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Abstract

Automatic detection of anatomical landmarks is an important step for a wide range of applications 

in medical image analysis. Manual annotation of landmarks is a tedious task and prone to observer 

errors. In this paper, we evaluate novel deep reinforcement learning (RL) strategies to train agents 

that can precisely and robustly localize target landmarks in medical scans. An artificial RL agent 

learns to identify the optimal path to the landmark by interacting with an environment, in our case 

3D images. Furthermore, we investigate the use of fixed- and multiscale search strategies with 

novel hierarchical action steps in a coarse-to-fine manner. Several deep Q-network (DQN) 

architectures are evaluated for detecting multiple landmarks using three different medical imaging 

datasets: fetal head ultrasound (US), adult brain and cardiac magnetic resonance imaging (MRI). 

The performance of our agents surpasses state-of-the-art supervised and RL methods. Our 

experiments also show that multi-scale search strategies perform significantly better than fixed-

scale agents in images with large field of view and noisy background such as in cardiac MRI. 

Moreover, the novel hierarchical steps can significantly speed up the searching process by a factor 

of 4 − 5 times.
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1 Introduction

Accurate detection of anatomical landmarks from medical images is an essential step for 

many image analysis and interpretation methods. For instance, the localization of the 

anterior commissure (AC) and posterior commissure (PC) points in brain images is required 

to obtain the optimal view of the mid-sagittal plane. This can be used as an initial step for 

image registration (Ardekani et al., 1997) or for the identification of pathological anatomy 

(Stegmann et al., 2005). Another example is the automated localization of standard views 

such as 2- and 4-chamber views in cardiac MRI examinations. This usually requires 

1 https://github.com/yuanwei1989/landmark-detection 
2 http://www.ifindproject.com/ 
3 https://git.io/fNUoS 

Europe PMC Funders Group
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2021 May 10.

Published in final edited form as:
Med Image Anal. 2019 April 01; 53: 156–164. doi:10.1016/j.media.2019.02.007.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/yuanwei1989/landmark-detection
https://www.ifindproject.com/
https://git.io/fNUoS


automatic landmark detection (Le et al., 2017; Lu et al., 2011) as a key step. Such view 

planning is important for consistent evaluation of different patients using standardized 

biometric measurements (Alansary et al., 2018). Landmark localization can also be used to 

initialize deformable models and atlas-based approaches for the evaluation of cardiac 

ventricular health (Bai et al., 2013). Furthermore, in fetal imaging, anatomical landmarks are 

used for estimating qualitative scores of fetal biometric measurements, such as: fetal growth 

rate, gestational age, and to identify abnormalities (Rahmatullah et al., 2012). They are also 

required in order to identify standardized views such as transventricular and transcerebellar 

planes, which are commonly used in clinical practice for fetal health screening (Li et al., 

2018).

Since manual landmark annotation is time consuming and error prone, automatic methods 

were developed to tackle this problem. The design of such methods is challenging due to 

variable organ morphology, orientation, pathology, and image quality. Inspired by (Ghesu et 

al., 2016), we formulate the landmark detection problem as a sequential decision making 

process of a goal-oriented agent, navigating in an environment (the acquired image) towards 

a target landmark. At each time step, the agent decides which direction it has to proceed 

towards an optimal path to the target landmark. We use reinforcement learning (RL) to learn 

an approximation of the optimal solution of this sequential decision making process. One of 

the main advantages of applying RL to the landmark detection problem is the ability to learn 

simultaneously both a search strategy and the appearance of the object of interest as a 

unified behavioral task for an artificial agent. This approach does not require hand-crafted 

features and can be trained end-to-end. RL has the power to perform in a partial field-of-

view or with incomplete data, which can be useful for real-time applications.

The main contributions of this work can be summarized as follows: (I) We propose and 

demonstrate use cases of several different deep Q-network (DQN) based models for 

anatomical landmark localization. (II) We investigate a fixed-and multi-scale search strategy 

for the optimal path with novel hierarchical action steps for agent based landmark 

localization frameworks. (III) We extensively evaluate the performance of the proposed 

agents by running multiple experiments on different MRI and US images in Section 5, 

outperforming state-of-the-art. (IV) We publish the first open source code of RL agents for a 

medical imaging task, which can accelerate significantly the potential application of RL to 

medical imaging.

2 Related work

Typical landmark localization methods can be categorized into three approaches: 

registration, appearance-based and image-based. The first category depends on robust rigid 

or non-rigid image registration techniques to match corresponding points of interest between 

target and reference images (Potesil et al., 2010; Rueckert et al., 2003). Appearance-based 

methods rely on spatial priors that capture the location of different landmarks by learning an 

appearance model (Milborrow & Nicolls, 2014; Potesil et al., 2015; Zhou et al., 2009). 

Image-based methods learn a set of image features located around the anatomical landmarks 

(Betke et al., 2003).
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In the literature, most of the published works have adopted machine learning algorithms for 

landmark detection by learning a combined appearance and image based model. For 

example, Criminisi et al. (2013); Han et al. (2014) proposed a regression forest-based 

landmark detection approach to locate organs in full-body CT scans and Brain MRI, which 

uses Haar-like appearance features. Despite being fast and robust, this approach achieves 

less accurate localization results for larger organ structures. Gauriau et al. (2015) extended 

the work of (Criminisi et al., 2013) by incorporating statistical shape priors derived from 

segmentation masks with cascaded regression. Oktay et al. (2017) used a stratificationbased 

training model for a decision forest, where the latent variables within the stratified trees are 

probabilistic. Štern et al. (2016); Urschler et al. (2018) proposed a unified random forest 

framework combining appearance information with geometrical distribution of landmark 

points. These methods achieve robust results for locally similar structures by learning 

particular hand-crafted features, extracted from training data. However, the design of such 

features requires prior knowledge about the points of interest.

With the success of deep learning in different image-based applications, Zheng et al. (2015) 

proposed a two-stage approach for landmark detection using convolutional neural networks 

(CNNs). The first stage comprises of a shallow network with one hidden layer that is used to 

extract a number of 3D point candidates using a sliding window. This is followed by a 

deeper network, which is applied on image patches extracted around the selected points. 

Zhang et al. (2017) proposed a similar approach utilizing two CNNs to learn 3D 

displacements to a common template, which is followed by another convolutional layer for 

predicting the coordinates of multiple landmarks jointly. The first network is trained using 

image patches, whereas the second network shares the same weights from the first network 

with extra layers. The second network is trained using the whole image instead of patches to 

learn global information on top of the local information learned by the first network. Payer 

et al. (2016) adopted a CNN to model spatial configurations to detect multiple landmarks. 

The first block of their architecture generates local appearance heatmaps for individual 

landmark locations. Subsequently, the relative position of a single point with respect to the 

rest of the landmarks is learned through another convolutional kernel. The final heatmap 

combines both local appearance and spatial configuration between all landmarks. In order to 

capture global as well as local information, Andermatt et al. (2017) presented a method 

based on multi-dimensional gated recurrent units combining two recurrent neural networks. 

The first network detects a candidate region around the point of interest followed by a 

second network for more accurate localization. All previous methods rely on learning the 

search strategy and localization in two stages. This may increase the possibility that the 

second stage misclassifying multiple candidates from the output of the first stage as positive.

Ghesu et al. (2016) adopted a deep RL-agent to navigate in a 3D image with fixed step 

actions for automatic landmark detection. The artificial agent tries to learn the optimal path 

from any location to the target point by maximizing the accumulated rewards of taking 

sequential action steps. Xu et al. (2017), inspired by (Ghesu et al., 2016), proposed a 

supervised method for action classification using image partitioning. Their model learns to 

extract an action map for each pixel of the input image across the whole image into 

directional classes towards the target point. They use a fully convolutional network (FCN) 

with a large receptive field to capture rich contextual information from the whole image. 

Alansary et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2021 May 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Their method achieves better results than using an RL agent, however, it is restricted to 2D 

or small sized 3D images due to the computational complexity of 3D CNNs. In order to 

overcome this additional computational cost, Li et al. (2018); Noothout et al. (2018) 

presented a patch-based iterative CNN to detect individual or multiple landmarks 

simultaneously. Furthermore, Ghesu et al. (2017, 2019) extended their RL-based landmark 

detection approach to exploit multi-scale image representations.

3 Background

Machine learning enables automatic methods to learn from data to either make a decision or 

take an action. Broadly, machine learning algorithms can be classified into three main 

categories: unsupervised, supervised and reinforcement learning. Unsupervised learning 

methods rely on exploring and inferring hidden structures from unlabelled data. In a 

supervised manner, the learning is done from a training set of labeled examples provided by 

an expert. RL involves learning by interaction with an environment, which allows artificial 

agents to learn complex tasks that may require several steps to reach a solution (Sutton & 

Barto, 1998). RL has been applied to several medical imaging applications such as landmark 

detection (Ghesu et al., 2017, 2016, 2019), tissue localization (Maicas et al., 2017) and 

segmentation (Sahba et al., 2006; Shokri & Tizhoosh, 2003), image registration (Krebs et al., 

2017; Liao et al., 2017), and view planning (Alansary et al., 2018), see Figure 1. In this 

section, we will give a brief overview of the theory behind RL followed by the application of 

deep learning to approximate a solution for the RL problem.

3.1 Reinforcement Learning

Inspired by behavioral psychology, RL can be defined as a computational approach for 

learning by interacting with an environment so as to maximize cumulative reward signals 

(Sutton & Barto, 1998). A learning agent interacts with an environment E at every state s. A 

single decision is made to choose an action a from a set of multiple discrete actions A. Each 

valid action choice results in an associated scalar reward, defining the reward signal, R. This 

sequential decision making can be formulated as a Markov decision process (MDP), where 

each st and at are conditionally independent of all previous states and actions holding the 

Markov assumption. The main goal is to learn an optimal policy that maximizes not only the 

immediate reward but also subsequent future rewards. The optimal function can be 

computed directly given the whole MDP using dynamic programming. However, in many 

applications (including in medical imaging) the MDP is usually incomplete, where the agent 

cannot directly observe all states. RL approximates the optimal function iteratively by 

sampling states and actions from the MDP, and learning from experience. There are several 

algorithms to solve an RL problem such as certainty equivalence, temporal difference (TD) 

and Q-learning. Because of the recent success of employing Q-learning in medical imaging 

applications (Alansary et al., 2018; Ghesu et al., 2017, 2016, 2019; Krebs et al., 2017; Liao 

et al., 2017; Maicas et al., 2017; Sahba et al., 2006), we adopt the common strategy of Q-

learning-based methods as a solution for the RL problem formulation of landmark detection.

3.1.1 Q-Learning—Learning an optimal RL policy is defined as learning to map a given 

state to an action by maximizing the sum of numerical rewards r seen over the agent’s 
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lifetime. The optimal action-selection policy can be identified by learning a state-action 

value function Q(s,a) (Watkins & Dayan, 1992), which measures the quality of taking a 

certain action at in a given state st The Q-function is defined as the expected value of the 

accumulated discounted future rewards E rt + 1 + γrt + 2 + ⋯ + γn − 1rt + n ∣ s, a  γ ∈[0,1] is a 

discount factor that is used to weight future rewards accordingly. It can represent the 

uncertainty in the agent’s environment by providing a probability of living to see the next 

state. This value function can be unrolled recursively (using the Bellman Equation Bellman 

(2013)) and can thus be solved iteratively:

Qi + 1(s, a) = E r + γmax
a′

Qi s′, a′ , (1)

where s’ and a’ are the next state and action. We can find the optimal action for each state by 

solving Equation 1. The optimal action will have the highest long-term reward Q*(s, a).

3.1.2 Deep Q-Learning—The advent of deep learning has fuelled the current highly 

active RL research field. Mnih et al. (2015) proposed using a deep CNN to approximate Q(s, 
a) ≈ Q(s, a; ω), where ω represents the network parameters. This is known as deep Q-

network (DQN), and achieved human-level performance in a suite of Atari games. 

Approximating the Q-value function in this manner allows the network to learn from large 

data sets using mini-batches. A naïve implementation of DQN suffers from instability and 

divergence issues because of: (i) the correlation between sequential samples, (ii) rapid 

changes in Q-values and the distribution of the data, and (iii) unknown reward and Q-values 

range that may cause large and unstable gradients during backpropagation. This can be 

tackled (Mnih et al., 2015) by using a target Q(ω−) network that is periodically updated with 

the current Q(ω) every n iterations, where ω− represents the frozen weights of the target 

network. Freezing the target network during training stabilizes rapid policy changes. To 

avoid the problem of successive data sampling, an experience replay memory (D) (Lin, 

1993) can be used to store transitions of [s, a, r, s’] and randomly sampling mini-batches for 

training. The approximation of best parameters ω* can be learned end-to-end using 

stochastic gradient descent (SGD) of the derivative of the DQN loss function δL(ω)
δω , where:

LDQN(ω) = Es, r, a, s′ ∼ D r + γmax
a′

Q s′, a′; ω− − Q(s, a; ω)
2

. (2)

In order to prevent Q-values from becoming too large, also to ensure that gradients are well-

conditioned, rewards r are clipped between [−1,+1]. This trick works for most of the 

applications in practice, however, it may have the drawback of not differentiating between 

small and large rewards. We outline below two recent state-of-the-art improvements to the 

standard DQN, and evaluate them experimentally in Section 5.

3.1.3 Double DQN (DDQN)—In noisy stochastic environments, DQN (Mnih et al., 

2015) sometimes significantly overestimates the values of actions (Hasselt, 2010). This is 

caused by a bias introduced from using the maximum action value as an approximation for 
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the maximum expected value. The max operator, max Q(s’,a’; ω−), uses the same values to 

select and evaluate an action resulting in selecting overestimated (overoptimistic) values. 

Hasselt (2010); Van Hasselt et al. (2016) proposed a solution, a double DQN (DDQN), to 

mitigate bias by decoupling the selected action from the target network. Thus, the current 

network is used for the action selection resulting in a modified loss function:

LDDQN(ω) = Es, r, a, s′ ∼ D r + γmax
a′

Q s′, Q s′, a; ω ; ω− − Q(s, a; ω)
2

. (3)

DDQN improves the stability of learning and may translate to the ability to learn more 

complex tasks. The results of DDQN (Van Hasselt et al., 2016) illustrate reduction in the 

observed overestimation and better performance than DQN (Mnih et al., 2015) on several 

Atari games.

3.1.4 Duel DQN—Q-values correspond to the quality of taking a certain action given a 

certain state Q(s, a). Wang et al. (2015) proposed to decompose this action-state value 

function into two more fundamental notions of value. The first is an actionindependent value 

function V(s), which provides an estimate for the value of each state without having to learn 

the effect of each action. The second is an action-dependent advantage function A(s,a), 
which calculates potential benefits of each action. Intuitively, the Q-function learns 

separately how good a certain state is and how much better taking a certain action would be 

compared to the others. The new combined dueling DQN function is defined as:

Q(s, a) = A(s, a) + V (s) . (4)

This can be implemented by splitting the fully connected layers in the DQN architecture to 

compute the advantage and state value functions separately, then combining them back into 

a single Q-function only at the final layer with no extra supervision, see Fig. 2. Duel DQN 

can achieve more robust estimates of the state value by decoupling it from specific actions. s 
is more explicitly modelled, which yields higher performance in general. Duel DQN (Wang 

et al., 2015) shows better results than the previous baselines of DQN (Mnih et al., 2015) and 

DDQN (Van Hasselt et al., 2016) on several Atari games. In summary, duel DQN and 

DDQN introduced vast improvements in performance compared to DQN, yet it does not 

necessarily result in better performance in all environments.

4 Reinforcement Learning for Landmark Detection

In this work, inspired by (Ghesu et al., 2016), we formulate the problem of landmark 

detection as an MDP, where an artificial agent learns to make a sequence of decisions 

towards the target landmark. In this setup, the input image defines the environment E, in 

which the agent navigates using a set of actions. The main goal of the agent is to find an 

anatomical landmark. In this section, we explain the main elements of the MDP that 

includes a set of actions A, a set of states S, and a reward function R. During testing, the 

agent does not receive any rewards and does not update the model either, it just follows the 

learned policy. Figure 4 shows the proposed CNN architecture for landmark detection, 
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where the output of the CNN results in a Q-value for each action. The best action is selected 

based on the highest Q-value.

4.0.1 Navigation actions

The agent interacts with E by taking movement action steps a ∈ A that imply a change in the 

current point of interest location. The set of actions A is composed of six actions, {±ax, ±ay, 

±az}, in the positive or negative direction of x, y or z. For instance, taking a +ax action 

means that the agent will move a fixed step size in the positive x-direction. Figure 3 shows a 

schematic visualization of these navigation actions in a 3D scan.

4.0.2 States

Our Environment E is represented by a 3D image, where each state s defines a 3D Region of 

Interest (ROI) centered around the target landmark. A frame history buffer is used to capture 

the last 4 action steps (ROIs) taken by the agent in its search for the landmark. This 

stabilizes the search trajectories and prevents the agent from getting stuck in repeated cycles.

4.0.3 Reward function

Designing good empirical reward functions R is often difficult as RL agents can easily 

overfit the specified reward, and thereby produce undesirable or unexpected results. For our 

problem, the difficulty arises from designing a reward that encourages the agent to move 

towards the target plane while still being learnable. Thus, R should be proportional to the 

improvement that the agent makes to detect a landmark after selecting a particular action. 

Here, similar to (Ghesu et al., 2016), we define the reward function R = D(Pi−1,Pt)−D(Pi,Pt), 
where D represents the Euclidean distance between two points. We further denote P¿ as the 

current predicted landmark’s position at step i, with Pt the target ground truth landmark’s 

location. The difference between the two Euclidean distances, the previous step and current 

step, signifies whether the agent is moving closer to or further away from the desired target 

location.

4.0.4 Terminal state

The final state is reached when there are no further transition states for the agent to take. 

This means that the agent has found the target landmark Pt. We define the terminal state 

during training when the distance between the current point of interest and the target 

landmark are less than or equal to 1mm. Finding a terminal state during testing is more 

challenging, due to the absence of the landmark’s true location. One solution is to define a 

new trigger action that terminates the sequence of the current search when the target state is 

reached (Caicedo & Lazebnik, 2015; Maicas et al., 2017). Although this modifies the 

environment by marking the region that is centered around the correct location of the target 

landmark, it increases the complexity of the task to be learned by increasing the action space 

size. It also introduces a new parameter, maximum number of interactions, which needs to 

be set manually. It may also slow down the testing time in cases where the terminal action is 

not triggered. Riedmiller (1998) found that the agent shows strong oscillating behavior 

around the terminal state. We adopt the oscillation property to terminate the search process 

during testing without defining an explicit terminal state. In contrast to (Ghesu et al., 2016), 
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we choose the terminating state based on the corresponding lower Q-value. We find that Q-

values are lower when the agent is closer to the target point and higher when it is far. 

Intuitively, by awarding higher Q-values, DQN encourages the agent to take any action from 

states that are far away from the target landmark, and conversely for closer states.

4.0.5 Multi-scale agent

In images with large field of view, noisy background can deteriorate the performance of the 

agent for finding the target landmark. In order to capture spatial relations within a global 

neighborhood, we adopt a multi-scale search strategy (Ghesu et al., 2017, 2019) in a coarse-

to-fine fashion with novel hierarchical action steps. The environment E samples a fixed size 

image-grid with initial spacing (Sx,Sy,Sz) mm around the current location Po, and the agent 

searches for the target landmark with initial large action steps. Once the target point is 

found, E samples the new image-grid with smaller spacing, as well as the agent uses smaller 

action steps. Coarser levels in the hierarchy provide additional guidance to the optimization 

process by enabling the agent to see more structural information. Finer scales, on the other 

hand, provide more precise adjustments for the final estimation of the plane. Similarly, 

larger action steps speed convergence towards the target plane, while smaller steps fine tune 

the final estimation of plane parameters. The same DQN is shared between all levels in the 

hierarchy.

5 Experiments and results

The performance of different RL agents for anatomical landmark detection is evaluated on 

three different US and MR datasets. We evaluate fixed- and multiscale search strategies by 

sampling with different spacing values. During testing, we fix the initial selected points for 

all models for a fair comparison between different variants of the proposed method. We 

select 19 different starting points distributed in the whole image for every testing subject in 

order to report more robust results. We measure the accuracy based on the Euclidean 

distance error between detected and target landmarks. Finally, we run extensive comparison 

between different DQN-based architecture, namely DQN, DDQN, Duel DQN, and Duel 

DDQN.

Experiments

During training, a random point is sampled from a region with size 80% of the whole image 

dimensions around the center. An ROI of size 45x45x45 voxels is sampled around the 

selected point. The agent follows an e-greedy exploration strategy, where at every step it 

selects an action uniformly at random with probability (1 − ϵ). Every trial to find the target 

landmark is called an episode. Here we use 1500 frames to limit the maximum number of 

frames per episode. During testing, the agent follows the learned policy by selecting the 

action with highest Q-value at each step.

Comparison with state-of-the-art

We evaluate the performance of our agents against recent published works based on similar 

fixed-scale (Ghesu et al., 2016) and multi-scale (Ghesu et al., 2019) RL agents, and fully-
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supervised deep CNNs (Li et al., 2018) for the detection of the cavum septum pellucidum 

point in 3D fetal US head scans.

The method from Li et al. (2018) is based on repeatedly passing patches to a CNN until the 

estimated point position converges to the true landmark location with full supervision, called 

patch-based iterative network (PIN). We re-implemented the method in (Ghesu et al., 2016, 

2019) as reported in their papers, while the code from (Li et al., 2018) is publicly available 1. 

For this experiment, we use 72 fetal head ultrasound scans, divided into 21 training and 51 

testing images, as detailed in Experiment 5.1. The performance of our multi-scale agents 

improve upon the state-of-the-art methods as shown in Table 1.

5.1 Experiment-I: Fetal head ultrasound

Finding the target landmarks in such images is a challenging task because of ultrasound 

artifacts such as shadowing, mirror images, refraction, and fetal motion. We use three levels 

for the multi-scale agent with spacing values from 3mm to 1mm, decreasing by one at each 

level. Hierarchical action steps are chosen from 9 to 1 steps per iteration, dividing by 3 at 

each level of the hierarchy.

Dataset—72 fetal head US scans 2 are randomly divided into 21 and 51 images for training 

and testing. We choose three landmarks, the right and left cerebellum and cavum septum 

pellucidum, that define the transcerebellar (TC) plane, commonly used for fetal sonographic 

screening examination, see Fig. 5. The selected landmarks were manually annotated by 

clinical experts using three orthogonal views. All images were roughly aligned to the same 

orientation and re-sampled to isotropic 0.5mm spacing.

Results— Table 2 shows the comparative results of the performance of different agents. In 

general, all methods share similar performance including speed and accuracy. However, 

Duel DQN achieves the best accuracy detecting the right and left cerebellum points, while 

DQN performs the best for finding the cavum septum pellucidum point. Additionally, the 

multi-scale strategy improves the performance of the agents and increase pace to the target 

point thanks to the hierarchical action steps.

5.2 Experiment-II: Cardiac MRI

We select two landmarks, apex and centre of mitral valve, commonly used for defining the 

short axis view during image acquisitions, see Fig. 6. They are also used to assist automatic 

segmentation methods by defining starting and ending slices in the acquired cardiac stack of 

2D image sequence.

Dataset—455 short-axis cardiac MR images of resolution 1.25 × 1.25 × 2 mm obtained 

from the UK Digital Heart Project (de Marvao et al., 2014), randomly divided into 364 and 

91 images for training and testing, respectively. All cardiac images are re-sampled to 

isotropic 1mm spacing. The ground truth landmarks are manually annotated by two experts. 

The localization errors are reported in terms of mean of Euclidean distance between the 

detected landmark position and the corresponding ground truth.
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Results— Table 3 shows that Duel DQN agents perform the best for detecting the apex 

(AP), while all agents performs similarly for detecting the mitral valve center (MV). Multi-

scale agents achieve a slight decrease in the detection error compared to inter-observer 

errors. They also significantly improve upon stratified decision forests (Oktay et al., 2017) 

and our fixed-scale agents, which is reasonable in cardiac imaging because of the bigger 

field of view and noisy background. We use the same dataset from (Oktay et al., 2017), but 

not the same setup of their experiments, and compare with the results reported in their paper.

5.3 Experiment-III: Brain MRI

In this experiment, we select two landmarks: anterior and posterior commissure points, 

commonly used by the neuroimaging community to define the axial plane during image 

acquisition, see Fig. 7.

Dataset—832 isotropic 1mm MR scans were obtained from the ADNI database (Mueller et 

al., 2005), randomly divided into 728 and 104 images for training and testing, respectively. 

All brain images were skull stripped and affinely registered to the same space. For both the 

training and testing datasets the selected landmarks were manually annotated by an expert 

observer using three orthogonal views.

Results—Similar to the fetal US experiment, Table 4 shows that the best performing agent 

varies for each landmark. However, the multi-scale strategy improves the performance of 

fixed-scale agents.

Table 5 shows a list of the results from the literature for detecting the AC and PC landmarks 

on different datasets. These results are the same as reported from their published papers. All 

of these methods rely on some prior information using a pre-defined 2D plane that contain 

the target landmarks, region interest, or spatial prior probabilities. While the proposed 

method does not require any prior information and the agent is capable of finding the target 

landmark using any randomly initialized point.

The trained RL agents have no access to any information about their position inside the 

image (e.g. x, y and z coordinates). These agents see only the intensity values within the 

current region of interest. Table 6 shows the mean and standard deviation of the Euclidean 

distances for each landmark to their mean point. The adult brain dataset were pre-aligned to 

the same coordinates resulting in mean distances around 2 pixels. While, the fetal and 

cardiac datasets result in larger distances around 35 and 48 mm.

5.4 Implementation

Training times are around 24-48 hours for individual landmarks using an NVIDIA GTX 

1080Ti GPU. Our experiments show that the agent is capable of finding the target landmark 

in less than 1 second for any random initialization. During inference, the agent finds the 

target location using sequential steps, where each step takes around 0.5-1 milliseconds. In 

our implementation we use a batch size of 48, experience replay memory of size 1e5, 

activation function PReLU for convolutional layers and leakyReLU for fully connected 

layers, ADAM optimizer, Y = 0.9, and e = 0.9 — 0.1. Hyper-parameters values were 
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selected by evaluating the model during first few steps of training. Figure 4 shows the 

architecture of the proposed DQN. The source code of our implementation is publicly 

available3. More visualizations are on the github repository showing different animated 

visual examples of trained agents searching for the target landmarks.

6 Conclusion and discussion

In this paper, we have proposed different reinforcement learning agents based on DQN 

architectures for automatic landmark detection in medical images. These RL-agents are 

capable of automatically finding landmarks, by moving towards the target sequentially step-

by-step, without any priors. However, starting points initialized randomly in the background 

(air) can result in a failure to detect the target landmark. To tackle such cases, we have 

proposed a schema with hierarchical step values. Agents can initially move with big action 

steps, and are scaled down afterwards in order to accurately localize the final landmark 

location. Alternatively, multiple agents can be initialized randomly at different locations, 

with the final target landmark calculated as the mean or median of the localized points.

Despite RL being a difficult problem, that needs a careful formulation of its elements such 

as states, rewards and actions, our extensive evaluations demonstrate high detection accuracy 

on three different datasets: fetal head ultrasound, adult brain and cardiac MRI. Finding the 

optimal DQN architecture for achieving the best performance is environment-dependant, 

whereas selecting the best DQN architecture differs for each landmark. This is one of the 

limitations of RL research; as shown by the varying results of performance on Atari games 

played by different architectures.

We have also exploited fixed- and multi-scale optimal path search strategies. The results 

show that multi-scale search significantly improve the performance in images with large 

fields of view and/or noisy backgrounds such as cardiac MRI. Moreover, hierarchical action 

steps significantly speed up the searching process by a factor of 4 − 5 times by using larger 

steps, as well as smaller steps, to fine-tune the final location.

Future work

We will investigate approaches using intrinsic geometry instead of intensity patterns for the 

RL environment to improve performance. Multi-landmarks detection is another interesting 

application to be explored using either multiple competitive and/or collaborative agents. One 

of the challenges that may hinder the design of such a multi-agent system is the required 

computational resources. As every agent may need an independent model for every specific 

landmark. It will be interesting to explore methods that allow such agents to communicate, 

e.g. by sharing their learned knowledge. Another future direction will be to investigate 

involving human experts for teaching the artificial agents actively. Where the agents learn 

from not only their self-play experience, but also from trained operators through interaction.
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Figure 1. Previously published RL works with application to medical imaging analysis.
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Figure 2. Duel DQN architecture, which splits the fully connected (FC) layers into two paths: the 
state value V(s) and action advantage A(s,a) functions.
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Figure 3. 
Schematic diagram of the proposed RL agent interacting with the 3D image environment E. 
At each step the agent takes an action towards the target landmark. These sequential actions 

forms a learned policy forming a path between the starting point and the target landmark.
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Figure 4. 
Schematic illustration of the proposed DQN-based network architecture for anatomical 

landmark detection. The input are volumetric samples along the 3D trajectory of the region 

centered around the current location of the agent. The output is the approximated Q-value 

for the six possible actions. The agent will pick the action with the highest Q-value. This is 

done sequentially until the agent finds the target landmark.
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Figure 5. Sample 2D images from fetal head ultrasound showing the target landmarks:
(a) right (red) and left (blue) cerebellum, and (b) cavum septum pellucidum (yellow) points.
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Figure 6. A 2D cardiac MR-image showing the apex and center of the mitral valve points.
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Figure 7. The anterior commissure (AC) and posterior commissure (PC) points in brain MRI.
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Table 1

Comparison with stat-of-the-art RL (Ghesu et al., 2016, 2019) and supervised (Li et al., 2018) for detecting the 

cavum septum pellucidum point in fetal ultrasound images. Distance errors are in mm. Bold text shows the 

highest achieved localization accuracy for each landmark

A. State-of-the-art Results

RL Fixed-scale (Ghesu et al., 
2016)

RL Multi-scale (Ghesu et al., 
2019)

Supervised PIN Single-Landmark 
(Li et al., 2018)

Supervised PIN Multiple-
Landmarks (Li et al., 2018)

7.37 ± 5.86 6.51 ± 5.41 5.47 ± 4.23 5.50 ± 2.79

B. Our Results

DQN DDQN Duel DQN Duel DDQN

Fixed-Scale 4.95 ± 3.09 5.01 ± 2.48 6.29 ± 3.95 5.12 ± 3.15

Multi-Scale 3.66 ± 2.11 4.02 ± 2.20 4.17±2.62 4.02 ± 1.55
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Table 2

Comparison of different DQN-based agents using fixed-scale (FS) and multi-scale (MS) search strategies for 

the detection of right cerebellum (RC) and left cerebellum (LC), and cavum septum pellucidum (CSP) 

landmarks in fetal US images. Distance errors are in mm. Bold text shows the highest achieved localization 

accuracy for each landmark.

Method Right Cerebellum (RC) Left Cerebellum (LC) Cavum Septum Pellucidum (CSP)

FS MS FS MS sFS MS

DQN 4.17 ± 2.32 3.37 ± 1.54 2.78 ± 2.01 3.25 ± 1.59 4.95 ± 3.09 3.66 ± 2.11

DDQN 3.44 ± 2.31 3.41 ± 1.54 2.85 ± 1.52 2.95 ± 1.00 5.01 ± 2.84 4.02 ± 2.20

Duel DQN 2.37 ± 0.86 3.57 ± 2.23 2.73 ± 1.38 2.79 ± 1.24 6.29 ± 3.95 4.17 ± 2.62

Duel DDQN 3.85 ± 2.78 3.05 ± 1.51 3.27 ± 1.89 3.50 ± 1.70 5.12 ± 3.15 4.02 ± 1.55
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Table 3

A comparison between inter-observer errors, stratified decision forests (Oktay et al., 2017), and different 

agents using fixed-scale (FS) and multi-scale (MS) search strategies for the detection of apex and center of 

mitral valve landmarks in cardiac MR images. Distance errors are in mm. Bold text shows the highest 

achieved localization accuracy for each landmark.

Method Apex (AP) Mitral Valve (MV)

Inter-observer Errors 5.79 ± 3.28 5.30±2.98

Decision Forests (Oktay et al., 2017) 6.74 ± 4.12 6.32 ± 3.95

Proposed RL Agents FS MS FS MS

DQN 7.49 ± 4.05 4.47±2.63 8.33 ± 4.70 5.73±4.16

DDQN 8.13 ± 5.60 4.53±2.78 8.82 ± 4.80 5.20±2.82

Duel DQN 7.17±4.21 4.42 ± 2.67 8.82 ± 4.80 5.76 ± 3.89

Duel DDQN 7.59 ± 4.17 5.43±3.37 8.63±4.58 5.28±2.61
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Table 4

Performance of different agents using fixed-scale (FS) and multi-scale (MS) search strategies for the detection 

of anterior and posterior commissure landmarks in brain MR images. Distance errors are in mm. Bold text 

shows the highest achieved localization accuracy for each landmark.

Method Anterior Commissure (AC) Posterior Commissure (PC)

FS MS FS MS

DQN 3.04 ± 1.70 2.46 ± 1.44 2.03 ± 0.97 2.05 ± 1.14

DDQN 2.62 ± 1.24 2.61 ± 1.64 3.31 ± 1.2 1.86 ± 1.07

Duel DQN 3.04 ± 1.28 2.4 ± 1.42 3.6 ± 1.46 2.15 ± 1.24

Duel DDQN 2.97 ± 1.23 2.01 ± 1.29 2.04 ± 1.04 2.27 ± 1.22
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Table 5

General comparison with previously published works for the detection of AC and PC points. These are the 

results reported on the datasets used in the source papers. Note that all the other methods required some prior 

information either by finding the landmarks in the mid-sagittal plane only, or using spatial priors and region of 

interest. While the proposed method does not require any prior information, and it is also applied to the largest 

dataset.

Method Mean Error (mm) Data Size Priors

AC PC

Verard et al. (1997) 0.41 ± 0.21 0.35 ± 0.32 30 Mid-sagittal plane

Prakash et al. (2006) - expert I 1.20 ± 1.30 1.10 ± 1.30 71 Mid-sagittal plane

Prakash et al. (2006) - expert II 1.20 ± 1.00 1.10 ± 1.20 71 Mid-sagittal plane

Ardekani & Bachman (2009) - NKI 0.90 ± 1.60 0.90 ± 1.80 48 Initialisation point

Ardekani & Bachman (2009) - IXI 1.10 ± 2.20 0.90 ± 1.80 84 Initialisation point

Guerrero et al. (2011) 0.45 ± 0.22 0.46 ± 0.20 200 Spatial prior probabilities

Guerrero et al. (2012) 0.67 ± 0.59 0.64±0.31 200 Spatial prior probabilities

Liu & Dawant (2015) 0.55 ± 0.30 0.56 ± 0.28 100 Region of interest

Proposed RL Agents 1.86 ± 1.07 2.01 ± 1.29 832 -
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Table 6
The average Euclidean distances of each landmark to their mean location in pixels.

Fetal Brain US Cardiac MRI Adult Brain MRI

RC LC CSP AP MV AC PC

35.45 ± 15.65 34.90 ± 15.27 35.83 ± 17.19 48.20 ± 10.04 47.12 ± 11.57 2.07 ± 1.08 1.95 ± 0.98
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