axial non-contrast CT 

scan windowed to highlight bone, white arrow pointing towards an expanded internal 

auditory meatus caused by the tumor; (c) intraoperative ultrasound image obtained during 

vestibular schwannoma surgery; (d) annotated intraoperative ultrasound image *: tumor 

(hyperechoic on ultrasound), ⟡: brain (cerebellum).
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Figure 3. Completed meshes for each section of the phantom.
STL mesh for (a,b) skull, ✶: left sided retrosigmoid craniotomy; (c,d) cerebral hemispheres; 

(e,f) tumor and cerebellum, *: tumor.
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Figure 4. 3D printed cerebellum mold.
3D printed cerebellum mold fully constructed (top left) and the separate pieces, which are 

numbered from 1 to 4. The hole in piece 2 (denoted by ‘H’) enables the PVA-c to be poured 

into the mold.
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Figure 5. Completed phantom.
The finished phantom (a) skull (b) phantom with skull top removed: ✶: retrosigmoid 

craniotomy, *: tumor, ⟡ brain (cerebellum), ✩ brain (right cerebral hemisphere); (c) 

cerebellum and tumor: *: tumor, ⟡ brain (cerebellum).
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Figure 6. CT and ultrasound images acquired with the phantom.
(a) Axial CT image of complete phantom through the level of the skull base and tumor, (b) 

Intraoperative ultrasound image of phantom acquired with burr hole ultrasound probe 

through the retrosigmoid craniotomy in a plane approximately perpendicular to the skull 

(Simulating surgery, the cerebellum was retracted slightly in order to image directly on the 

tumor). *: tumor, ⟡ brain (cerebellum), ✶: left sided retrosigmoid craniotomy.
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Figure 7. Testing the phantom during surgical simulation.
Testing the phantom model through surgical simulation in a virtual operating room. ✣: 

neuronavigation system displaying the registered scan of the CT phantom model, ♦: 

ultrasound system used to image the phantom with a burr hole ultrasound transducer (seen 

positioned next to the ultrasound monitor). Note the model pictured here is based on data 

acquired from different patient with a right sided tumor.
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