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Abstract

Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating 

the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to 

tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a 

well-recognized cardiovascular risk factor independent of blood pressure levels and an 

intermediate endpoint for cardiovascular events. In the present review we discuss immune 

mediated mechanisms by which inflammation can influence arterial physiology and lead to 

vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute 

inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of 

endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, 

inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction 

which is proportional to the severity of inflammation. Current findings suggest that treatment of 

inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these 

treatments will improve outcomes for patients.

Condensed abstract—Inflammation is a physiological response to aggression of pathogenic 

agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, 

however, may contribute to tissue damage and an alteration of arterial structure and function. 

Increased arterial stiffness is a well-recognized cardiovascular risk factor independent of blood 

pressure levels. In the present review we discuss (i) mechanisms by which inflammation can 

influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial 

stiffening, (ii) clinical models of vascular inflammation, and (iii) current evidence on anti-

inflammatory therapy and regression of arterial dysfunction.

Keywords

Arterial stiffness; inflammation; pulse wave velocity; large arteries; cardiovascular disease.

Introduction

Inflammation is a ubiquitous, integrated and complex response to insults by pathogens, 

immunologically-mediated stimuli, irritants or chemicals. Inflammation, however, may also 

contribute to tissue damage if excessive or chronic. The vascular system is key to the 

inflammatory response since most components of the inflammatory response transit through 

the blood and vessels. In the vascular system, acute and chronic inflammation lead to 
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endothelial dysfunction and arterial remodelling, which underlie many cardiovascular 

diseases. Vascular inflammation is a common response to injury and involves many cell 

types (immune cells, vascular smooth muscle cells (VSMC), perivascular adipocytes and 

fibroblasts), numerous mediators (cytokines, chemokines and reactive oxygen species 

(ROS)), multiple receptors (toll-like receptors, receptor for advanced glycation end-products, 

tumour necrosis factor (TNF)α receptor-associated factors, NOD-like receptors, 

transforming growth factor-β-(TGF-β) activated kinase 1, cytokine and chemokine 

receptors) and complex pro-inflammatory signalling pathways (e.g., nuclear factor κB, 

mitogen-activated protein kinases, canonical wingless-related integration site (WNT)/β-

catenin and Signal transducer and activator of transcription 3, STAT3). Prolonged 

inflammation causes DNA damage, first step to vascular injury. At the core of many of these 

processes is an increased production of ROS, especially superoxide anions (O2 -) and 

hydrogen peroxide (H2O2) and activation of injurious redox-sensitive signalling pathways 

[1]. In the present review, we propose a general overview of the basic mechanisms by which 

inflammation can alter arterial physiology and lead to vascular complications such as 

atherosclerosis and arterial stiffening. We further aim to demonstrate the bidirectional 

association between inflammation and vascular diseases, i.e. vascular consequences of 

primarily inflammatory diseases, and systemic disease caused primarily by inflammatory 

vascular disease. Finally, we review the epidemiological evidence of the association between 

low-grade chronic inflammation and vascular diseases and we will also expose to what 

extent ant-iinflammatory drugs can reverse the effects of inflammation on large vessels.

Biological basis and redox biology of inflammation in arterial disease

The inflammatory response in arteries is triggered by humoral, physical and mechanical 

factors including vasoactive hormones (angiotensin II (AII), endothelin-1, aldosterone), 

mechanical factors (vascular stretch, pressure), ischaemic insults (ischemia-reperfusion, 

hypoxia), metabolic factors (hyperglycaemia, oxidized low density lipoproteins, LDL), 

cytokines and chemokines [2], as well as by clonal haematopoiesis of indeterminate 

potential and epigenetic dysregulation [3]. The autonomic nervous system has also been 

implicated in the acute phases of inflammation through the sympathetic nervous system and 

the hypothalamic-pituitary-adrenal axis since increased catecholamine levels and 

glucocorticoids may stimulate innate immune cells, such as neutrophils, macrophages and 

lymphocytes [4–6]. These factors play a role in vascular damage associated with 

cardiovascular diseases.

Innate immunity in arterial disease

One of the earliest events in the inflammatory response is the activation of the innate 

immunity [7,8]. Endothelial adhesion molecules interact with glycoproteins on the 

neutrophil surface promoting interactions with the vessel wall [9]. E-selectin facilitates 

neutrophil tethering, rolling and adhesion through binding with P-selectin glycoprotein 

ligand 1, CD44 and E-selectin ligand I [2,10]. This interaction triggers integrin activation 

through tyrosine kinases, which induces platelet adhesion, further contributing to endothelial 

injury and dysfunction [10]. Following neutrophil adhesion, the cytoskeleton undergoes 

reorganization to establish cell polarity, which facilitates transmigration of cells into the 
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vascular media, where resident macrophages are present. Activated neutrophils may also 

migrate to the perivascular adventitial tissue. Within the vascular wall and perivascular 

tissue, neutrophils and macrophages further drive inflammation causing vascular damage. 

Infiltration of innate and adaptive immune cells in perivascular fat, kidneys and myocardium 

is found to different degrees in experimental and human hypertension [8,11,12]. Innate 

immune cells sense pathogen-associated molecular patterns (PAMPs) or damage-associated 

molecular patterns (DAMPs) from injured tissue via toll-like receptors (TLRs) [13]. 

Proinflammatory macrophages and dendritic cells (DCs) release interleukin (IL)-1β, IL-6, 

IL-12, IL-23, TNFα and ROS; anti-inflammatory macrophages and DCs produce IL-10. 

Natural Killer (NK) cells produce pro- or anti-inflammatory cytokines (interferon γ (IFNγ) 

or IL-10). Myeloid-derived suppressor cells are increased in blood, spleen and kidneys of 

AII-infused mice. Their depletion induces an exaggerated BP elevation to AII.

Adaptive immunity in arterial disease

Adaptive immunity is involved in response to combined stimulation by antigen, co-

stimulators, and specific cytokines [8]. Naïve CD4+ Th cells differentiate into T helper 

(Th)1, Th2, Th17 effector (all proinflammatory), or Treg cells (anti-inflammatory). Th1 cells 

produce IFNγ, IL-2 and TNFα, Th2 cells produce IL-4, IL-5, IL-9 and IL-13; Th17 cells 

secrete IL-17, IL-21 and IL-22. Upon activation with MHC I-restricted antigens, naïve CD8+ 

T cells mature into cytotoxic (Tc) cells that secrete IFNγ and TNFα, perforin and granzyme 

B. Perforin creates pores within the target cell membranes, through which granzymes enter 

cells and induce apoptosis. T-regulatory (Treg) cells express the IL-2 receptor α-subunit 

(CD25), and the transcription factor forkhead box P3 (Foxp3). The suppressive actions of 

Treg cells are mediated by cell-cell contact mechanisms and/or via the release of ant-

iinflammatory IL-10, IL-35 and TGF-β [14].

Immunological memory plays a role in hypertension. Central memory T (TCM) cells are 

found in lymphoid organs, whereas effector memory T (TEM) cells recirculate between 

lymphoid tissues, blood and peripheral organs and produce proinflammatory IFNγ and 

IL-17A. AII infusion caused TEM cell accumulation in the aorta, kidney and lymph nodes of 

humanized mice [15]. Hypertensive patients have increased frequency of circulating 

senescent (CD28–CD57+) CD8+, CD8+ T cells expressing IFγ, TNFα, perforin and 

granzyme B, CD4+ Th1 and Th17 cells [16,17]. A subpopulation of CD4+ TEM cells that 

expresses choline acetyltransferase (ChAT) is activated via β2-adrenergic receptors and 

releases acetylcholine, which binds to α7 nicotinic acetylcholine receptors on macrophages 

and suppresses lipopolysaccharide-induced TNFα release [18]. BP is higher in mice lacking 

ChAT in CD4+ T cells than in control mice, and infusion of Jurkat T cells overexpressing 

ChAT decreases BP [19].

Decreased immune Treg (CD4+CD25+ T cells) activity could counteract hypertension and 

cardiovascular injury. Adoptive transfer of Treg reduced AII- or aldosterone/salt-induced BP 

elevation, together with vascular and cardiac injury [20–23]. AII decreased Treg function via 

the binding of complement components C3a and C5a to their cognate receptor, which 

decreases Foxp3 expression [24]. Finally, there is an inverse correlation between circulating 
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CD4+CD25HighCD127Low Treg and media/lumen ratio of subcutaneous resistance arteries 

and retinal arterioles in human essential hypertension [25].

γδ T cells represent ~0.5-10% of circulating lymphocytes in humans. They belong to CD4-

CD8- populations, tend to reside in non-lymphoid tissues and have a faster response after 

activation and after a recall response to antigens than MHC-restricted T cells. They produce 

IL-17 in response to the pro-inflammatory cytokines IL-1β and IL-23 like Th17 cells. AII 

caused an increase in number and activation of γδ T cells [26]. Deficiency in γδ T cells 

prevented AII-induced hypertension, endothelial dysfunction and spleen and mesenteric 

artery perivascular adipose tissue CD4+ and CD8+ T cell activation [26].

The vascular inflammatory cascade

How and when the immune system is activated in hypertension remains unclear. We propose 

the following cascade (Figure 1). Initial blood pressure (BP) elevation and/or pro-

hypertensive stimuli could induce cardiovascular injury leading to development of DAMPs 

or of neoantigens. In a hypertensive mice models, angiotensin II causes ROS generation in 

DCs that could result in production of γ-ketoaldehydes or isoketals, which react with protein 

lysine residues of injured tissues to form isoketal protein adducts that function as 

neoantigens [27]. These activate DCs, and stimulate release of IL-6, IL-1β@ and IL-23, 

which in turn stimulate innate immunity via toll-like receptors on proinflammatory 

macrophages, DCs, and NK cells, as well as innate-like γδ T cells. The latter may prime 

both innate and adaptive immune cells. Innate immune cells and γδ T lymphocytes 

contribute to inflammation, both directly or by activation of adaptive immunity, inducing 

proinflammatory cytokines like IL-17 and IFNγ, and autoantibody production leading to 

vascular and kidney injury, thus contributing to progressive BP elevation. TEM cells 

generated during this process accumulate in lymphoid organs including the bone marrow. 

Upon a second hit such as high-salt intake, TEM cells are activated and contribute to 

hypertension. Throughout, anti-inflammatory cells such as Treg, myeloid-derived suppressor 

cell and M2 macrophages may limit this response and help fine-tune vascular and kidney 

inflammation [28].

Reactive oxygen species, oxidative stress and vascular inflammation

The generation of ROS is central to the effects of pro-inflammatory cells because, in 

phagocytic cells, it is responsible for host-defence responses. In the vascular system, 

VSMCs, endothelial cells, fibroblasts, perivascular adipocytes, macrophages and immune 

cells produce ROS [29]. The major source of ROS in vascular cells is nicotinamide adenine 

dinucleotide phosphate oxidase (Nox), although other enzymatic sources may also 

contribute, such as xanthine oxidase, mitochondrial electron transport chain, uncoupled 

endothelial nitric oxide (NO) synthases, cyclooxygenase, lipoxygenase and cytochrome 

P450 oxidases [29]. Of the seven Nox isoforms identified, Nox1,2,4 and 5 are present in 

human arteries [30]. Nox1,2 and 5 produce O2 - while Nox4 activation leads to increased 

H2O2 production. Vascular Nox activity is increased in cardiovascular disease leading to 

dysregulated ROS production, oxidative stress, activation of pro-inflammatory transcription 

factors and activation of redox-sensitive signalling pathways [29,30]. Increased endothelial 

cell O2 - limits bioavailability of nitric oxide and also increases formation of ONOO-, which 
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is highly unstable causing vascular inflammation, fibrosis, hypertrophy and endothelial 

dysfunction. Oxidative stress is counterbalanced by numerous antioxidant systems, 

including superoxide dismutase, catalase, peroxidases, glutathione, thioredoxin and nuclear 

factor erythroid 2 (Nrf-2), the master regulator of antioxidant genes [31]. In cardiovascular 

disease, many of these antioxidant systems are downregulated, thereby further contributing 

to excessive ROS accumulation.

In addition to the inactivation of NO, ROS influence vascular cell function by altering 

protein activity through post-translational oxidative modifications [29,30]. In vascular cells, 

proteins that are redox-sensitive include receptors, kinases, phosphatases, transcription 

factors, ion channels, cytoskeletal proteins and matrix metalloproteases (MMPs), all of 

which play a role in regulating endothelial and VSMC function. In addition, ROS stimulate 

production of vasoactive agents, such as AII, endothelin-1 and cyclooxygenase-2 and they 

influence intracellular calcium concentration, important in regulating vasoconstriction. In 

the endothelium, H2O2 acts as a vasodilator and is considered as an endothelium-derived 

relaxing factor, acting through activation of protein kinase G alpha (PKG1α) [30]. ROS in 

return stimulate activation of transcription factors and pro-inflammatory genes, chemokine 

and cytokine production and recruitment and activation of inflammatory and immune cells 

in a positive feedback for vascular inflammation.

Mitochondrial ROS production and DNA damage are another important sources of oxidative 

stress in cardiovascular disease [32]. Physiologically, mitochondrial ROS act as signalling 

molecules and modulate vasomotion and myogenic tone (i.e. the interaction between 

vasomotor tone and mechanical stimuli). In several pathological conditions, mitochondria 

produce excessive ROS that activate proinflammatory pathways in the vascular endothelial 

cells and result in vasoconstriction, inflammation and thrombosis [32]. Moreover, 

mitochondrial ROS, through the triggering of NOD-like receptor family, pyrin domain 

containing 3 (NLRP3) inflammasome formation and activation, lead to IL-1β activation 

[33].

IL-1β inflammation pathway

Dissecting the inflammatory cascade shows a tight link between its components; the 

upstream cytokine IL-1β affects IL6 levels that in turn control the secretion of a downstream 

mediator C-reactive protein (CRP) (Figure 2). IL-1β and IL-6 inhibition is now an important 

target for some inflammatory diseases (see infra). In the plasma of patients with myocardial 

infarction, an IL-1β peak preceded the IL-6 peak, strengthening the upstream position of 

IL-1β [34]. In vitro, IL-1β strongly stimulates IL-6 synthesis by various types of cells 

including vascular cells. IL-1β induces a proinflammatory phenotype of endothelial cells 

and increases the expression of adhesion molecules such as intercellular adhesion molecule 

(ICAM)-1 and vascular cell adhesion molecule-1. IL-1β also alters cardiomyocyte functions. 

Chronic administration of IL-1β induced coronary intimal lesions and vasospastic responses 

in pigs while IL-1 receptor antagonist infusion decreased neointima area [35].

IL-6 is a soluble cytokine with pleiotropic effect on inflammation and immune responses. 

The synthesis of IL-6 is driven, among others, by toll like receptors activation, TNFα and 

IL-1 signalling activation. In patients with myocardial infarction, direct measurements of 
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IL-6 concentration at the site of plaque rupture and in the general circulation indicate a local 

production of IL-6 [36]. In addition to its position in the inflammatory cascade, IL-6 has 

been involved in the loss of endothelial barrier function [37], extracellular matrix 

remodelling and atherosclerotic plaque progression in mice [38].

IL-18 and IL-1β are major proinflammatory cytokines with pleiotropic activities. These 

cytokines are synthesized as inactive precursors requiring cleavage by caspase-1, within the 

complex NLRP3 inflammasome, to become biologically active molecules in inflammatory 

cells and also in endothelial and vascular smooth muscle cells. IL-18, produced by 

endothelial cells, cardiomyocytes, and by infiltrating macrophages [39], is expressed in 

human failing myocardium and in human carotid atherosclerotic plaques in presence of 

plaque instability [40]. Experimentally, IL-18 administration in apoE-/- mice increased 

plaque size and progression, and altered plaque stability by decreasing intimal collagen 

content and plaque thickness [39].

CRP is synthetized by hepatocytes in response to IL-6 exposure. CRP deposition or 

expression in atherosclerotic lesions of human coronary arteries and in human infarcted 

heart tissues raises the question of a direct pathogenic role of CRP in cardiovascular 

diseases. Recombinant CRP administration has been associated with prothrombotic and 

proinflammatory effects in vitro in endothelial cells [41], in cardiomyocytes, and in vivo in 

human healthy subjects [42]. Despite data from transgenic mice overexpressing CRP could 

suggest an implication of CRP in thrombosis after arterial injury and in cardiac remodelling 

in the context of myocardial infarction [41], epidemiological and Mendelian randomization 

studies refute the causal role of CRP in the risk of cardiovascular events (see below).

Box 1

Chronic low-grade sub-clinical inflammation plays an important role in vascular 

dysfunction and damage in cardiovascular diseases. The inflammatory response is 

mediated in large part through ROS. Many pro- or anti-inflammatory immune cells and 

cytokines are involved in the inflammatory response and mechanisms of hypertension.

Inflammation and atherosclerosis

Atherosclerotic plaques develop in predisposed areas of the arterial tree where blood flow is 

either slow or oscillatory and endothelium displays increased susceptibility to activation, as 

well as greater permeability to LDL and remnant cholesterol, favouring subendothelial 

retention. One of the triggering events in the initiation of atherosclerotic process is the 

oxidation of LDL (although other targets are involved such as high density lipoproteins, 

HDL), the consequent release of bioactive (phospho)lipids in the arterial intima and 

production of proinflammatory and chemotactic factors for lymphocytes and monocytes 

[43]. Infiltrated monocytes differentiate into macrophages or DCs, that internalize oxidized 

LDL (oxLDL) and become foam cells. Surprisingly, early uptake of cholesterol by 

macrophages suppresses inflammatory responses, and promotes a reparative M2 phenotype 

[44]. Yet, continued cholesterol accumulation leads to predominant M1 populations. 

Recruited immune cells accumulate under hypoxic conditions and undergo apoptosis and 
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necrosis, leading to the formation of the necrotic core and contributing to destabilisation of 

plaque. Advanced, rupture-prone lesions that are associated with clinical events are rich in 

M and T cells exhibit large necrotic cores with thinned fibrous caps, rarefaction of SMCs 

and reduced collagen content. Finally, inflammation can hamper the protective effects of 

HDL on endothelium. In presence of inflammation, HDL fails to prevent LDL oxidation, 

exhibits reduced reverse cholesterol transport function and induces endothelial dysfunction 

[45].

Innate immunity in atherosclerosis

The chronic inflammatory disease of atherosclerosis is promoted by both innate and adaptive 

immunity [7]. The innate response is instigated by the activation of vascular cells and 

monocytes/macrophages. Subsequently, an adaptive immune response develops against an 

array of potential antigens presented to effector T lymphocytes by antigen-presenting cells. 

In the early stages of atherosclerosis, proinflammatory cytokines can alter endothelial 

functions. TNFα, for example, increases cytosolic Ca2+ and regulates myosin light chain 

kinase and RhoA [46], which disrupts endothelial junctions [47], leading to loss of barrier 

function and facilitation of leukocyte transmigration. Cytokines also induce the expression 

of chemokines and adhesion molecules in endothelial cells, favouring the recruitment, 

adhesion and migration of lymphocytes and monocytes into the inflammatory vessel wall. 

Once in the intima, leukocytes can be permanently activated by locally generated cytokines, 

which can accelerate the transformation of macrophages into foam cells by stimulating the 

expression of scavenger receptors and enhancing cell-mediated oxidation. Cholesterol 

crystals act as metabolic triggers of the NLRP3 inflammasome, which promotes the 

maturation of IL-1β and IL-18 [48]. At an advanced stage of the disease, proinflammatory 

cytokines (IL-1β, TNFα and IFNγ) destabilize atherosclerotic plaques by promoting cell 

apoptosis and matrix degradation. Macrophage apoptosis results in the formation of cell 

debris with toxic components, which contributes to the enlargement of the lipid core; plaque 

SMC apoptosis leads to thinning of the fibrous cap, favouring its rupture. Proinflammatory 

cytokines significantly affect the expression of MMPs and their inhibitors, TIMPs, inducing 

substantial remodeling of many components of the extracellular matrix of the arterial wall. 

For example, IFNγ inhibits collagen synthesis whereas IL-1 and TNFα induce a broad 

range of MMPs in vascular cells, including MMP- 1, -3, -8, and -9. Finally, the 

antithrombotic properties of endothelial cells are deeply altered by cytokines, in addition to 

profoundly altered shear stress conditions. Proinflammatory cytokines also modify the 

fibrinolytic properties of endothelial cells, precipitating thrombus formation and promoting 

the development of acute ischemic syndromes.

Adaptive immunity in atherosclerosis

T cell responses are initiated when specific molecular epitopes on antigens, including 

oxLDL and heat shock proteins, are presented by antigen-presenting cells and recognized by 

T cell antigen receptors. DCs are the main cell type responsible for the activation of naïve T 

cells and play a crucial role in triggering adaptive immunity. In atherosclerotic plaques, DCs 

co-localize with T cells, suggesting that they are involved in T cell activation within the 

plaque. However, sensitization of naïve T cells most likely occurs in the regional lymph 
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nodes [7]. A number of experimental studies have clearly shown a critical pathogenic role 

for the Th1 response, associated with the production of IFNγ [7].

Atherosclerosis is also associated with B cells activation. IgG antibody production by B2 

cells requires T cell co-stimulation, whereas innate production of natural IgM antibodies by 

B1 cells does not require co-activation of T cells. Both IgG and IgM antibodies against 

oxLDL have been described. Studies in mouse models provided evidence for a 

proatherogenic role of B2 cells [49]. Natural Treg cells are detected in much lower amounts 

in atherosclerotic plaques than in other chronically inflamed tissues, suggesting an 

impairment of local tolerance against potential antigens in atherosclerotic lesions [50]. Treg 

cells exert a protective role in atherosclerosis and are reduced in patients with acute coronary 

syndromes.

From acute to chronic inflammation in atherosclerosis

Physiologically, most inflammatory processes are self-limiting and controlled by 

endogenous pro-resolutions pathways. Whether acute inflammation is needed or not to 

induce chronic inflammation is unknown. The general view is that defective acute 

inflammation resolution, caused by the imbalance between proinflammatory and specialized 

pro-resolving mediators (SPMs) such as thromboxane A2/prostacyclin ratio, 

proinflammatory leukotrienes/lipoxins, leads to the defective efferocytosis and chronic 

inflammatory state observed in atherosclerosis [51]. In early and stable plaques there is an 

high SPMs/proinflammatory mediator ratio. High SPMs levels reduce lesion necrosis, 

enhance efferocytosis and have a protective role in several factors that exacerbate 

atherosclerosis. In advanced/vulnerable plaques, levels of proinflammatory mediators 

increase and the imbalance between SPMs and proinflammatory mediators lead to plaque 

progression.

Box 2

The atherosclerotic process is promoted by both innate and adaptive immunity.

Low-grade inflammation and cardiovascular diseases

Although inflammation is a key factor in vascular disease, most of the time it remains low-

grade and subclinical. Clinical studies performed in several groups of patients have shown 

consistent associations between inflammatory molecules and subclinical markers of arterial 

diseases such as endothelial dysfunction and arterial stiffness. In this section we will discuss 

on the evidences originated from event data.

Association between inflammatory markers and cardiovascular diseases (CVD)

Subjects with high baseline levels of CRP (independently of previous CVD) have an 

increased risk of developing future myocardial infarction independently of established risk 

factors. Several meta-analyses on individual data have now reported an association between 

single measurements of CRP or IL-6 and incident CVD [52,53]. Moreover, circulating CRP 
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and/or IL-6 significantly improve CVD risk prediction beyond the effect of traditional risk 

factors, especially for those at intermediate risk.

Studies based on repeated assessments of CRP provide contrasted results. In the ARIC 

study, subjects with sustained elevated CRP (≥3mg/dL) or with increased CRP (from 

<3mg/dL to ≥3mg/dL) over 6 years had a significantly increased risk of coronary heart 

disease (CHD) and mortality in the subsequent 14 years of follow-up compared with 

subjects having a constant low/moderate CRP level (<3mg/dL) [54]. Interestingly, the risk of 

CHD did not decrease in subjects with decreased CRP compared to those with constantly 

low/moderate CRP. In the Whitehall II study, while the concentrations of CRP over 15 years 

prior to fatal CHD were systematically higher as compared to controls, the slope of the CRP 

trajectories between the two groups did not differ [55]. Given these evidences, the question 

of the causality between CRP and incident CVD has been raised. In addition to biological 

plausibility, Mendelian randomisation studies suggest that the association between IL-6 

Receptor (IL-6R) pathway but not CRP and CHD could be causal [56–58]. In particular, a 

single nucleotide polymorphisms in the gene IL-6R rs7529229 was used to evaluate the 

efficacy and safety of IL-6R inhibition for primary prevention of coronary heart disease. The 

IL-6R rs7529229 SNP was associated with a decreased odds of CHD events [58]. This 

Mendelian randomisation approach is consistent with the cardiovascular protection induced 

by IL-6R blockade from infusion of Tocilizumab in patients with rheumatoid arthritis in 

randomised trials [59] and provides a much higher level of evidence on causal pathways than 

observational associations. This makes IL6 appear as a potential therapeutic target while 

CRP is more a marker of inflammation. These Mendelian randomization studies have also 

limitations; among them, they do not take into account interactions between the genome and 

environment (epigenetics), they might be confounded by the presence of other interacting 

genes [60], and only explain a very small risk (here 5%).

IL-1ß inflammation pathway as a target for CVD prevention?

Canakinumab is a specific antibody blocking the IL-1ß receptor and thus the inflammation 

pathway. CANTOS is the first randomized controlled trial that tested whether canakinumab 

anti IL-1ß could reduce the risk of recurrent CVD events in patients with prior myocardial 

infarction on optimal secondary prevention [61]. CANTOS demonstrated a 14-15% 

reduction in the combined primary end-point (nonfatal myocardial infarction, any nonfatal 

stroke, or cardiovascular death) in the canakinumab 150-300 mg groups. Interestingly, the 

treatment did not modify the risk of diabetes. The median concentration of CRP, but not of 

lipids, decreased significantly between 26% and 41% at 48 months according to the 

Canakinumab dose when compared to baseline value, with similar effects on IL-6 level. This 

indicates that this treatment may specifically impact the inflammation pathway in 

atherosclerosis with beneficial effect. The CIRT trial [62], tested whether low-dose 

methotrexate, a non-specific modulator of inflammation as compared to placebo reduced 

major vascular events among a group of post-myocardial infarction patients with either 

diabetes or metabolic syndrome. This trial was based on observational evidence of reduced 

cardiovascular events among patients with rheumatoid arthritis and psoriatic arthritis on 

treatment with methotrexate and on the ability of methotrexate to reduce TNFα, IL-6 and 

CRP levels. The CIRT trial failed to demonstrate a benefit with low-dose methotrexate 
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compared to placebo. The CANTOS trial is the first proof of concept that targeting 

inflammation through IL leads to improvement of cardiovascular outcome while CRP is a 

marker of the efficacy of the anti-inflammatory treatment.

Box 3

At the population level, IL-6 is the inflammatory biomarker demonstrating the most 

robust and independent association with incident CVD events. More data are needed to 

confirm that targeting inflammation pathways prevents recurrent CVD events.

Inflammation, salt, microbiota and arterial stiffness

The action of salt as a promotor of hypertension is often related to an increased stimulation 

of the Renin-Angiotensin-System and associated with volume expansion. Surfacing 

evidence attributes a vascular inflammation promotion effect for salt through IL-17 

stimulation. Salt promotes dedifferentiation of CD4+ cells into Th17 cells, responsible for 

the production of IL-17, which in turn plays a role in the control of renal tubular sodium 

transport channels. This salt-induced differentiation of immune cells promotes a pro-

inflammatory phenotype, ultimately leading to increased BP, target organ damage and 

increased arterial stiffness. In a recent meta-analysis, salt consumption reduction was 

associated with a decrease in pulse wave velocity (PWV), independently of BP [63].

The gut microbiome is a new dimension in cardiovascular research, with a mechanistic role 

being attributed to its capacity to interfere in the control of inflammation, glucose tolerance, 

insulin sensitivity and oxidative stress [64,65]. Recent evidence suggests a reverse 

association between the composition and diversity of gut microbiome and arterial stiffness in 

women [66]. Moreover, short-chain fatty acids, a product of gut microbial metabolism, 

reduce arterial stiffness and blood pressure in mice [67]. Factors such as dietary intake and 

promotion of biodiversity in the microbiotic component of the gut can interfere in the 

induction of a systemic inflammatory effect, depending on the ability of certain gut bacterial 

species to express pro-inflammatory metabolites [65,68]. In this regards, the gut-derived 

metabolite trimethylamine N-oxide has a role in the development of oxidative stress, 

vascular inflammation and dysfunction [65,69]. Gut microbiome may influence arterial 

stiffness through the metabolism of polyphenols and trimethylamine N-oxide [69], however, 

data from Pluznick on a mice model do not validate this concept since stiffness increase was 

only dependent on blood pressure changes [67]. These findings are particularly relevant 

considering that several strategies are proposed to modify the gut’s microbiota composition.

Box 4

Increased salt intake promotes the emergence of pro-inflammatory phenotypes. Models 

analysing the gut microbiome should be explored to uncover new pathways leading to 

reduction of inflammation-induced arterial stiffness and BP.
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Inflammation and vascular aging

Physiologically, the wall of large arteries lose elasticity over time. As consequence, arterial 

stiffening reduce the reservoir function of the conduct arteries and, through the increase of 

systolic and pulse pressure, has an impact on cardiac function, microcirculation and end 

organ functions. Inflammation can lead to an accelerated vascular aging through the 

alteration of the arterial wall properties and the increase of arterial stiffness [1,70]. A widely 

accepted mechanism by which vascular stiffness increases by aging and inflammation 

involves remodeling and content changes in the extracellular matrix (i.e., elastin and 

collagen). Current findings suggest that also the intrinsic stiffening of vascular cells and 

endothelial mechanisms may also contribute to the vascular aging [71,72].

Arterial inflammation and mechanical stress

The arteries are stretched under pulsatile conditions because of blood pressure and beating 

of the heart [73]. Stretch and resulting stresses act as major trophic factors and induce the 

activation of important signaling pathways [74]. Mechanical stress is also the main 

determinant of plaque rupture. The interaction between stress and stretch also defines 

arterial stiffness. The Moens-Korteweg equation shows that, conceptually,

PWV = E ⋅ ℎ
2 ⋅ r ⋅ ρ , (1)

with E the incremental Young’s modulus (a measure of material stiffness), h the wall 

thickness, r the inner wall radius, and ρ the blood mass density. E·h defines the structural 

stiffness of the wall. It follows that a PWV increase can be due to 1) an increase in E, 2) an 

increase in h (through hypertrophy and/or hyperplasia), and/or 3) a decrease in r.

Contrary to the global variable PWV, VSMCs sense and maintain local tensile 

(circumferential) stress (σ):

σ = p ⋅ r
ℎ . (2)

Physiologically, in order to maintain σ, in response to a pressure (P) increase a VSMC will 

show an adaptive response and produce matrix (↑h) to restore σ to its homeostatic value. To 

maintain σ, if P changes by a given factor, h should change by the same factor (given a 

constant r) [75].

In parallel, endothelial cells sense shear stress. Mean wall shear stress is approximately 

proportional to blood viscosity and volume flow rate, while inversely proportional to the 3th 

power of radius. Any change in radius will have consequences in term of exposure of the 

endothelium to high/low shear stress. Concentric remodeling (↑h and ↓r) will increase wall 

shear stress with subsequent secretion of endothelium derived factors which will dilate (and 

thin) the artery. Several factors (e.g., hypertension and aging) eventually lead to a loss of this 

dilatory mechanism (“endothelial dysfunction”). In other words, the structure of large (and 

small) vessels depends on the dynamic balance between tensile stress and wall shear stress, 

determined by changes in wall structure. The relation between shear stress and 

atherosclerosis has been extensively studied [76]. Atherosclerotic lesions tend to develop in 
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low shear/bidirectional/turbulent zones, particularly the inner curvature and bifurcations, 

explaining aggravating of lesions downstream of atherosclerotic stenosis. Furthermore, 

arterial stresses and stretches are pulsatile, significantly influencing the VSMC’s biological 

response to these stresses/stretches [77].

Inflammation leads to mechanical over-adaptation

Hypertension lead to media thickening by matrix deposition and/or VSMC hypertrophy. AII 

infusion in mice leads to a BP increase, but also has an inflammatory effect causing overa-

daptation: two weeks of AII infusion led to a mean blood pressure increase from 106 to 144 

mmHg (a factor 1.36), but caused thoracic aortic wall thickness to increase from 39 to 102 

μm (a factor 2.62) [78]. This in turn led to a decrease in σ and distensibility. Circumferential 

material stiffness (similar to E) did not change whereas structural stiffness (E·h) did increase 

due to the wall thickness increase, causing a sharp decrease in distensibility and a 

concomitant increase in PWV. The observed increase in wall thickness was partially due to 

medial hypertrophy (1.7-fold increase in medial cross-sectional area), but much more due to 

adventitial thickening (4.7-fold increase in adventitial area) caused by collagen deposition. 

Additionally, AII infusion leads to IL-6 production as well as macrophage recruitment and 

wall thickening, all mainly in the adventitia [79].

Inflammatory over-adaptation is regionally different along the aorta

In experimental models, AII infusion revealed regionally different effects along the aorta: 

proximal ascending thoracic aorta is prone to aneurysm development, whereas the 

suprarenal abdominal aorta is prone to dissection [79,80]. In all regions, with AII infusion, σ 
increased with BP during the first 7 days. After that, remodeling caused σ to decrease. In the 

infrarenal aorta, σ returned to pre-infusion values (adaptation), whereas in the other 

segments of the aorta, σ dropped below baseline (over-adaptation). The observed over-

adaptation and adventitial thickening directly correlated with the presence of adventitial 

CD45+ cells, indicating the key role of inflammation in mechanical over-adaptation. In the 

thoracic aortic regions, the presence of CD3+ cells tracked that of CD45+ cells, indicating 

involvement of T cells. Previous studies have shown a direct role of T cells in hypertension 

and in adventitial thickening of the descending thoracic aorta: in male recombination 

activating gene 1 knock-out mice (which do not produce mature B or T cells), AII infusion 

did not lead to excessive adventitial thickening and led to a blunted hypertensive response 

[81]. Arterial thickening (as well as the hypertensive response) was restored upon adoptive 

transfer of T cells (but not B cells).

Box 5

Arterial inflammation co-occurring with hypertension may cause arterial stiffening 

through an over-adaptative VSMC response.

Acute inflammation and arterial function

While infection is not synonymous of inflammation, the majority of data on the effect of the 

latter on arterial function have been derived from infection/vaccination studies. Data are 
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limited, but interestingly they are not limited to cross-sectional associations but extend to 

mechanistic studies that suggest cause-and-effect relationships between acute inflammation 

and endothelial dysfunction [86,87] whereas the link between acute inflammation and 

arterial stiffening is doubtful [88,89], likely because the mechanisms involved in stiffening 

have longer time constants. The short duration and reversibility of inflammation does not 

affect negatively prognosis in infection/vaccination models [84].

Prophylaxis-reversal of arterial damage caused by acute inflammation

The acute impairment of endothelium-dependent dilatation (both conduit arteries and 

resistance vessels), the increase of arterial stiffness and the reduction of wave reflection 

(augmentation index, Aix) returned to normal 32 hours after vaccination [87,89]. Based on 

the inflammation/vaccine model, aspirin and statins have shown a protective effect on 

endothelial function and aortic stiffness [89,90], whereas the impact of exercise on 

endothelial function and arterial stiffness/wave reflection indices is doubtful [88,91,92].

Mechanisms of acute inflammation-induced vascular dysfunction

We have several clues about the mechanisms involved in the stiffening caused by acute 

inflammation. Adhesion molecules and tight junctions increasing the links between VSMC 

and the extracellular matrix, together with intrinsic VSMC stiffness can change in the short 

term. Inflammatory markers/mediators, such as IL-6, as well as MMP-9, were reversibly 

increased 8 hours after vaccination, whereas CRP levels sloped upwards 32 hours post-

vaccination [89]. Similar responses of IL-6 to the Salmonella Typhi vaccine have been 

repeatedly shown [87,89,90]. However, while pre-treatment with oral aspirin abrogated the 

effect on aortic stiffness, IL-6 still increased [89], suggesting that other cytokines, such as 

IL-1, could be involved. The cytokine response was neither prevented by pretreatment with 

statins in hypercholesterolaemic patients, while the endothelial function deterioration was 

abrogated [90]. On the other hand, only in the placebo arm and not in the statin pretreatment 

arm, a reduction of NO metabolites and total antioxidant capacity was observed [90], 

implying involvement of NO bioavailability and antioxidant status.

In the salmonella vaccine model, asymmetric dimethylarginine, an endogenous L-arginine 

analogue that interferes with L-arginine for NO production, increased in healthy subjects, in 

whom a reduction in flow mediated dilatation (FMD) was observed, while it did not in 

coronary artery disease patients in whom FMD reduction was marginal [93]. Reduction of 

FMD in vaccinated healthy subjects is correlated with an increase of tetrahydrobiopterin, a 

cofactor necessary for the production of NO and a possible defence mechanism against 

inflammatory challenges.

Box 6

In infection/vaccination studies, acute inflammation leads to endothelial dysfunction.
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Low-grade chronic inflammation and vascular diseases

Transplant arteriosclerosis

The immune response to endothelial and VSMCs contributes to acute and chronic graft 

failure of transplanted solid organs. T and B cells of the adaptive immune system, activated 

by graft-derived antigens, lead to the development of transplant arteriosclerosis, a vascular 

condition characterized by intimal hyperplasia, alteration of extracellular matrix 

composition, vasodilatory dysfunction, lipid deposition, and intraplaque haemorrhage [94]. 

Transplant arteriosclerosis is mediated by cytokines that stimulate the migration and 

activation of T cells into allograft arteries and promote VSMCs proliferation and endothelial 

dysfunction (i.e., IFNγ, IL-1, IL-17 and TNFα), and antibodies that facilitate immune cell 

transmigration into the arterial wall and amplify T cell responses to allograft arteries through 

the up-regulation of cell adhesion molecules and von Willebrand factor and the increase of 

the antigen-presenting capabilities of the endothelium.

Periodontitis inflammation and cardiovascular diseases

Periodontitis is a highly prevalent and multifactorial chronic low-grade inflammatory 

condition associated with dysbiotic plaque biofilms and destruction of the tooth-supporting 

apparatus. Patients with periodontitis have more coronary events and stroke compared to 

non-periodontal disease subjects [95,96]. Chronic low-grade inflammation can explain the 

increased CV risk reported in these patients through the development of endothelial 

dysfunction, impaired arterial stiffness and greater carotid intima-media thickness (IMT) 

[97,98].

Several mechanisms have been proposed to explain the link between periodontitis, vascular 

dysfunction and CV events. Periodontal pathogens can enter the bloodstream through the 

abundant gingival vasculature surrounding the teeth and activate the host inflammatory 

response. Constant bacteraemia has been shown in everyday life events such as chewing or 

tooth brushing. However, the intensity and the frequency of the bacteraemia is higher in 

periodontitis patients than in control. Different pathophysiological mechanisms have been 

suggested. The direct model deals with the invasion of the vascular endothelium by 

pathogenic bacteria such as Porphyromonas gingivalis. This interpretation is supported by an 

increased production of innate immune markers such as ICAM family proteins, pro-

inflammatory cytokines and chemokines, leading to an immunological switch of endothelial 

cells from a normal anti-thrombotic to a pro-thrombotic state. Periodontal pathogens have 

been identified in atheromatous plaques [99], can directly invade endothelial cells leading to 

vascular inflammation [100], and trigger an innate [101] or auto-immune response [102]. 

Animal studies indicate that infection with periodontal pathogens, Porphyromonas gingivalis 
in particular, can support the formation of atheromatous plaques. The indirect model is 

based on the upregulation of inflammatory cascades involving TNFα, IL-1, IFs, IL-8, 

monocyte chemoattractant protein-1, and CRP, which are elevated in periodontitis patients. 

Further, there is evidence of a neutrophil hyperresponsiveness in periodontitis patients 

leading to an increased production/activity of ROS than in healthy controls [103]. Finally, 

recent studies indicates common genetic locus associated with coronary artery disease and 

periodontitis.
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Taken together, the above data strongly suggest that periodontitis is an independent 

contributor to systemic inflammation, and may serve as a model to explore the biological 

relationship between low-grade chronic inflammation and vascular diseases.

Periodontitis is a treatable disease. The treatment is based on the reduction of the periodontal 

bacterial load. Intervention trials suggest that periodontal therapy improves endothelial 

function and intima media thickness (IMT) and reduces TNFα and CRP [104–106]. A 

significant decrease in fibrinogen levels and platelet activation have been also reported 

following periodontal therapy. Similarly, the hyper-reactivity of the peripheral blood 

neutrophils by periodontal bacteria is also reduced by lowering the bacterial load through 

periodontal therapy.

Box 7

Transplant arteriosclerosis is mediated by cytokines and antibodies that lead to VSMCs 

proliferation and endothelial dysfunction. There is a large body of evidence that links 

periodontitis to cardiovascular diseases. Periodontal therapy reduces chronic 

inflammation and improves vascular function.

Chronic severe inflammation and arterial function

The risk of cardiovascular events is higher among subjects with chronic severe 

inflammation, such as those with inflammatory bowel disease (IBD), rheumatoid arthritis 

(RA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). However, only part 

of the excess in cardiovascular risk reported in these patients can be explained by classical 

cardiovascular risk factors, suggesting that additional mechanisms are involved.

Recently, it has been reported in several meta-analyses of cross-sectional studies that aortic 

PWV and AIx are significantly increased in patients with IBD [107–109], RA [110], SLE 

and SSc [111,112]. Few cross-sectional studies suggest that muscular artery stiffness is 

increased in these patients [110,113–116]. In patients with severe chronic inflammation, also 

other alterations of the arterial wall (reduced FMD and increased carotid IMT) are reported 

[109,112,117–120]. Taken together, current data suggest that chronic severe inflammation 

can lead to functional and structural arterial stiffening (Table 1). Moreover, as suggested by 

interventional longitudinal studies performed in these patients (see above), the increased 

arterial stiffness is, at least in part, related to TNFα processes (Figure 3).

Several markers of inflammation are associated with alterations of arterial structure and 

function in patients with chronic severe inflammation. In a multicentre longitudinal study, 

aortic PWV was increased in IBD patients with active disease and was reduced in those in 

remission during a follow up of 4 years [121]. Disease duration is associated negatively with 

FMD in patients with SLE [122], positively with IMT in patients with RA and SLE 

[123,124], and positively with carotid-femoral PWV in patients with IBD and SLE 

[108,111]. Patients with a longer disease duration are exposed to a significantly higher 

amount of inflammation than patients with short disease duration. Other factors associated 

with alterations of arterial structure and function in patients with chronic severe 
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inflammation are erythrocyte sedimentation rate [124], CRP [110], scores of disease activity 

[110,124], and leucocyte count [108].

Box 8

Chronic severe inflammation is associated with increased artery stiffness. Both functional 

and structural arterial stiffening processes can be involved in these patients.

Primary systemic vasculitides and arterial structure and function

Arteries can be the principal target of inflammation during primary systemic (non-

infectious) vasculitides (PSV). The mechanisms involved in the pathogenesis of vascular 

wall inflammation include endothelial dysfunction, autoantibody-mediated or -associated 

vascular damage, immune complex formation and complement activation [128]. The main 

vascular consequences involve a loss of vessel wall integrity and/or lumen compromise of 

the microcirculation, as well as, thrombosis and aneurysm rupture of the macrocirculation. 

As a result, there is an increased incidence of cardiovascular events (coronary artery disease, 

stroke, aneurysm rupture) and mortality in most PSV [129,130]. In each of them, intense 

inflammation can promote atherosclerosis and arteriosclerosis even in unaffected vessels. 

The arterial disease observed even in PSV patients free of overt PSV-related complications 

include increased IMT and arterial stiffness (Table 2) [131]. Taken together, functional and 

structural abnormalities of the macrocirculation can be observed in all types of PSV, 

independently of the size of vessel involved in the primary inflammatory process of the 

vasculitis. Whether similar systemic lesions exist in the microcirculation (e.g., retina) of all 

patients with PSV is poorly investigated. The potential mechanisms underlying this 

association are reported in Figure 4.

The clinical implications of accelerated atheromatosis and arteriosclerosis in PSV are poorly 

studied. It is likely that vascular pathologies in PSV patients contribute significantly to the 

increased incidence of cardiovascular morbidity and mortality. It has been also suggested 

that the reversibility of functional properties might be an useful marker of remission or 

activity in PSV [131].

Box 9

An acceleration of arteriosclerosis and atheromatosis have been reported in PSV due to 

the response to local vessel wall inflammation. The underlying causes of these systemic 

macrovascular effects and their potential clinical implications should be better 

investigated.

The effect of anti-inflammatory therapies on arterial stiffness in patients 

with chronic inflammation

Many studies have investigated the effect of anti-inflammatory drugs on arterial stiffness in a 

variety of chronic inflammatory conditions [121,132–142]. Classical non-steroid and steroid 
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anti-inflammatory drugs have not shown protective effects against arterial stiffening, likely 

because of their mode of action leading to an adverse cardiovascular risk profile (inhibition 

of prostaglandin secretion, mineral-corticoid action of glucocorticoids leading to an increase 

in blood pressure). Recently, anti-inflammatory drugs have been developed which target 

more specific pathways. In a recent meta-analysis performed in patients with RA, aortic 

PWV and AIx improved following anti-TNFα therapy independently of age and clinical 

response to treatment [132]. Similarly, in 55 patients with inflammatory arthritis, a 1-year 

treatment with anti-TNFα therapy, but not placebo, led to a slowing of aortic stiffness and 

carotid IMT progression [133]. Contrary to anti-TNFα agents, the effect of IL-6R antagonist 

tocilizumab on aortic PWV is not clear in patients with RA [134,135].

In psoriasis patients, global longitudinal strain, left-ventricular twisting and coronary flow 

reserve were improved after 4 months of treatment with anti-IL-12/23 agent (ustekinumab), 

anti-TNFα treatment (etanercept), or cyclosporine with the greatest improvements seen in 

the ustekinumab group [136]. Interestingly, PWV and AIx were only improved by 

ustekinumab. This could potentially be explained by the fact that IL-12 signalling plays an 

integral part in the pathogenesis of psoriasis and hence inhibition of IL-12 would have a 

greater benefit in the vasculature in this particular patient cohort. In another study performed 

in 29 patients with moderate to severe psoriasis, 6 month-treatment with anti-TNFα 
monoclonal antibody adalimumab led to an improvement of FMD and a reduction of PWV 

[137].

In a recent multicentre longitudinal study [121], PWV increased during 4 years of follow-up 

in IBD patients treated with salicylates and was reduced in those treated with anti-TNFα 
therapy. The effect of anti-TNFα therapy was more evident in patients with a recent (<4 

years) diagnosis of IBD [138]. These data are in accordance with two meta-analyses 

[139,140] and suggest that a better and early control of inflammation can help to slow down 

aortic stiffening over time together with improving the disease.

In patients with ankylosing spondylitis, despite significant improvement in markers of 

disease activity and inflammation, anti-TNFα therapy did not reduce arterial stiffness [141]. 

These somewhat unexpected results could potentially be due to a low baseline PWV in these 

relatively young subjects.

Finally, it has been recently shown that inhibiting IL-1B by canakinumab [61] led to 

reduction in cardiovascular event rate in patients with atherosclerosis (see above for details). 

The effect of this class of drugs on arterial stiffness (and/or IMT or endothelial function) is 

not reported so far, however only weak correlations between arterial stiffness and IL-1B 

were found in cohort studies [142].

The mechanisms by which anti-inflammatory therapies lead to a reduction of arterial 

stiffness (Figure 3) derive from what we know through animal models. Potentially, treatment 

with anti-inflammatory drugs (i.e., anti-TNFα), leading to reduced release of cytokines, 

could lead to beneficial changes in the arterial wall composition via improvement of 

endothelial function, reducing direct vascular inflammation and hence reducing the number 

of inflammatory cells present within the aortic wall, or via changes in the arterial wall 
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properties, such as inhibition of smooth muscle cell proliferation, changes in 

glycosaminoglycan content of the extracellular matrix, reduction of calcification and 

inhibition of elastin degrading matrix metalloproteinase synthesis [143]. What is missing 

here is the time constant of these phenomena, compared with the very long time constant of 

arterial remodelling [144]. Despite the crucial role of oxidation in the pathophysiology of 

vascular lesions due to inflammation, attempts at enhancing endogenous antioxidant 

substances or supplementation with antioxidants have not shown positive effects on 

cardiovascular events despite demonstrated short term effects [145].

Together with the potential benefits on vascular dysfunction and cardiovascular events, also 

the potential side effects of drugs affecting the immune processes should be considered. In 

this regards, several immunosuppressive drugs, including anti-TNFα, anti-IL-12/23, anti-

IL-1B and anti-IL-6R, reducing the activity of the immune system may lead to an increased 

risk for opportunistic infections; most of these drugs (with the exception of anti-IL-1B) have 

been also associated with an increased risk for cancer. Moreover, the IL-6R antagonist 

tocilizumab lead also to a reduction of lipoprotein(a), increase in LDL and reduction in 

HDL, as well as modification of inflammatory and thrombotic markers. Therefore, the net 

effect of cardiovascular benefits and/or risks of tocilizumab remains unclear.

Box 10

Numerous anti-inflammatory treatments have been shown to be beneficial in reducing 

arterial stiffness in patients with chronic inflammatory conditions. The mechanism by 

which these drugs lead to a reduction of arterial stiffness may include: improvement of 

endothelial function, beneficial changes in the arterial wall components, inhibition of 

matrix metalloproteinases and reduction of arterial wall inflammation.

Conclusion

Inflammatory processes profoundly disrupt arterial physiology and promote both 

arteriosclerosis and atherosclerosis. The inflammatory process induces most of its adverse 

effects through oxidative stress and production of ROS. With aging and progression of 

vascular disease, production of ROS increases and protection mechanisms are altered. Innate 

and adaptive immunity plays a prominent role in the pathophysiology of hypertension and 

mediates at least part of the adverse effect of renin-angiotensin system activation on arteries 

and CV system. Inflammation may result from unsuccessful adaptation of the human body 

to its environment, and particularly to the microbiota, both in gut and in the mouth. The 

dietary changes (sodium load and protein intake) on microbiota may induce systemic low-

grade inflammation and promote vascular damage. Atherosclerosis is now considered as a 

predominantly inflammatory disease involving innate and adaptive immunity. Most of the 

inflammatory cascades are activated in atherosclerosis primarily for clear oxidized LDL 

from the arterial wall. A positive feedback links excessive transfer of cholesterol via LDL, 

insufficient clearance of ox-LDL and focal deposition of cholesterol with subsequent 

inflammation and immune activation. Major cytokines are elevated in atherosclerosis and 

arteriosclerosis. Great effort has been made toward identifying key cytokines as therapeutic 
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targets, with IL-1β being the most promising. Certain components of the inflammatory 

response may have cytotoxic effects, such as CRP. The role of mechanical factors by 

themselves has been largely overlooked. Mechanical factors such as pressure, heart rate and 

blood flow are strong determinants of the trophic response of the arterial wall, and promote 

transfer of macromolecules and cells to the wall. On the other hand, inflammatory 

remodelling directly alters these factors. As such, they may (partially) explain the relation 

between microvascular and macrovascular aspects of arterial lesions.

Epidemiological and clinical evidence of the link between inflammation, either low grade, 

acute, chronic, focal or systemic, and arterial lesions is overwhelming. We have only 

presented some aspects of the many links, several others could have been included in this 

review. Considering that aortic PWV is a vascular biomarker and a CV risk factor [146,147], 

increased aortic stiffness could be used to pinpoint subjects with low grade or severe 

inflammation who are at increased cardiovascular risk. We have already reported that low-

grade and severe inflammation lead to vascular disease. Therefore, considering that the risk 

of CVD in subjects with chronic inflammation is increased, their management should not be 

limited to control the inflammatory manifestations of disease, but rather, in a preventative 

and proactive action, also aimed at identifying subjects with a higher risk of developing 

CVD, such as those with hypertension and increased aortic stiffness. Currently, there are no 

specific indications for the management of the CVD risk in patients with inflammation. 

Therefore, these subjects should be treated according to the grade of arterial hypertension 

and the presence of further risk factors.

Further studies could be needed to test whether inflammation can be implemented in 

algorithms for CVD risk prediction. Many links, however, are still indirect and need to be 

further validated. One of the methodological difficulty is that proxies are used both for 

inflammation and cardiovascular lesions. Biological biomarkers only represent a snapshot of 

selected inflammatory markers. When linking inflammatory biomarkers with cardiovascular 

events, one should keep in mind that those remain proxies for complex and pleiotropic 

inflammatory processes, that are highly variable between and within persons. Similarly, 

biomarkers of arterial lesions such as endothelial dysfunction or arterial stiffening are less 

variable in time, but are influenced by many factors, such as blood pressure, aging and 

neuroendocrine status, which have been shown to influence the effect of acute inflammation 

on the vasculature. Even evidence from interventional trials do not provide a definitive proof 

of a causal relationship between inflammation and arterial lesions. For instance, 

microorganisms are known to cause severe arterial lesions (streptococcus, treponema 

pallidum, mycotic aneurysms, tuberculosis, etc.). However, the mechanisms by which 

infection can lead to arterial lesions are complex, as for periodontitis (immunologic, 

circulating microorganisms?). Whether less severe infections and bacteraemia can lead to 

arterial lesions (microorganisms can be present in the arterial wall) remains an open 

question. Finally, fluoroquinolones increase the risk of aortic dissection and rupture by 

activating MMP expression in fibrous tissues [148]. Other anti-inflammatory drugs such as 

anti-IL-6 tocilizumab have an unfavourable metabolic profile that could counteract their 

positive anti-inflammatory effects. This further illustrates the complex relationship between 

inflammation, infection and some anti-infectious agents.
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A clear benefit is added when the evaluation of CVD risk is done through an objective 

measurement of intermediate end points associated to arterial function, such as arterial 

stiffness (PWV) and others (FMD, carotid IMT). An added and very important argument for 

this strategy is that patients may have their manifestations of inflammation controlled, 

maintaining a persistent low-grade inflammatory activity (with no clinical indication for any 

added medical intervention), that will keep fuelling vascular structural modifications. This 

can be followed and evaluated with consecutive measures of arterial function indexes 

(namely PWV), identifying patients that have increasing cardiovascular risk despite 

apparently controlled inflammation [149].
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Figure 1. Proposed mechanisms by which the immune system is activated in hypertension. IL, 
interleukin; ROS, reactive oxygen species; Th, T helper cell; TNFα, tumor necrosis factor-alpha.
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Figure 2. 
Biological effects of inflammatory biomarkers on the cardiovascular system. CRP, C-

reactive protein; ICAM, intercellular adhesion molecule; IL, interleukin; MCP, monocyte 

chemoattractant protein; NO, nitric oxide; VCAM, vascular cell adhesion molecule; VEGF, 

vascular endothelial growth factor.
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Figure 3. 
Potential mechanisms by which inflammation could induce functional and structural arterial 

stiffening and how this process could be reverted by anti-TNFα drugs. eNOS, endothelial 

nitric oxide synthase; H2O2, hydrogen peroxide; IL-1, interleukin-1; MMPs, matrix 

metalloproteinases; NO, nitric oxide; O2-, superoxide; ROS, reactive oxygen species; SMC, 

smooth muscle cell; TIMP, tissue inhibitor of matrix metalloproteinases; TNFα: tumour 

necrosis factor alpha. Adapted from Zanoli L et al. [150].
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Figure 4. Potential mechanisms leading to the acceleration of atheromatosis and arteriosclerosis 
in primary systemic vasculitidies (PSV). Adapted from Argyropoulou OD et al.[131].
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Table 1
Available evidence on arterial damage in subjects with chronic severe inflammation [96–
108].

Disease Endothelial
dysfunction

Accelerated
atheromatosis

Accelerated
arterial stiffening

Elastic arteries
(aorta)

Muscular arteries
(brachial artery)

IBD +++ [109] +++ [109] +++ [108] +[113,114]

RA +++ [117] +++ [118] +++ [110] + [110]

SLE +++ [120] +++ [119] +++ [111] + [115]

SSc +++ [112] +++ [112] +++ [112] + [116]

IBD, inflammatory bowel disease; RA. Rheumatoid arthritis; SLE, systemic lupus erythematosus; SSc, systemic sclerosis;

+
data derived from few single centre cohorts;

+++
evidence based on meta-analyses.
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Table 2
Available evidence on arterial damage in primary systemic vasculitides (PSV) (table 
modified by Argyropoulou OD et al. [131]).

Disease Accelerated
atheromatosis

Accelerated
arterial stiffening

Large vessel PSV

  Takayasu arteritis ++ +

  Giant cell arteritis ++ +

Medium vessel PSV

  Polyarteritis nodosa ° °

  Kawasaki disease ++ ++

Small vessel PSV

  ANCA-associated* ++ +

  IgA (Henoch Schonlein) ° °

  Cryoglobulinemia ° °

Variable size PSV

  Behcet’s disease +++ +++

  Cogan’s syndrome ° °

ANCA, anti-neutrophil cytoplasmic antibodies; PSV, primary systemic vasculitides; °, lack or scarce data;

+
data derived from few single center cohorts;

++
large number of evidence derived from multiple single center cohorts;

+++
evidence based on meta-analysis;

*
the evidence concern granulomatosis with polyangiitis vasculitis (previously known as Wegener’s).
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