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Abstract

There is an urgent need to improve agricultural productivity to secure future food and biofuel 

supply. Here, we summarize current approaches that aim at improving photosynthetic CO2-

fixation. We critically review, compare and comment on the four major lines of research towards 

this aim, which focus on (i) improving RubisCO, the CO2-fixing enzyme in photosynthesis, (ii) 

implementing CO2-concentrating mechanisms, (iii) establishing synthetic photorespiration 

bypasses, and (iv) engineering synthetic CO2-fixation pathways.

Introduction

The Morrow plots are a landmark of the University of Illinois. They are an experimental 

corn field that is continuously farmed since 1876 [1]. During the last 140 years, and in 

particular since the 1950s, crop yield on the Morrow fields (and world-wide) have increased 

by at least a factor of three [1,2]. Yet, these past achievements in agriculture are challenged 

by several developments. (i) The current population increase is not matched by the current 

increase in agricultural productivity, (ii) there is a growing demand to use crops for biofuel 

and biomass production directly competing with food production, and (iii) global CO2-

emissions are continuously rising, accelerating the effects of climate change, including the 

loss of arable land, increased flooding and droughts. As a consequence, there is an urgent 

need to further improve agricultural productivity. Because in plants the conversion of light 

into biomass is the process with the lowest energy conservation (approx. 1%), improving 

photosynthetic CO2-fixation has been identified as key to increase agricultural productivity 

[3].

Under optimum conditions, one limiting factor in photosynthetic CO2-fixation is flux 

through the Calvin cycle, which is often restricted by the activity of the cycle’s CO2-fixing 

enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The turnover number 

of an average RubisCO is between 1 and 10 s-1 (http://brenda-enzymes.org). This is one to 

two orders of magnitude below the turnover frequencies of other enzymes in central carbon 

metabolism that lie on average around 50 to 100 s-1 [4]. To allow for sufficient CO2-fixation 

rates, the low activity of RubisCO is compensated by high expression levels of the enzyme. 

In a photosynthetic organism, RubisCO can make up to 50% of the soluble protein [5].
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Besides showing low specific activity, RubisCO does not discriminate well between O2 and 

CO2, which results in an oxygenase side reaction of the enzyme. Due to the high O2:CO2 

ratio of ambient air (approx. 500:1), an average RubisCO fixes up to two O2 every five CO2-

fixation reactions [6]. The products of RubisCO’s side reaction are 3-phosphoglycerate (3-

PG) and glycolate-2-phosphate (G2P). The latter is a toxic compound that needs to be 

removed or recycled. In photosynthetic organisms, this is achieved at the expense of 

additional energy, reducing power and fixed CO2 in a process called photorespiration 

(Figure 1, 2). It is estimated that up to 30% of the photosynthetic output is lost through 

photorespiration [6,7].

To increase the yield of photosynthetic CO2-fixation, different strategies were suggested and 

at least partially pursued (Figure 1). These fall into one of the following four general 

categories: (i) improving the catalytic properties of RubisCO, (ii) improving the working 

conditions of RubisCO through CO2-concentrating mechanisms (CCM), (iii) engineering 

synthetic photorespiration bypasses, and (iv) engineering synthetic CO2-fixation pathways.

Improving the catalytic properties of RubisCO

Initial approaches to improve photosynthetic CO2-fixation focused on identifying [8,9] or 

engineering [10,11] RubisCOs with higher CO2-specificities and/or higher catalytic rates. 

These efforts have only met with limited success, because it has become apparent that 

RubisCO is trapped in an inherent trade-off between activity and specificity. Higher 

specificity for CO2 usually results in a lower enzyme activity. Vice versa, to engineer a 

RuBisCO with higher activity its specificity for CO2 has to be sacrificed, resulting in a 

higher oxygenation rate [12,13].

The reasons for the observed trade-off lie in the evolutionary past of RubisCO, although the 

emergence of the enzyme’s carboxylation and oxygenation function remain unknown. 

Recent investigations on the RubisCO superfamily [14,15] suggest that RubisCO was not a 

CO2-fixing enzyme a priori, but rather that its carboxylation function evolved as a secondary 

function in the protein scaffold of primordial enolases [16,17]. These findings challenge and 

extend older theories according to which RubisCO evolved from a primordial carboxylating 

archaeal enzyme [18,19]. Independent of the true origins of the carboxylation reaction of 

RubisCO, it is undisputed that the evolutionary roots of RubisCO trace back to a time when 

the level of O2 in the atmosphere was minimal. Thus, ancient RubisCO was primarily 

selected for promoting the carboxylation of ribulose-1,5-bisphosphate, but not against 

suppressing the oxygenation side reaction. This primordial chemistry of the enzyme caused 

(and still underlies) the inverse coupling of activity and selectivity in RubisCO [12,13]. With 

the increase of atmospheric O2 during earth’s history, RubisCO evolved along these two 

parameters, which enabled adaption of a given enzyme towards specificity or activity 

(depending on its environmental and/or organismic context) [20], but did not allow for an 

uncoupling of the two opposing catalytic parameters.

Nevertheless, even only slightly improved RubisCOs could have measurable effects. It has 

been calculated that transplantation of a RubisCO from the red algae Griffithsia monilis into 

crop could increase carbon gain by 25%, because of a twofold increased CO2-selectivity/

activity ratio of the enzyme compared to plant RubisCO [21]. Screening of RubisCOs from 
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wild wheat grasses identified enzyme variants of improved CO2-specificity/activity ratio. 

These “wild enzymes” were calculated to increase carbon uptake rates by 20% upon 

substitution of native RubisCO in agriculturally used wheat [22].

A first step into this direction was the replacement of native RubisCO of Nicotiana tabaccum 
through faster homologs from the alphaproteobacterium Rhodospirillum rubrum [23] and 

the cyanobacterium Synechoccocus elongatus [24], although the transgenic plants were only 

able to grow under highly elevated CO2-concentrations and showed severe growth deficits 

compared to the corresponding wild-types. Redesign of the S. elongatus transgene recently 

restored wild-type-like growth, still under elevated CO2 atmosphere, but notably at tenfold 

lower RubisCO levels compared to the wild-type [25]. This shows that it is in principle 

possible to transplant exogenous RubisCOs with improved catalytic properties into plants. 

Yet, it remains to be demonstrated, whether improved RubisCOs alone would be actually 

able to substantially increase photosynthetic yield under field conditions.

Improving the working conditions of RubisCO through CCMs

Instead of improving the catalytic parameters of RubisCO, an alternative approach to 

increase photosynthetic productivity centers on changing the working conditions of the 

enzyme. By increasing the CO2 concentration around RubisCO, the oxygenation side 

reaction of the enzyme can be effectively suppressed, which in turn enables faster CO2-

fixation rates, resulting in an increased CO2-fixation efficiency.

Different CO2-concentrating mechanisms (CCMs) emerged naturally during evolution [26]. 

In C4-plants, CO2 is pre-fixed in special cells or dedicated compartments into a C4-acid, 

which is transported to the place of RubisCO, where it is decarboxylated again, thereby 

increasing the local CO2:O2 ratio around the enzyme [27]. Cyanobacteria on the other hand 

evolved several HCO3 - transporters and CO2-uptake systems that enable them to 

concentrate up to 40 mM HCO3 - intracellularly [28]. In addition, cyanobacteria feature 

carboxysomes [29], proteinaceous compartments that are filled with RubisCO [30] and 

carbonic anhydrase [31,32]. These compartments allow the selective influx of HCO3- and 

ribulose-1,5-bisphosphate through pores. HCO3 - is converted into CO2 and retained within 

the carboxysome, so that CO2-fixation takes place in a dedicated compartment under a 

highly enriched CO2 environment.

Current crop production relies mainly on plants that do not possess any of the known natural 

CCMs. More than 80% of the agricultural land used in crop production is covered by plants 

that lack CCMs, such as rice, potato, wheat, and barley [33]. First efforts that focused on 

transplanting CCMs into rice demonstrated that it is not sufficient to simply import the 

enzyme machinery of C4-plants [34]. Thus, current strategies that are pursued by different 

consortia (http://C4rice.irri.org; http://www.3to4.org/) aim at mimicking cell-specific 

expression patterns of C4-CCM genes [35] and introducing the structural and anatomical 

characteristics of C4-plants into CCM-free crops [36], which apparently is a long-term 

challenge.

Another line of research aims at introducing carboxysomes into chloroplasts of CCM-free 

crops, which is predicted to improve yield by up to 60% under hot and dry conditions [37]. 
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Functional carboxysomes were already reconstituted in Escherichia coli [38] demonstrating 

the potential for robust self-assembly in foreign hosts. The transient expression of several 

carboxysome subunits in Nicotiana benthaniama at least resulted in the formation of 

organized structures that resembled empty microcompartments [39]. Together with the fact 

that carboxysomal RubisCO from S. elongatus is known to be functionally expressed in 

tobacco [24,25] (see above), these studies might pave the way to produce functional 

chloroplastic carboxysomes in the future. If the introduction of such complex CCM will 

actually be beneficial or rather a burden in planta remains to be seen, given the fact that the 

number of carboxysomes per chloroplast required is still unclear [40]. To reduce the genes 

necessary for a functional chloroplastic carboxysome, it might become necessary to 

streamline the assembly process by protein domain fusions [41]. Finally, the supply of these 

“compartments within compartments” with sufficient CO2 will be crucial [37]. The 

expression of HCO3 - transporters and carbonic anhydrase in chloroplasts [42,43] could 

provide a solution to this problem.

Engineering synthetic photorespiration bypasses

The possibility to increase photosynthetic CO2-fixation yield by improving photorespiration 

has gained considerable interest in recent years. Natural photorespiration is a costly process 

that involves multiple enzyme reactions, which are located in different organelles in plants. 

Canonical photorespiration recycles two G2P molecules into one 3-PG molecule (Figure 2), 

while releasing one molecule of CO2 and NH3 during this process. The recycling of G2P 

and in particular the re-fixation of the lost CO2 requires input of a considerable amount of 

energy and reducing power. Several alternative photorespiration bypasses, based on existing 

routes have been suggested that are advantageous compared to the natural process in terms 

of either ATP requirement, reducing potential, carbon stoichiometry, or the number of 

cellular compartments involved (Table 1).

In the chloroplastic glycerate bypass [44], two molecules of G2P are converted under loss of 

one CO2 into one molecule of glycerate, which is fed back into the Calvin cycle (Figure 2). 

The entire process circumvents the release of NH3, consumes less ATP, and conserves 

reducing power. Since the whole process was designed to take place in the chloroplast, the 

CO2 is released in vicinity of RubisCO, reducing its oxygenation side reaction. When the 

glycerate pathway from E. coli was introduced into Arabidopsis thaliana [44] or Camelina 
sativa [45] chloroplasts, transgenic plants showed an enhanced photosynthesis, faster growth 

and higher biomass generation. However, transgenic lines only expressing glycolate 

dehydrogenase in the chloroplasts, showed similar results [44,45]. Thus, the role and the fate 

of the glyoxylate that is produced in the chloroplasts of these transgenic plants is not quite 

clear.

The peroxisomal glycerate bypass [46] is based on the conversion of glycolate into glycerate 

in peroxisomes (Figure 2). It bypasses NH3 release, and conserves reducing power. The 

pathway originally from E. coli could be implemented only partially in Nicotiana tabacum. 

Transgenic tobacco lacked expression of one of the key enzymes, and plants stunted growth 

under ambient air [46].
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In the chloroplastic glycolate oxidation bypass [47], G2P is converted into glycolate, which 

is subsequently completely oxidized into CO2 within the chloroplast (Figure 2). This 

pathway bypasses the release of NH3 and conserves reducing power. A huge disadvantage is 

that all of the carbon is lost instead of “only” one out of four, as in the other pathways. When 

experimentally realized by redirecting peroxisomal glycolate oxidase and catalase to the 

chloroplast, transgenic A. thaliana were demonstrated to support higher dry weight and 

photosynthetic rates. This effect was significant under energy-limiting growth conditions 

[47].

In contrast to above strategies that all release CO2, the proposed 3-hydroxypropionate 

bypass [48] leads to a net fixation of CO2 during synthetic photorespiration by converting 

G2P into pyruvate (Figure 2). The 3-hydroxypropionate bypass was successfully realized in 

the cyanobacterium S. elongatus through hetereologous expression of seven enzymes from 

the filamentous anoxygenic phototroph Chloroflexus aurantiacus and the 

betaproteobacterium Accumulibacter phosphatis. All enzyme activities were successfully 

demonstrated. A growth phenotype, however, was not observed, most probably because S. 
elongatus possesses already very efficient CCMs [48]. Transplantation of the 3-

hydroxyproionate bypass into CCM-deficient strains of S. elongatus may provide a growth 

advantage and proof this concept.

Even though the engineering of synthetic photorespiration bypasses has already shown 

promising results, all projects so far were based on grafting naturally occurring pathways 

into photosynthetic hosts. To overcome this restriction onto natural solutions, a new 

European research initiative aims at systematically exploring and engineering completely 

artificial routes of higher efficiency in a true synthetic biology effort by combining enzyme 

engineering and metabolic retrosynthesis (http://FutureAgriculture.eu).

Engineering synthetic CO2-fixation

The most ambitious approach to improve photosynthetic yield is to completely rewire CO2-

fixation in plants, algae and cyanobacteria. This research is inspired by the discovery that 

during the course of evolution nature itself has invented five alternative CO2-fixation 

pathways to the Calvin cycle, which operate in different bacteria and archaea [49–54]. These 

“alternative” microbial CO2-fixation pathways are not based on RubisCO [55] and several of 

them show advantages in respect to energy requirement and efficiency compared to the 

Calvin cycle [56]. The reconstitution of natural existing CO2-fixation pathways in model 

organisms, however, has not proven successful so far [57], probably due to the complex 

interplay and interference with the host’s native carbon and energy metabolism.

Even more progressive are synthetic biology approaches that are based on the principle of 

metabolic retrosynthesis. Here, completely novel CO2-fixation pathways of high efficiency 

are supposed to be designed through the free recombination of known enzyme reactions 

[55,58]. These efforts are further fueled by the discovery [59,60] and rational engineering 

[61] of highly efficient carboxylases, and the general progress in computational enzyme 

design [62]. The degree of freedom in these synthetic pathways allows tailoring the 

conversion of CO2 into virtually any desired product, and their synthetic nature could be 

advantageous for in vivo transplantations due to a limited interference with natural 
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metabolism. The realization of such synthetic CO2-fixation pathways and their integration 

into living organisms still poses several challenges, but will be indispensable for freeing 

natural photosynthetic CO2-fixation from its inherent disadvantages, and transforming 

biology from a tinkering science into a truly synthetic discipline. Compared to all other 

strategies discussed here, this approach holds the most promise to substantially improve 

photosynthetic productivity on a long-term perspective.
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Figure 1. Overview of photosynthetic CO2-fixation, photorespiration and current engineering 
efforts.
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Figure 2. Natural and synthetic photorespiration bypasses.
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Table 1

Comparison of natural and synthetic photorespiration bypasses. Due to the different topologies, the synthetic 

photorespiration bypasses cannot be simply compared side-by-side. The expected advantages are of 

multifactorial nature and more than a simple sum of redox equivalents and ATPs comsumed. However, when 

normalized onto total carbon stochiometry (i.e., the total requirements to regenerate a C3 intermediate and the 

net fixation of one CO2) the individual photorespiration bypasses can be balanced as followed. Advantages 

compared to the canonical (i.e., natural) photorespiration bypass are highlighted in blue, disadvantages are 

marked in red.

Canonical 
photorespiration 
bypass

Chloroplastic 
glycerate bypass

Chlorplastic 
glycolate 
oxidation bypass

Peroxisomal 
glycerate bypass

3-hydroxyx-
propionate 
bypass

Enzymes required 12 5 5 7 13

ATP consumed 8 7 7 9 7

Redox power 
consumed

4 NAD(P)H + 2 Fd 
(2,200 mV)

5 NAD(P)H (1,700 
mV)

4 NAD(P)H (1,360 
mV)

5 NAD(P)H 
(1,700 mV)

3 NADPH (1,020 
mV)

CO2 release (% carbon 
of glycolate)

Yes (25%) Yes (25%) Yes (100%) Yes (25%) No (0%)

Place of CO2 release mitochondria (far 
RubisCO)

chloroplast (near 
RubisCO)

chloroplast (near 
RubisCO)

peroxisome (far 
RubisCO)

no CO2 released

Transport across 
organelle membranes 4 0 0 2 0

NH3 release Yes No No No No

Way of CO2-re-
fixation

Calvin cycle Calvin cycle Calvin cycle Calvin cycle Included in 
bypass

Turns of Calvin cycle 
required to refix CO2

2 turns 2 turns 3 turns 2 turns none
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