Skip to main content
. Author manuscript; available in PMC: 2021 Apr 27.
Published in final edited form as: Handb Exp Pharmacol. 2020 Jan 1;257:55–69. doi: 10.1007/164_2019_277

Table 1. Bias definition and bias-reducing methods (Lazic et al. 2018).

Name of bias Definition of bias Methods to reduce bias
Selection bias Refers to the biased allocation of animals to different treatment groups, which could happen at the beginning of an animal study or at a stage where reassigning animals to different treatment groups is needed following an initial surgical procedure or treatment. Selection bias results in systematic differences in baseline characteristics between treatment groups (Higgins et al. 2011) To avoid systematic differences between animals allocated to different treatment groups, one shall use a valid randomisation method, e.g. a randomisation software or even a simple method such as picking a number from a hat (Baastrup et al. 2010; Huang et al. 2013; Saghaei 2004). Detail for randomisation is covered in chapter “Blinding and Randomization”. Note that it is also necessary to conceal the allocation sequence from experimenters who will assign animals to treatment groups until the time of assignment
Performance bias Related to the systematic differences in the care that is provided between different treatment groups or being exposed to factors other than the treatment that could influence the performance of the animals (Higgins et al. 2011; O’Connor and Sargeant 2014; van der Worp et al. 2010). Performance bias is a result of animals being managed differently due to, e.g. housing conditions, diet, group sizes per cage, location in the animal house, and experimenters who provide the care to animals are not blinded to treatment groups One can avoid performance bias by improving the study design, e.g. applying the same housing, diet, location conditions to all the animals and by ensuring proper blinding of the experimenters to treatment groups, which keeps the experimenters who perform the experiment, collect data and access outcomes unaware of treatment allocation. Detail for blinding is covered in chapter “Blinding and Randomization”
Detection bias Defined as the systematic distortion of the results of a study that occurs when the experimenter assessing behavioural outcome measures has the knowledge of treatment assignment to groups (van der Worp et al. 2010). In this circumstance, experimenters measuring the outcomes may introduce differential measurement of the outcomes rather than the treatment itself due to inadvertent expectation The only way to avoid detection bias is a complete blinding of the experimenters, including those who analyse the data, so that they are not aware which animal(s) belong to which treatment group(s). The protocol should define at what stage the blinding codes will be broken (preferably only after data analysis has been completed). Detail for blinding is covered in chapter “Blinding and Randomization”
Attrition bias Is the unequal occurrence and handling of deviations from protocol and loss to follow-up between treatment groups (van der Worp et al. 2010). This bias can occur when animals die or are removed from the study due to adverse effects of the treatment or pre-set criteria for removal before observing the outcomes; therefore, the outcomes are not observed for all animals, causing inadvertent bias (O’ Connor and Sargeant 2014) Experimenters should report attrition information for each experimental group and also include outcomes that will not be affected by attrition. It is also advisable to consult a statistician to minimise the impact of attrition bias using some statistical approaches such as intention-to-treat analysis by imputing the missing data. Excluding “outliers” from analysis should be only undertaken as an extremely measure and should only be done to pre-stated criteria. Detail for statistics is covered in chapter “Blinding and Randomization”