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Abstract

The degradation of misfolded proteins is essential for cellular homeostasis. Misfolded proteins are 

normally degraded by the ubiquitin-proteasome system (UPS), and selective autophagy serves as 

backup mechanisms when the UPS is overloaded. Selective autophagy mediates the degradation of 

harmful material by its sequestration within double membrane organelles called autophagosomes. 

The selectivity of autophagic processes is mediated by cargo receptors, which link the cargo to the 

autophagosomal membrane. The p62 cargo receptor has a major function during the degradation 

of misfolded, ubiquitinated proteins by selective autophagy; here it functions to phase separate 

these proteins into larger condensates and tether them to the autophagosomal membrane. Recent 

work has given us crucial insights into the mechanism of action of p62 during selective autophagy 

and how its activity can be integrated with the UPS. We will discuss these recent insights in the 

context of protein quality control and the emerging concept of cellular organization mediated by 

phase transitions.
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Introduction

The degradation of cytoplasmic proteins in eukaryotic cells is regulated by two major 

pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal system. 

Short-lived and misfolded proteins are preferentially degraded by the UPS, while long-lived 

proteins and proteins that cannot be unfolded, or even entire organelles, can be degraded by 

autophagy (Dikic, 2017). For a long time, protein degradation accomplished by the UPS and 

autophagy have been largely viewed independently, but it is becoming increasingly clear that 

the two pathways are highly interconnected with regard to cellular protein quality control as 

they use ubiquitination as a common degradation signal (Kirkin et al., 2009b). In this 

Review, we will discuss the current knowledge about the interplay between the UPS and 

autophagy in the degradation of cytoplasmic proteins. We will focus on recent insights into 

the p62/SQSTM-1 protein that have given us clues about how the two pathways may be 

connected. In particular, we will discuss the most recent findings of how p62 mediates the 

phase separation of ubiquitinated proteins into larger condensates that can sequester them 

and perhaps also serve as nucleators for autophagy.
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The UPS

As briefly introduced above, two major pathways regulate protein degradation of 

cytoplasmic proteins in eukaryotic cells: the UPS and the autophagy-lysosomal system. 

Misfolded proteins are normally degraded by UPS by marking them with the conjugation of 

ubiquitin, a covalent posttranslational modification (Ciechanover, 2005). The activation of 

ubiquitin moieties is ATP-dependent and driven by an ubiquitin-activating enzyme (E1). 

First AMP-ubiquitin is transferred to a cysteine residue in the E1 and from there to a 

cysteine of an ubiquitin-conjugating enzyme (E2). The E2 then teams up with an ubiquitin-

ligase (E3) to ubiquitinate the substrate, which is subsequently degraded by the proteasome 

(Streich and Lima, 2014, Schulman and Harper, 2009, van Wijk and Timmers, 2010, Ye and 

Rape, 2009). Substrates can be modified with a single ubiquitin or with ubiquitin chains, 

where the first substrate-attached ubiquitin serves itself as substrate for further ubiquitin 

conjugation. Dependent on the lysine of the ubiquitin that is used for chain elongation, 

diverse ubiquitin chains can be generated (Komander and Rape, 2012). Historically, 

proteasomal degradation is thought to be driven by the recognition of K48-linked ubiquitin 

chains, but most chain types can direct proteins for degradation by the proteasome 

(Komander and Rape, 2012). Certain chain types, including K63-chains have been mainly 

associated with autophagy and signaling; however, evidence exists that these can also be 

targeted by the proteasome (Dikic, 2017, Komander and Rape, 2012, Yau and Rape, 2016). 

At the proteasome, the ubiquitinated substrates are recognized by receptors, and are then 

deubiquitinated and unfolded in order to funnel them into the catalytic chamber of the 

protease. Substrates that cannot be unfolded can thus not be degraded by the proteasome 

(Finley, 2009).

Macroautophagy

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved and 

highly regulated pathway that plays a key role in quality control by mediating the 

degradation of cellular material within the lysosomal system. During autophagy, cytoplasmic 

material is engulfed by double-membrane organelles called autophagosomes that 

subsequently fuse with lysosomes, wherein their content is degraded. The resulting building 

blocks are recycled for reuse (Kraft and Martens, 2012). Although the term autophagy was 

proposed upon detection of double membrane vesicles in rat hepatic cells decades ago (De 

Duve and Wattiaux, 1966), its molecular understanding is largely based on the discovery of 

autophagy-related (ATG) genes in yeast genetic screens and the subsequent identification of 

homologues in complex eukaryotes (Thumm et al., 1994, Tsukada and Ohsumi, 1993, 

Harding et al., 1995). Autophagy is regulated by more than 40 known ATG genes, but only a 

restricted subset codes for proteins that are fundamental for all types of autophagy (Xie and 

Klionsky, 2007). This subset is referred to as the “core” autophagy machinery and can be 

divided into five subgroups that are thought to act in a hierarchical manner: initiation, 

nucleation of the isolation membrane (the precursor to the autophagosome), membrane 

expansion and maturation, fusion with the lysosome and nutrient recycling (Fig. 1). In 

eukaryotic cells, the initiation of autophagy is controlled by the activation of the unc-51-like 

kinase (ULK) complex, consisting of ULK1/2, ATG13, FIP200 and ATG101 (Mizushima, 

2010, Hosokawa et al., 2009, Mercer et al., 2009, Hara et al., 2008, Young et al., 2006). The 
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nucleation of the isolation membrane is also regulated by the class III phosphatidylinositol-3 

kinase (PI3K) complex that is composed of VPS34, VPS15, and Beclin and ATG14L 

(Hurley and Young, 2017, Itakura et al., 2008). Membrane delivery to the expanding 

isolation membrane is still a largely enigmatic process, but appears to be controlled by the 

transmembrane protein ATG9A (Young et al., 2006). Vesicle expansion involves two sets of 

ubiquitin-like (Ubl) conjugation systems, including the ATG12–ATG5-ATG16L1 complex 

and proteins of the Atg8 family. In humans this family comprises LC3A, LC3B, LC3C, 

GABARAP, GABARAPL1 and GABARAPL2. The two conjugation systems are highly 

interconnected and collectively mediate the attachment of the Atg8 C-terminus to 

phosphatidylethanolamine in the isolation membrane, where it functions as docking site for 

other factors (Geng and Klionsky, 2008, Mizushima et al., 1998, Ichimura et al., 2000, 

Ichimura et al., 2000). The closure of the isolation membrane and the recruitment of the 

SNARE protein syntaxin17 completes autophagosome maturation. Finally, the fusion of 

completed autophagosomes with lysosomes is mediated by the interaction between 

syntaxin17, SNAP29 and VAMP8 as well as YKT6, SNAP29 and STX7 (Itakura et al., 

2012, Matsui et al., 2018). The homotypic fusion and vacuole protein sorting (HOPS) 

tethering complex and several other accessory molecules, such as BRUCE and PLEKHM1 

promote these fusion events (Hegedus et al., 2013, Takats et al., 2013, Jiang et al., 2014, 

Takats et al., 2014, Ebner et al., 2018, McEwan et al., 2015). During starvation, the level of 

autophagy can be drastically increased as a general protective response to compensate for 

the lack of nutrients (Mortimore and Schworer, 1977, Kopitz et al., 1990, Kuma et al., 2004). 

For this reason, autophagy has long been considered as a nonselective process that is 

responsible for the indiscriminate degradation of cytoplasmic components and for the 

recycling of macromolecules to promote cellular adaptation and survival. However, recent 

data have revealed that autophagy can selectively direct cargoes to lysosomal degradation in 

nutrient-rich conditions by encapsulating cytoplasmic material in a selective exclusive 

manner (reviewed in Zaffagnini and Martens, 2016). Furthermore, the finding that tissue-

specific knockout of autophagy genes in mice leads to neurodegeneration or liver cancer 

(Hara et al., 2006, Komatsu et al., 2006, Takamura et al., 2011) and the fact that cells with 

defective autophagy are unable to clear certain intracellular pathogens (Randow and Youle, 

2014, Deretic et al., 2013, Nakagawa et al., 2004) highlight the essential function of 

selective autophagy in maintaining cellular homeostasis. Selective autophagy can distinguish 

between diverse targets and different terms were coined to describe such processes. Among 

the most studied types of selective autophagy are mitophagy, xenophagy, pexophagy and 

aggrephagy, in other words the selective disposal of old and/or damaged mitochondria 

(Rogov et al., 2014, Kanki et al., 2009, Narendra et al., 2008, Novak et al., 2010, Okamoto 

et al., 2009), intracellular pathogens (Gutierrez et al., 2004, Nakagawa et al., 2004, Thurston 

et al., 2009, Yoshikawa et al., 2009, Zheng et al., 2009), surplus peroxisomes (Farre et al., 

2008, Hutchins et al., 1999, Iwata et al., 2006) and the disposal of aberrant and misfolded 

cytosolic protein aggregates, respectively (Komatsu et al., 2007, Bjorkoy et al., 2005, Kirkin 

et al., 2009a, Pankiv et al., 2007, Szeto et al., 2006). In the following sections, we will focus 

on aggrephagy and, in particular, on the role of the p62/SQSTM1 protein in this process.
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The p62/SQSTM1 cargo receptor in aggrephagy

In contrast to non-selective bulk autophagy, selective autophagy requires i) the specific 

recognition of the cargo material and ii) its largely specific encapsulation by an isolation 

membrane (reviewed in Zaffagnini and Martens, 2016). The selective nature of autophagy is 

mediated by cargo receptors that recognise the cargo destined for degradation and link it to 

the growing isolation membrane through their interaction with membrane associated Atg8 

(Rogov et al., 2014, Zaffagnini and Martens, 2016) (Fig. 2). Many cargo receptors, including 

p62 and the related NBR1, as well as NDP52 and Optineurin, recognize their cargoes due to 

its modification with ubiquitin (reviewed in Dikic, 2017).

Following its detection in ubiquitin-positive protein aggregates, p62 (also called 

sequestosome 1; SQSTM1) was the first mammalian cargo receptor identified for selective 

autophagy (Bjorkoy et al., 2005, Pankiv et al., 2007, Ichimura et al., 2008). Its importance 

for cellular quality control is demonstrated by mutations in the SQSTM1 gene, which have 

been associated with several diseases, including amyotrophic lateral sclerosis (ALS), 

frontotemporal dementia (FD), neurodegeneration with ataxia, distal myopathy with rimmed 

vacuoles and Padget disease of the bone (Fecto et al., 2011, Goode et al., 2016, Haack et al., 

2016, Rubino et al., 2012, Bucelli et al., 2015, Hocking et al., 2002). Studies in cells, mice 

and Drosophila have shown that p62 is necessary for the formation of the ubiquitin-positive 

condensates and their subsequent degradation (Komatsu et al., 2007, Nezis et al., 2008). 

Accordingly, knockout of genes that mediate autophagosome formation and their fusion with 

lysosomes all result in a marked increase of p62-positive condensates (Bartlett et al., 2011). 

p62 contains a number of domains and motifs that mediate its function as cargo receptor 

during aggrephagy (Fig. 2). The N-terminal Phox and Bem1 (PB1) domain drives its 

oligomerization into long helical oligomers that have the appearance of filaments (Ciuffa et 

al., 2015, Lamark et al., 2003). The PB1 domain also mediates the interaction with other 

PB1-containing proteins including the NBR1 cargo receptor (Kirkin et al., 2009a, Lamark et 

al., 2003). The PB1 domain is followed by a ZZ type zinc finger domain, which binds N-

terminally arginylated proteins as well as K48- and K63-linked ubiquitin chains (Zaffagnini 

et al., 2018, Cha-Molstad et al., 2015). The LC3-interacting region (LIR) is localized in the 

central part of the molecule within an intrinsically disordered region (Pankiv et al., 2007, 

Ichimura et al., 2008), and the C-terminal UBA domain mediates its interaction with 

ubiquitin (Seibenhener et al., 2004).

Both, the UBA domain – ubiquitin and the LIR motif – Atg8 interactions are weak. The low 

affinity of the UBA domain for ubiquitin is in part due to its homo-dimerization, which is 

mutually exclusive with ubiquitin binding (Long et al., 2010, Long et al., 2008). Its affinity 

for ubiquitin can be increased by phosphorylation at Ser403 by the casein kinase 2 (CK2) 

and TBK1 (Matsumoto et al., 2011, Matsumoto et al., 2015, Pilli et al., 2011). The LIR 

motif of p62 has the sequence DDDWTHL and binds to LC3B in the low micromolar range 

(Novak et al., 2010, Pankiv et al., 2007, Ichimura et al., 2008). Oligomerization mediated by 

its PB1 domain allows p62 to avidly and selectively bind to cargoes, including misfolded 

proteins, on which ubiquitin is concentrated (Wurzer et al., 2015). A similar effect is seen 

for the LIR – LC3B interaction, where the PB1-mediated oligomerization results in a very 

high avidity interaction with membrane-concentrated LC3, such that the off-rate becomes 
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practically zero (Wurzer et al., 2015). This tight interaction enables p62 to bend membranes 

around cargo material, a property that is conserved in the yeast Atg19 cargo receptor 

(Wurzer et al., 2015, Sawa-Makarska et al., 2014).

p62 is not merely required for the tethering of ubiquitinated proteins to the Atg8 coated 

isolation membrane, but also for the preceding condensation of these proteins into larger 

structures that subsequently become targets for autophagy. How do the different biochemical 

activities act together to mediate cargo condensation and isolation membrane tethering, and 

how can this be coordinated with the activity of the UPS and with the autophagy machinery? 

A number of exciting recent discoveries have given us fascinating clues about these 

processes and their crosstalk as discussed below.

p62-mediated phase separations as nucleators for autophagosomes

It is becoming increasingly clear that many subcellular structures and compartments are the 

result of phase-separation reactions that condensate the interacting molecules. These 

condensates can be the result of low affinity, but multivalent interactions and individual 

molecules can be highly mobile within them (Box 1) (Banani et al., 2017, Shin and 

Brangwynne, 2017).

When cells are exposed to proteotoxic stress, such as the inhibition of the proteasome, 

interference with productive translation or the inhibition of chaperones, ubiquitin-positive 

proteins are concentrated in μm-sized condensates (Bjorkoy et al., 2005). Interestingly, the 

formation of these condensates is largely dependent on p62, since its depletion results in a 

more dispersed distribution of the ubiquitinated proteins in cells (Demishtein et al., 2017, 

Bjorkoy et al., 2005, Kageyama et al., 2014). The condensation-promoting activity of p62 

requires its PB1 and UBA domains, suggesting that the condensates are the result of the 

interaction of the ubiquitinated substrates with oligomeric, likely filamentous p62 (Bjorkoy 

et al., 2005, Ciuffa et al., 2015, Seibenhener et al., 2004, Zaffagnini et al., 2018). Two recent 

studies, including one from our group, demonstrated that p62 is entirely sufficient to phase 

separate ubiquitinated proteins into μm- sized condensates in vitro (Sun et al., 2018, 

Zaffagnini et al., 2018). Analogous to the situation in cells, this required the ability of p62 to 

oligomerize and to bind ubiquitin. The phase separation also required the presence of two or 

more substrate-attached ubiquitin chains that contain three or more ubiquitins, or very long 

free ubiquitin chains (Sun et al., 2018, Zaffagnini et al., 2018). Based on our electron 

microscopy data, we suggested that the formation of condensates is the result of p62 

filaments that are crosslinked by the substrate (Zaffagnini et al., 2018).

Potential regulators of p62-ubiquitin phase separation reactions

Substrates modified with M1-linked (where the N-terminus of ubiquitin is linked to the C-

terminal glycine of another ubiquitin), K48-linked and K63-linked ubiquitin chains are all 

able to trigger phase separation in vitro (Sun et al., 2018, Zaffagnini et al., 2018). p62 binds 

stronger to M1-linked and K63-linked chains compared to K48-linked chains (Long et al., 

2008, Wurzer et al., 2015, Seibenhener et al., 2004). Consistently, K48-linked chains were 

less efficient in triggering phase separation, perhaps preventing p62 from interfering with 
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proteasomal activity under normal conditions. In fact, we found that in vitro the formation of 

condensates is highly dependent on the concentration of the ubiquitinated substrate 

(Zaffagnini et al., 2018). Taken together, these recent results suggest that, in principle, the 

substrates for p62 are not fundamentally different from those of the UPS, but rather that their 

increased concentration, resulting for example from UPS overload, triggers the p62-

mediated phase separation. Indeed, several other lines of evidence suggest that the UPS 

communicates with the p62 system (Fig. 3). High concentrations of free mono-ubiquitin 

inhibit condensation, likely by competitively interfering with p62 substrate-binding by 

interacting with the UBA domain (Zaffagnini et al., 2018). The levels of free monoubiquitin 

drop substantially when the proteasome is blocked, while at the same time, substrate-

attached ubiquitin chains accumulate (Kaiser et al., 2011). Thus, proteasome inhibition 

decreases the concentration of an inhibitor of the p62 – ubiquitin phase separation, while at 

the same time, it increases the concentration of substrates triggering the reaction. 

Furthermore, free K63- and especially K48-chains, but not M1-linked chains inhibit the 

phase separation (Zaffagnini et al., 2018). Free ubiquitin chains are generated at the 

proteasome where, at least in yeast, the deubiquitinase Rpn11 cleaves off the ubiquitin 

chains from the substrate at the base (Lee et al., 2011, Finley, 2009). This activity has been 

linked to the proteolytic activity of proteasomes, and it is therefore possible that the levels of 

free ubiquitin chains signal proteasomal activity to the p62 system (Fig. 3). The mechanistic 

basis for how free K48- and K63-linked ubiquitin chains inhibit phase separation is currently 

unclear. However, this effect may be related to their ability to disassemble p62 oligomers 

owing to their interaction with the zinc-finger domain of p62, which is located close to the 

PB1 domain (Zaffagnini et al., 2018) (Fig. 2). Therefore, they may sterically interfere with 

oligomerization and consequently with phase separation, as shorter p62 filaments are less 

efficient to elicit the reaction. In general, little is known about the regulation of p62 

filaments length in cells and this will be an important topic for future research.

In addition, it was shown that the zinc-finger domain binds N-terminally arginylated proteins 

(Cha-Molstad et al., 2015, Cha-Molstad et al., 2017, Yoo et al., 2018). N-terminal 

arginylation is a N-degron that triggers rapid substrate ubiquitination and degradation by the 

proteasome (Bachmair et al., 1986, Tasaki et al., 2012). Therefore, accumulation of N-

terminally arginylated proteins may signal proteasomal overload to p62. Binding of N-

terminally arginylated proteins to the zinc finger enhances oligomerization of p62 (Cha-

Molstad et al., 2015, Cha-Molstad et al., 2017, Yoo et al., 2018), which, in turn, should 

facilitate phase separation of p62 and its ubiquitinated substrates. An interesting but 

unanswered question is whether p62 is able to simultaneously bind arginylated N-termini 

and ubiquitinated substrates.

Ubiquitin-binding and oligomerization of p62 are also the subject of regulation by 

posttranslational modification. Phosphorylation of serine 403 in the UBA domain by TBK1 

or casein kinase 2 increases its affinity for ubiquitin and consequently the formation of p62-

ubiquitin condensates in vitro and in cells (Matsumoto et al., 2011, Zaffagnini et al., 2018, 

Matsumoto et al., 2015, Pilli et al., 2011). Phosphorylation of serine 409 in the UBA domain 

by ULK1 occurs upon proteotoxic stress and increases the binding to ubiquitin by 

destabilizing the UBA-dimer interface (Lim et al., 2015). Additionally, the UBA domain is 

subject to ubiquitination at lysine 420, and this modification increases its ability to form 
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condensates, likely because it interferes with the inhibitory homodimerization of the UBA 

domain, thereby activating ubiquitin binding (Peng et al., 2017, Lee et al., 2017). In contrast, 

ubiquitination of lysine 7 in the PB1 domain negatively regulates oligomerization and cargo 

sequestration (Pan et al., 2016). The ubiquitination of p62 may be affected by the overall 

levels of free ubiquitin in the cell, which decreases upon proteasome inhibition. It has also 

been shown that upon oxidative stress, oxidization of cysteine 105 and 113, which are 

located in the linker region between the PB1 domain and the zinc-finger domain, enhances 

oligomerization of p62 and the formation of condensates in cells (Carroll et al., 2018).

In addition to the role of p62 in substrate condensation and isolation membrane tethering in 

autophagy, p62 has been suggested to be a direct adaptor for the recruitment of substrates to 

the proteasome in the cytoplasm (Seibenhener et al., 2004). Furthermore, p62 contains a 

nuclear localization signal (NLS) and a nuclear export signal (NES) and shuttles between the 

nucleus and the cytoplasm. p62 has not only been suggested to export polyubiquitinated 

substrates from the nucleus for their degradation by autophagy in the cytoplasm, but also to 

attach ubiquitinated proteins to the proteasome in the nucleus (Hewitt et al., 2016, Pankiv et 

al., 2010). Moreover, there are indications that p62 mediates the degradation of proteasomes 

by autophagy upon starvation (Cohen-Kaplan et al., 2016).

Although these p62-ubiquitin condensates were for a long time considered rather passive 

aggregates that become linked to the autophagosomal membrane and subsequently degraded, 

this view has changed substantially by now. When the in vitro reconstituted p62-ubiquitin 

condensates were analyzed by fluorescence recovery after photobleaching (FRAP), 

surprisingly, it turned out that the ubiquitinated substrates showed fast recovery and by 

implication high mobility within the condensates and considerable exchange with the 

material in solution (Sun et al., 2018, Zaffagnini et al., 2018). In contrast, p62 displayed very 

low recovery, demonstrating that it is stably associated with the condensates (Sun et al., 

2018, Zaffagnini et al., 2018). Thus, although the condensates form in a manner that is 

dependent on p62 and ubiquitin, the two interaction partners show a strikingly different 

behavior within the structures. The reason for the different mobility might be that owing to 

their size, the p62 filaments have a much lower diffusion coefficient. In addition, while the 

individual UBA – ubiquitin interactions may be highly transient, allowing the ubiquitinated 

proteins to diffuse, the p62 filaments have a number of binding sites and thus may be fixed 

because they are engaged in multiple interactions between UBA domains and ubiquitin at 

any given time. In cells, the situation might be even more complex. Endogenously-tagged 

p62 showed a higher exchange in condensates in cells compared to the in vitro formed 

condensates, but the FRAP recovery was still relatively low (Zaffagnini et al., 2018). The 

situation for the ubiquitinated substrates is far less clear, because until now, no imaging 

experiments with endogenous ubiquitinated substrates have been conducted. It is therefore 

possible that their mobility is lower in vivo than in vitro as some of them could be larger and 

more aggregated than the proteins used for the in vitro experiments. However, the 

condensates in vivo may undergo constant ATP-dependent remodeling of the ubiquitin 

chains by ubiquitin ligases and deubiquitinases (DUBs), chaperones or disaggregases, 

thereby increasing the mobility of the components in the condensates. The same factors may 

also regulate the stability and lifetime of the condensates in the cytoplasm. In cells, the p62 

condensates have been observed by live cell imaging to undergo fusion followed by 
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relaxation into a spherical shape (Sun et al., 2018). This observation is consistent with a 

liquid-like behavior of the condensates and thus with high mobility of the components 

within them.

A further aspect is that in vivo, ubiquitin-chain remodelling processes, or other ubiquitin-

chain types, such as K11- and K33-linked ubiquitin chains, branched ubiquitin chains or 

heterotypic ubiquitin chains composed of multiple ubiquitin chain linkage types, may be 

additionally required or regulate efficient phase separation (Nibe et al., 2018, Yau et al., 

2017, Meyer and Rape, 2015, Yau et al, 2017). As many ubiquitin-chain types have been 

found to be enriched in insoluble inclusions of autophagy-deficient mice, the relative 

contribution of specific ubiquitin chains to substrate condensation in cells has still to be 

elucidated (Riley et al., 2010). Because certain ubiquitin-chain types have a higher affinity 

for p62, it would, for example, be possible that substrates are specifically targeted to p62 by 

their modification with K63-linked chains, whereas substrates modified with K48-linked 

chains are only accepted when they accumulate owing to proteasomal overload.

Thus, multiple connections between aggrephagy and the UPS exists. These include the use 

of ubiquitin for marking the substrate, the recognition of N-terminal arginylation and the fact 

that p62 can act as adaptor for the proteasome and as autophagic cargo receptor (Kirkin et 

al., 2009b, Cha-Molstad et al., 2015, Seibenhener et al., 2004, Babu et al., 2005, Bjorkoy et 

al., 2005). Furthermore, at least in plants and yeast proteasomes can themselves become 

substrates for autophagy (Marshall et al., 2015, Marshall et al., 2016, Waite at al., 2016). 

Additionally, the level autophagy proteins including p62 can be regulated by the UPS (Platta 

et al., 2012, Myeku and Figueiredo-Pereira, 2011).

p62-ubiquitin condensates as substrates for autophagy

At least some of the p62-ubiquitin condensates become substrates for autophagy. Indeed, it 

was demonstrated that p62 is required to trigger autophagosome formation upon proteotoxic 

stress, proteasome inhibition and oxidative stress (Carroll et al., 2018, Demishtein et al., 

2017, Bjorkoy et al., 2005, Pankiv et al., 2007, Babu et al., 2005). However, it was suggested 

that the condensates function to sequester ubiquitinated proteins in neuroblastoma cells (Sha 

et al., 2018). How substrate sequestration and autophagosome formation are coordinated is 

an important open question (Fig. 4). In cells, these activities are modulated by additional 

factors including ALFY, WDR81, Huntingtin, and the cargo receptor NBR1 (Clausen et al., 

2010, Filimonenko et al., 2010, Rui et al., 2015, Liu et al., 2017), which promote p62-

mediated substrate condensation and also interact with the autophagy machinery. Among 

these, NBR1 directly interacts with p62 via its PB1 domain, and in vitro, NBR1 has a direct 

stimulatory effect on substrate condensation by p62 (Zaffagnini et al., 2018). p62-ubiquitin 

condensates formed in vitro have also been shown to directly recruit LC3B showing that p62 

is able to interact with LC3 when engaged in the phase separation reaction (Sun et al., 2018, 

Zaffagnini et al., 2018. Interestingly, the addition of LC3B to phase separation reactions 

slowed down condensation (Zaffagnini et al., 2018). This effect is likely mediated by a 

LC3B-mediated masking of the LIR motif of p62, which is required for efficient phase 

separation (Zaffagnini et al., 2018). The mechanistic basis for the role of the LIR motif in 

cargo condensation is currently unclear, but this observation suggests that substrate 
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condensation and autophagosome formation are coordinated, such that the recruitment of the 

autophagy machinery slows down cargo condensation. It is further possible that some 

structural rearrangement of the p62 filaments occurs when the Atg8-decorated isolation 

membrane forms at the condensates such that p62 can efficiently link the condensates to it.

p62 has also been demonstrated to mediate the autophagic degradation of stress granules, 

which are condensates originating from phase separation reactions (Buchan et al., 2013, 

Molliex et al., 2015). In contrast to aggrephagy, these structures form in a p62 independent 

manner and it is therefore unclear if the coordination of phase separation and autophagy 

machinery recruitment follows similar principles.

It is becoming increasingly clear that the cargo material has an active role in the induction 

and formation of autophagosomes in selective, starvation-independent autophagy (Zaffagnini 

and Martens, 2016). This activity is conferred by the cargo receptors upon recognition of 

their cargo. For example, in S. cerevisiae, the Atg19 cargo receptor recruits the scaffold 

protein Atg11 and the Atg12–Atg5-Atg16 complex to the prApe1 cargo in the cytoplasm-to-

vacuole targeting (Cvt) pathway (Fracchiolla et al., 2016, Kamber et al., 2015, Shintani et 

al., 2002, Torggler et al., 2016). Optineurin and NDP52 recruit the autophagy machinery to 

damaged mitochondria in mammalian cells (Lazarou et al., 2015). Furthermore, ER proteins 

have been shown to recruit the autophagy machinery through the Atg11/FIP200 scaffold 

proteins (Khaminets et al., 2015, Mochida et al., 2015, Smith et al., 2018). In aggrephagy, 

the ALFY protein was shown to bind ATG5 and phosphatidylinositol 3-phosphate (PI3P) 

(Filimonenko et al., 2010) and may therefore promote isolation membrane elongation, 

whereas Huntingtin interacts with ULK1 that is required autophagosome initiation (Rui et 

al., 2015).

However, with regard to p62 as a cargo receptor, important questions remain. For instance, it 

is unclear whether p62 itself as a major component of the condensates is also able to interact 

with the upstream autophagy machinery. It is also unknown if the p62– ubiquitin 

condensates are formed at predefined sites that provide membranes or lipids that are 

permissive for autophagosome formation (Fig. 4A), or if the membrane source is recruited to 

the condensates after their formation (Fig. 4B).
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Box 1

Numerous cellular organelles such as the nucleolus, P granules, stress granules and PML 

bodies are stable entities even though they are not bound by membranes. It has become 

clear that many of these membrane-less organelles are the result of the phase separation 

reactions that mediate the condensation of biomolecules such as proteins, RNA or DNA 

into larger assemblies (Banani et al., 2017, Shin and Brangwynne, 2017, Brangwynne et 

al., 2017, Brangwynne et al., 2009). It has emerged that not only orgenelles but also the 

formation of more transient cellular condensates such as signalling puncta is based on 

phase separation reactions (Li et al., 2012). Within these condensates biomolecules can 

display different mobilities giving various condensates distinct physical properties. 

Condensates resulting from liquid-liquid phase separations show high mobility of the 

macromolecules that are concentrated within these structures (Banani et al., 2017, Shin 

and Brangwynne, 2017). While the exact molecular grammar underlying the formation of 

liquid-liquid phase separation is still not entirely clear, it appears that this phenomenon is 

often based on the interaction of polymers that undergo multivalent, low affinity 

interactions with each other (Banani et al., 2016). The presence of unstructured regions 

containing aromatic site chains also promotes liquid-liquid phase separation (Pak et al., 

2016). Intriguingly, the filamentous oligomers of p62 and ubiquitin chains have exactly 

these properties. On the one hand, the ubiquitin-binding UBA domain of p62 binds 

ubiquitin with micromolar affinity and is linked to the rest of the p62 protein via a long 

unstructured region. Ubiquitin chains, on the other hand, harbor multiple interaction sites 

for p62.
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Future Perspectives

It has become clear that the UPS and autophagy are the main systems for the degradation 

of misfolded proteins in the cytoplasm. Moreover, it is now generally appreciated that the 

two systems are highly interlinked and that they use the same signals on their targets. 

While it appears that there is no single, specific signal that specifically targets substrates 

to either the UPS or autophagy, we still do not fully understand how the decision about 

the fate of the substrate is made. A key factor in this regard is p62 owing to its ability to 

phase separate ubiquitinated proteins into larger condensates, which subsequently 

become targets for autophagy. It remains unclear how cargo condensation and the 

recruitment of the autophagy machinery are mechanistically and temporally linked. 

Furthermore, if p62-ubiquitin condensates additionally function to sequester misfolded 

proteins in the cytoplasm rather than to mediate their immediate degradation as has been 

suggested, this raises the question of how the switch from sequestration to recruitment to 

the autophagy machinery is regulated and how this can be coupled to the activity of the 

UPS? With regard to p62 mediated phase transition, it is possible that it also plays a role 

in other forms of selective autophagy apart from aggrephagy such as xenophagy or 

mitophagy, perhaps by aiding the concentration of autophagy proteins at the cargo. Given 

these important questions, exciting times are ahead for the field.
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Fig. 1. Brief overview of autophagy.
Autophagy maintains cellular homeostasis by mediating the degradation and recycling of 

cytoplasmic material. Autophagy can be organized in several hierarchical steps. 1. Initiation, 

which is controlled by the activation of the ULK complex. 2. Nucleation of an isolation 

membrane that engulfs the cargo material. 3. Vesicle expansion and maturation, which 

entails the expansion of the isolation membrane and its closure to form an autophagosome. 

4. Fusion of the mature autophagosome with a lysosome, resulting in the degradation of the 

inner autophagosome membrane and the cargo. 5. Recycling of the macromolecules that 

result from the breakdown of the cargo and are transported back to the cytosol.
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Fig. 2. p62 as a cargo receptor in selective autophagy.
a) Schematic overview of the domain structure of p62, which mediates its functions as 

indicated. Abbreviations: Phox and Bem1 domain (PB1, 21 – 103 amino acids (aa)); zinc-

finger domain (ZZ, 128 - 163 aa); TRAF6 binding domain (TB, 225 - 250 aa); LC3-

interacting region (LIR, 338 - 341 aa); Keap1-interacting region (KIR, 346 - 359 aa); 

ubiquitin-binding domain (UBA, 386 – 440 aa); nuclear localization signal (NLS1 and 

NLS2); nuclear export signal (NES). b) The mechanism of cargo tethering to the isolation 

membrane by p62. p62 filaments capture ubiquitinated substrates and link them to the Atg8 

decorated isolation membrane to mediate their incorporation into autophagosomes. The 

NBR1 cargo receptor presumably aids p62 in this process.
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Fig. 3. Crosstalk between the UPS and selective autophagy.
In physiological conditions, misfolded and ubiquitinated proteins (1) are targeted mainly to 

the proteasome for their degradation (2). In response to proteotoxic stress and as 

consequence of proteasome overload or malfunction, misfolded proteins can no longer be 

degraded by the proteasome. In this situation, selective autophagy (3) serves as a backup 

mechanism and degrades these proteins. p62 filaments act at the intersection between the 

UPS and autophagy by sensing the accumulation of ubiquitinated substrates and mediate 

their phase separation into larger condensates. p62 oligomerization is a crucial step in this 

process and, in vitro, it is inhibited by free K48- and K63-linked ubiquitin chains. Free 

monoubiquitin also inhibits phase separation, likely by binding to the UBA domain of p62. 

Since free ubiquitin chains and monoubiquitin are generated by active proteasomes this 

provides a possible mechanism by which the selective autophagy of proteins and protein 

aggregates could be inhibited by the UPS.

Danieli and Martens Page 21

J Cell Sci. Author manuscript; available in PMC 2021 May 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. p62 phase separation in selective autophagy.
Degradation of p62-ubiquitin condensates that form as a result of phase separation reactions. 

It is currently unclear if the phase separation reaction occurs at predefined, membrane 

proximal sites that are later on transformed into autophagosomes (A), or if the phase 

separation of p62 and ubiquitinated substrates can occur anywhere in the cells followed by 

their recruitment to a membrane site that is permissive for autophagosome formation (B).
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