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SUMMARY  35 

 36 

The bone marrow (BM) constitutes the primary site for life-long blood production and skeletal 37 

regeneration. However, its cellular composition and the spatial organization into distinct 38 

‘niches’ remains controversial. Here, we combine single-cell and spatially resolved 39 

transcriptomics to systematically map the molecular and cellular composition of the endosteal, 40 

sinusoidal, and arteriolar BM niches. This allowed us to transcriptionally profile all major BM 41 

resident cell types, determine their localization, and clarify the cellular and spatial sources of 42 

key growth factors and cytokines. Our data demonstrate that previously unrecognized Cxcl12-43 

abundant reticular (CAR) cell subsets (i.e. Adipo- and Osteo- CAR cells) differentially localize 44 

to sinusoidal or arteriolar surfaces, locally act as ‘professional cytokine secreting cells’, and 45 

thereby establish distinct peri-vascular micro-niches. Importantly, we also demonstrate that the 46 

3-dimensional organization of the BM can be accurately inferred from single-cell gene 47 

expression data using the newly developed RNA-Magnet algorithm. Together, our study reveals 48 

the cellular and spatial organization of BM niches, and offers a novel strategy to dissect the 49 

complex organization of whole organs in a systematic manner. 50 

 51 

One Sentence Summary: Integration of single-cell and spatial transcriptomics reveals the 52 

molecular, cellular and spatial organization of bone marrow niches 53 

 54 

INTRODUCTION  55 

Bone marrow (BM) niches are specialized microenvironments where distinct mesenchymal 56 

cells, the vasculature, nerve fibers and differentiated hematopoietic cells interact to govern the 57 

maintenance and differentiation of hematopoietic and mesenchymal stem cells1–3. Classically, 58 

BM niches have been studied by genetic approaches that involve labeling cell types and deleting 59 

candidate niche factors based on the expression of individual reporter genes. These studies have 60 

generated important insights into the functional roles and cellular sources of key cytokines such 61 

as Cxcl12 or Scf (Kitl)4–10. However, in such approaches a single marker is used to define cell 62 

types, likely resulting in the labelling of heterogeneous populations instead of specific cell 63 

types. These short-comings have resulted in a controversial debate about the importance of 64 

distinct cell types and factors, and their localization to peri-sinusoidal, peri-arteriolar or 65 

endosteal niches4–10. To gain a global understanding of cell types and niches in the BM, we 66 

have generated a single-cell RNA-sequencing (scRNAseq)-based molecular map of all major 67 

BM populations. We then used spatially resolved transcriptomics in combination with novel 68 
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computational tools to allocate cell types to different BM niches, determine molecular 69 

mediators of intercellular interactions, and identify the cellular and spatial sources of niche 70 

factors. 71 

 72 

RESULTS 73 

Identification and characterization of BM resident cell types by scRNAseq 74 

Frequencies of BM cell types differ by several orders of magnitude11, imposing a challenge to 75 

scRNAseq approaches. To capture both highly abundant as well as extremely rare BM resident 76 

cells, we performed droplet-based scRNAseq12 of cells from total mouse BM, followed by 77 

progressive depletion of highly abundant cell types or enrichment of rare populations from 78 

undigested BM or enzymatically digested bones (Figure 1a). In total, our dataset comprises 79 

7497 cells with a median detection of 1999 genes per single cell, which formed 32 clusters 80 

corresponding to distinct cell types or stages of differentiation (Figure 1b, S1). Importantly, this 81 

map is not quantitative with regard to the relative size of the different cell populations, since 82 

dissociation rates largely differ between cell types11. As detailed below, cell type annotation 83 

was performed based on marker gene expression (Table S1, Figure S2,3), gene ontology 84 

analyses (Table S1), and by quantifying the enrichment of cluster gene signatures in 85 

transcriptomic data of previously described bulk populations using the CIBERSORT 86 

algorithm13,14 (Figure S4, Supplementary Note). We used SOUP15 to confirm that the 87 

mesenchymal populations described in the following are primarily distinct cell types, while 88 

transition states between clusters exist (Figure S5). 89 

As expected, scRNAseq of total bone marrow identified the major haematopoietic and immune 90 

cell types, including dendritic cells, neutrophils, monocytes, T cells, and distinct developmental 91 

B cell stages (Figure 1b, S2, S4a). Upon depletion of these major immune populations, 92 

scRNAseq primarily yielded erythroid progenitors that exhibited low expression of the pan-93 

haematopoietic marker CD45 and displayed erythroid markers such as CD7116 (Figure S2). An 94 

additional 2% of these cells were non-haematopoietic (Figure 1a, S1). To efficiently capture 95 

non-haematopoietic cells in depth, we subsequently depleted cells expressing lineage markers, 96 

CD45 or CD71 from non-digested bone marrow and enzymatically digested bone chips (Figure 97 

1a). This allowed us to interrogate rare cell populations, including neural Schwann cells (Mog, 98 

Mag), smooth muscle cells (Tagln, Acta2), putative myofibroblasts, nine different Pdgfra-99 

positive mesenchymal cell populations and two endothelial cell clusters (Cdh5, Pecam) (Figure 100 

S3, Table S1 for a list of signature genes). The endothelial populations comprised Sca-1 (Ly6a)-101 

expressing arterial and Emcn-expressing sinusoidal endothelial cells, respectively (Figure 2a, 102 
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b)17. Among the mesenchymal cell populations, we identified chondrocytes (Acan, Sox9), 103 

osteoblasts (Osteocalcin/Bglap, Col1a1), as well as several less well described cell types. First, 104 

we observe three distinct fibroblast-like populations, which we further annotate based on their 105 

differential localization below. Second, we observe two additional populations that showed 106 

high transcriptomic similarity to previously described SCF-GFP+ 5 and Cxcl12-GFP+ 9 cells, 107 

also called Cxcl12-abundant reticular (CAR) cells (Figure 2c)4,18. Remarkably, these 108 

populations differentially expressed adipocyte and osteo-lineage genes (Figure 2d), while 109 

exhibiting similar overall transcriptomic profiles. As a consequence, we termed these 110 

previously undescribed subpopulations Adipo- and Osteo-CAR cells, respectively. Adipo-CAR 111 

cells expressed high levels of leptin receptor (Lepr), and showed high transcriptomic similarity 112 

to previously described LepR-Cre cells5,8,19 (Figure 2d). In contrast, Osteo-CAR cells expressed 113 

higher osterix (Sp7, Figure 2d, S3n) and lower Lepr levels. Third, we identified a cluster of 114 

Ng2 and Nestin-expressing mesenchymal cells that show transcriptomic similarity to 115 

previously described Ng2+Nestin+ mesenchymal stem cells (MSCs), which we therefore termed 116 

Ng2+ MSCs (Figure 2a,c). Ng2+Nes+ MSCs are clearly distinct from Nes+ endothelia20 or 117 

smooth muscle cells21. Pseudotime analysis using RNA-Velocity22 placed Ng2+ MSCs at the 118 

apex of a differentiation hierarchy with osteoblasts, CAR cells, chondrocytes, and fibroblasts 119 

being downstream (Figure 2e).  120 

To comprehensively cover haematopoietic stem and progenitor cell (HSPC) populations, we 121 

additionally performed scRNAseq of Lin-cKit+ cells. This revealed a differentiation 122 

continuum23–26 spanning megakaryocyte-erythrocyte and lympho-myeloid branches, as well as 123 

a separate cluster of eosinophil/basophils progenitors (Figure 1b, S2). 124 

In order to investigate the impact of the isolation strategies of BM resident cells on the cell type 125 

recovery in scRNAseq experiments, we compared flushing of BM versus crushing of whole 126 

bones to release the marrow, and evaluated the impact of enzymatic digestion. This 127 

demonstrated that the majority of cell populations are found both in flushed and crushed BM, 128 

but many populations are only released efficiently upon intense physical treatment or 129 

enzymatical digestion (Figure S6, Figure 2f). In particular, the fibroblast populations were 130 

found more abundantly in crushed if compared to flushed bones. While we have confirmed the 131 

presence of these subpopulations in the diaphyseal BM using imaging and spatial 132 

transcriptomics (see Figure 3, 4c-f), similar cell types deriving from the cortical bone, epiphysis 133 

or periosteum might also be present in scRNAseq datasets from whole bones. Only the 134 

myofibroblast and Schwann cell populations were exclusively present in the crushed bone 135 
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samples, suggesting that they are either firmly attached to the bones or may derive from distal 136 

regions, such as the periosteum or the epiphysis. 137 

In summary, our dataset constitutes the most comprehensive scRNAseq study of the 138 

homeostatic BM to date21,27 (Figure S6e), and spans almost all BM resident cell types described 139 

previously as well as several novel cell types. Osteoclasts, neurons and mature megakaryocytes 140 

are not covered by our dataset, likely due to cell size limitation of the scRNAseq approach. The 141 

full dataset can be interactively browsed at http://nicheview.shiny.embl.de 142 

 143 

Spatial allocation of BM resident cell types by combined single-cell and spatial 144 

transcriptomics 145 

While single-cell transcriptional profiling provides a powerful tool to characterize the identity 146 

and molecular makeup of BM resident cell types, information about their spatial distribution is 147 

lost in such experiments. To gain spatial information on the cell types identified above, we 148 

considered integrating our scRNAseq dataset with spatially resolved transcriptomics data of the 149 

BM. Recently described spatial transcriptomic approaches require high image and RNA 150 

quality28–30 or rely on unfixed tissue material31,32, and have therefore not been successfully 151 

adapted to the adult BM. Here we developed a robust and significantly improved version of 152 

laser-capture microdissection-sequencing (LCM-seq)33, based on random priming that copes 153 

with fixed material and low input RNA quality, and is therefore compatible with fixed bone 154 

marrow sections (Figure S7a, see methods). Using this approach, we generated full-length, high 155 

quality transcriptomic data from LCM-dissected areas of fixed BM sections containing 200-156 

300 cells in a single cell layer. We applied LCM-seq to 78 microdissected regions collected 157 

from the central diaphyseal bone marrow, based on presence or absence of sinusoidal and 158 

arteriolar blood vessels, or based on the distance from the endosteum, in order to characterize 159 

the endosteal, sub-endosteal, arteriolar, sinusoidal, and non-vascular niche composition (Figure 160 

3a, S7b). Spatially resolved regions from the endosteum and sub-endosteum were collected 161 

solely based on the distance to the bone lining, and independent on the presence of blood 162 

vessels. Due to the high vascularization of bone marrow, ‘non-vascular’ niches can be expected 163 

to be in close proximity but not directly adjacent to sinusoids11. 164 

To evaluate our approach, we selected marker genes of cell types known to be specifically 165 

present in the respective niches, and compared their expression in scRNAseq and corresponding 166 

spatial transcriptomics data (Figure 3b, Table S2). As expected, osteoblast genes were 167 

selectively enriched at the endosteum, genes specific for sinusoidal endothelial cells were 168 

enriched at regions with high abundance of sinusoids, and arterial endothelial genes were 169 
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enriched on arterioles. Marker gene sets for haematopoietic populations, Schwann cells and 170 

myofibroblasts were not significantly associated with any of the defined niches, suggesting that 171 

these cell types are either relatively evenly distributed across niches (haematopoietic 172 

populations), or insufficiently covered in the LCM-seq data (Schwann cells and myofibroblasts) 173 

(Figure 3c, Figure S7d,e). In contrast, marker gene expression of the remaining 12 BM resident 174 

populations differed significantly across analysed niches. 175 

To systematically assess the preferential localization of these BM resident cell types to 176 

candidate niches, we computationally estimated the frequencies of cell populations defined by 177 

scRNAseq in the spatially resolved transcriptomics data using the CIBERSORT algorithm 13,14 178 

(Figure 3d). We extensively validated the ability of CIBERSORT to decompose bulk 179 

transcriptomes using a single-cell reference, and evaluated its performance on assembled pools 180 

of 100 cells with known composition that were processed using the LCM-seq protocol (see 181 

Supplementary Note and Figure S8). As expected, osteoblasts and chondrocytes were found 182 

exclusively at endosteal niches (Figure 3e,f). In addition, a specific fibroblast population 183 

localized preferentially to the endosteum and was therefore tentatively termed endosteal 184 

fibroblasts. In contrast, arterial endothelial cells, smooth muscle cells, and a distinct fibroblast 185 

population localized specifically to arteriolar niches (Figure 3e,f). According to its localization 186 

we tentatively termed this fibroblast population arteriolar fibroblasts. Sinusoidal endothelial 187 

cells were found in sinusoidal niches, but were also present in regions not selected based on 188 

presence of vascular subtypes (i.e. (sub)-endosteal niche), in accordance with a widespread web 189 

of sinusoids spanning the entire bone marrow (Figure 2b, S9a). Adipo-CAR cells were also 190 

found predominantly in areas with high sinusoidal occurrence, in line with their similarity to 191 

LepR-Cre cells and the reported peri-sinusoidal localization of these cell types 4,5. In contrast, 192 

previously not described Osteo-CAR cells preferentially localized to arteriolar or non-vascular 193 

niches, suggesting that the two newly described CAR cell populations occupy distinct vascular 194 

niches. Ng2+ MSCs could not be unanimously placed to a niche, potentially due to additional 195 

heterogeneity of this population (Supplementary Note, Figure S8i). In summary, systematically 196 

integrating spatial transcriptomics with single-cell transcriptomics data allowed us to localize 197 

the majority of known and newly defined BM resident populations to distinct endosteal, 198 

sinusoidal, arteriolar and non-vascular niches. 199 

 200 

Validation of cell type localization 201 
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To confirm the spatial relationships of BM cell types identified by LCM-Seq, we determined 202 

marker combinations specific to the individual populations and performed immunofluorescence 203 

imaging of bone sections. 204 

Gene expression analyses suggested that differential expression of alkaline phosphatase (Alpl) 205 

and Cxcl12 permits the discrimination of Osteo-CAR cells (Cxcl12+Alpl+) and Adipo-CAR 206 

cells (Cxcl12+Alplneg) (Figure 4a). In contrast, osteoblasts, MSCs and arterial ECs expressed 207 

Alpl, but only low levels of Cxcl12 (Cxcl12negAlpl+). To confirm the in situ localization of 208 

Adipo- and Osteo-CAR cells, we performed whole-mount immunofluorescence imaging of 209 

long bones from Cxcl12-GFP mice4. Co-staining with the sinusoidal maker Emcn revealed that 210 

Cxcl12+Alplneg Adipo-CAR cells in the central BM predominantly ensheathed sinuosoids, in 211 

line with results from LCM-seq (Figure 4a,b, S9a). In contrast, Cxcl12+Alpl+ Osteo-CAR cells 212 

in central BM typically showed a non-sinusoidal localization and a highly reticular morphology 213 

(Figure 4a,b S9a). By co-staining with the arterial maker Sca1, we also found numerous 214 

instances of Cxcl12+Alpl+ Osteo-CAR cells in immediate vicinity of Sca1+ arterioles (Figure 215 

4c, S9b). In some instances, these formed highly reticulate structures (Figure S9b). We further 216 

noticed that GFP+ protrusions from Osteo-CAR cells covered Sca1+ arterioles, whereas 217 

endothelial cells contributed only faint levels of Cxcl12-GFP (Figure 4c, S9b). Together, these 218 

observations confirm the predominantly arteriolar and non-vascular localization of Osteo-CAR 219 

cells, as predicted from LCM-seq. Importantly, ubiquitous Alpl staining at the endosteum and 220 

sub-endosteum (possibly derived from osteoblasts) prevented analysis of CAR cell populations 221 

in these regions. 222 

Next, we used CD31, SM22, Pdpn, Pdgfr, Col1a1 and Sca1 as markers to specifically identify 223 

smooth muscle cells (SM22+Pdpnneg), fibroblast populations (Pdpn+Pdfgr+), osteoblasts 224 

(PdpnnegCol1a1+), and arterial endothelial cells (PdpnnegCD31+Sca1+) to localize them in situ 225 

(Figure 4d-f). As suggested by LCM-seq, CD31/Sca1-expressing arterioles were enveloped by 226 

SM22+Pdpnneg smooth muscle cells and Pdpn+ arteriolar fibroblasts (Figure 4d). Arteriolar 227 

fibroblasts appear to be the cellular source for the collagen layer of the tunica externa 228 

surrounding arterioles (Figure S7c) and are likely overlapping with previously described peri-229 

arteriolar Pdpn-expressing stromal cells34. Moreover, immunofluorescence confirmed the 230 

existence of Pdpn+Col1alow fibroblasts localizing to the bone-facing side of the endosteal lining 231 

made up of PdpnnegCol1ahigh osteoblasts (Figure 4e). Notably, Pdpn+ cells were also found at 232 

the cortical bone and periosteal regions, making it possible that fibroblast-like cells similar to 233 

those in the central marrow also derive from distal regions of the BM (i.e. cortical bone, 234 

epiphysis or periosteum) (Figure 4f). 235 
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Together, these data validate the ability of our approach to identify novel cell types, such as 236 

Adipo- and Osteo-CAR cells, and spatially allocate in the BM. Moreover, our data demonstrates 237 

that Cxcl12 is mainly synthesized at sinusoidal surfaces by Adipo-CAR cells, but also by Osteo-238 

CAR cells at arteriolar surfaces, and in some instances in non-vascular regions (see also Figure 239 

6g). 240 

 241 

Spatial relationships of BM resident cell types can be accurately predicted based on 242 

scRNAseq data and cell adhesion molecule expression  243 

How spatial relationships of cell types are established and maintained within complex organs, 244 

such as the bone marrow, remains poorly understood. It has been suggested that the expression 245 

of cell adhesion molecules represents an important mechanism that translates basic genetic 246 

information into complex three-dimensional patterns of cells within tissues35, but this 247 

hypothesis has never been investigated systematically in complex systems, due to a lack of 248 

spatial and molecular tissue maps. To investigate whether cell type-specific localization of BM 249 

populations can be predicted by the differential expression of cell adhesion molecules, we 250 

compiled a comprehensive list of well-annotated cellular adhesion receptors and their cognate 251 

plasma membrane or ECM-bound ligands and developed the RNA-Magnet algorithm (Figure 252 

S10a, Table S3, Methods). RNA-Magnet predicts potential physical interactions between single 253 

cells and selected ‘attractor’ populations, based on expression patterns of cell surface receptors 254 

and their cognate surface expressed binding partners. For each single cell, RNA-Magnet 255 

provides scores for the strength of attraction (RNA-Magnet adhesiveness) and a direction, 256 

indicating the attractor population the cell is most attracted to (RNA-Magnet location). To 257 

investigate whether RNA-Magnet is capable of recapitulating the spatial relationships of BM 258 

cell types, we introduced four anchor populations representing the following niches: osteoblasts 259 

for the endosteal niche, sinusoidal endothelial cells for the sinusoidal niche, as well as arterial 260 

endothelial and smooth muscle cells both representing arteriolar niches (Figure 5a). Predicted 261 

adhesiveness of BM populations to distinct niches strongly correlated with their degree of 262 

differential localization as measured by spatial transcriptomics (Figure 5b). Strikingly, cell 263 

type-specific localization was also recapitulated with high accuracy for almost all populations 264 

(Figures 5c, S10b-d), including the differential localization of Adipo-CAR and Osteo-CAR 265 

cells to sinusoidal and arteriolar endothelia, respectively. Interestingly, smooth muscle cells 266 

were most attracted to arterial endothelial cells, whereas arteriolar fibroblasts adhered to smooth 267 

muscles, recapitulating the consecutive layering observed in blood vessels with the tunica 268 

intima (endothelial cells) surrounded by the tunica media (smooth muscle cells), and the tunica 269 
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externa (ECM produced by arteriolar fibroblasts) 36. Together, these observations demonstrate 270 

the ability of RNA-Magnet to predict spatial localization from single-cell gene expression data 271 

and highlight the importance of cell adhesion proteins for tissue organization in the BM.  272 

 273 

Cellular and spatial sources of cytokines and growth factors in the BM  274 

Key biological processes occurring in the bone marrow are thought to be mediated by the 275 

coordinated action of a diverse set of cytokines and growth factors. However, the identity of 276 

cytokine-producing cells and their organization into spatial and functional BM niches remain 277 

poorly understood. In particular, the cellular and spatial sources of haematopoietic stem cell 278 

(HSC) maintenance factors, such as Cxcl12 and Scf (Kitl), remain controversial 6–9 with Lepr-279 

Cre, NG2-Cre, CAR cells, Nestin-dim, osteoblasts and endothelial cells each being separately 280 

considered as potential main sources of these factors. To identify cells serving as the source of 281 

HSC maintenance factors, we initially examined our scRNAseq dataset. Our data show that 282 

Cxcl12 and Scf are indeed expressed by arterial endothelial 37 and some mesenchymal cell types 283 

9. However, their expression was several orders of magnitude higher in the Adipo- and Osteo-284 

CAR populations (Figure 6a, see also Figure 4). In order to confirm Cxcl12 expression from 285 

Adipo- and Osteo-CAR cells at protein level, we developed FACS marker strategies to 286 

discriminate these cells types, and confirmed them by FACS-based index single-cell 287 

RNAsequencing (Figure 6b). Comparative analyses demonstrated that Adipo-CAR cells are 288 

CD45negCD71negTer119negCD41negCD51+VCAM1+CD200midCD61low, whereas Osteo-CARs 289 

and NG2+ MSCs expressed CD200 and CD61 at high levels (Figure 6c, S11). Intracellular flow 290 

cytometric analyses confirmed that both CAR populations are the main producers of Cxcl12 291 

protein, whereas endothelial cells produced detectable but significantly lower levels (Figure 6d, 292 

see also Figure 4a-c). CAR cell populations were also among the main producer of key 293 

cytokines required for B cell and myeloid lineage commitment, such as Il7 and m-CSF (Csf1) 294 

(Figure 6a). Intriguingly, among all BM cell types, CAR cell populations produced the highest 295 

numbers of distinct cytokines and growth factors, and attributed the highest proportion of 296 

transcriptional activity to cytokine production, suggesting that they act as ‘professional 297 

cytokine-producing cells’ (Figure 6e,f). Together, these observations suggest a model in which 298 

differential localization of professional cytokine producing cells to cellular scaffolds results in 299 

the establishment of specific micro-niches. In line with this, spatial transcriptomics revealed 300 

that the five niches investigated showed unique production patterns of cytokines and growth 301 

factors (Figure 6g,h). Importantly, CAR cell-derived cytokines were predominantly produced 302 

in arteriolar and sinusoidal niches, and net production of growth factors and cytokines was 303 
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significantly higher in vascular if compared to non-vascular niches, in line with the preferential 304 

localization of Osteo- and Adipo-CAR cells to their respective endothelial scaffolds (Figure 305 

6g). Together, these observations suggest that specific localization of professional cytokine 306 

producing BM resident cells (such as Adipo- and Osteo- CAR cells) results in the establishment 307 

of unique niches with both arteriolar and sinusoidal niches being key sites for the production 308 

HSC maintenance and differentiation factors. 309 

 310 

Systems-level analysis of intercellular signaling interactions of BM resident cell types 311 

To gain a systems-level overview of potential intercellular signaling interactions, we applied 312 

RNA-Magnet to soluble signaling mediators (e.g. cytokines, growth factors etc.) and their 313 

receptors (Figures 7a, S10e). Unlike previous approaches for the reconstruction of signaling 314 

networks from single cell data38–40, RNA-Magnet incorporates information on surface receptors 315 

with low mRNA expression; is based on a highly curated list of ligand-receptor pairs (Table 316 

S3); and specifically identifies the enrichment of signaling interactions between pairs of cell 317 

types, with an improved runtime compared to currently available packages38 (see also 318 

Methods).  319 

The network obtained from RNA-Magnet analyses formed two disconnected signaling clusters 320 

consisting of either mature immune or non-haematopoietic cells (i.e. endothelial, mesenchymal 321 

and neuronal cells), suggesting that immune and non-immune cells preferentially communicate 322 

within their respective groups. For example, many signals potentially sensed by osteoblasts41 323 

(e.g. Bmp-, PTHrP-, FGF- signalling, see Figure S10f) are released by the newly identified 324 

endosteal fibroblasts described above. In contrast to mature immune cells, HSPC populations 325 

frequently received signals from non-haematopoietic cells, suggesting that HSPCs gradually 326 

switch from a mesenchymal to an immune signaling niche upon lineage commitment. 327 

Importantly, both CAR cell populations were the most important source of signals sensed by 328 

all myeloid and lymphoid progenitors (Figure 7a). In accordance with the specific localization 329 

of Osteo- and Adipo-CAR populations to arteriolar or sinusoidal scaffolds, an analysis of the 330 

net signaling output of distinct local niches implied that lymphoid and myeloid progenitors 331 

receive strong input from cytokines produced in vascular and especially sinusoidal niches 332 

(Figure 7b, c). Together, these analyses support a concept where distinct biological BM 333 

processes are mediated by specific combinatorial signaling input from different local niches42,43 334 

and provide a systems-level view of signaling interactions in the BM. 335 

 336 

 337 
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DISCUSSION 338 

In this study we have combined single-cell and spatially resolved transcriptomics in order to 339 

transcriptionally map all major BM resident cell types, identify novel cell types and spatially 340 

allocate them to distinct BM niches. Our data clarifies the cellular and spatial origin of key 341 

cytokines regulating BM haematopoiesis. For example, the key HSC factors Cxcl12 and Scf 342 

are mainly produced by two newly described subpopulations of previously known CAR cells, 343 

which we have termed Osteo- and Adipo-CAR cells, according to their gene expression profile. 344 

Besides stem cell maintenance factors, CAR cell subsets produce the highest amounts of 345 

cytokines among all BM resident cell types, including main cytokines mediating myeloid and 346 

lymphoid differentiation, in line with a recent study demonstrating that IL7 and CXCL12 are 347 

produced by the same BM cell type44. This suggests that CAR cells act as ‘professional cytokine 348 

producing cells’ and constitute central niche cells orchestrating many aspects of 349 

haematopoiesis. While the more abundant Adipo-CAR cells localize to sinusoidal endothelia, 350 

Osteo-CAR cells localize to non-vascular regions or extensively cover arteriolar endothelia. 351 

Accordingly, high production of stem cell maintenance and differentiation factors could be 352 

observed in both sinusoidal and arteriolar niches if compared to non-vascular niches. Together, 353 

this suggests that vascular (both arteriolar and sinusoidal) scaffolds represent the key sites for 354 

the production of factors required for stem cell maintenance and differentiation, with the Adipo- 355 

and Osteo-CAR cell subsets constituting central cellular hubs.  356 

Distinct cell populations have been suggested to act as mesenchymal stem cells (also known as 357 

skeletal stem cells), including Ng2+, Nes+, LepR+ and CD45negCD51+CD200+ cells7,10,45,46. 358 

While these populations all constitute heterogeneous populations, pseudo-time analyses of our 359 

data suggest that a population of Ng2- and Nes-expressing MSCs resides at the apex of distinct 360 

mesenchymal lineages. Importantly, index scRNAseq (Figure 6c, S10b) and comparison to 361 

previously published data sets (Figure S6c,d) demonstrated that these cells express most 362 

previously described MSC markers (CD45negCD51+CD200+Ng2+Nes+Leprmid) and therefore 363 

likely represent the true mesenchymal stem cell. 364 

Two recent studies performed single-cell RNA-seq of mesenchymal cells from mouse BM21,27. 365 

In particular, ref.27 complements the scRNA-seq data presented here, since cells from flushed 366 

BM were sorted using genetic markers (LepR-Cre, VE-Cad-Cre and Col2.3-Cre). A 367 

comparison with our data set reveals that both CAR cell populations as well as MSCs are 368 

contained within the LepR+ cell compartment (Figure S6). Conversely, our dataset is more 369 

comprehensive due to the inclusion of all non-hematopoietic, as well as hematopoietic stem 370 

and progenitor cells, therefore enabling the analysis of intercellular signaling. Most 371 
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importantly, the integration of scRNAseq and spatial transcriptomics enables the systematic 372 

localization of cell types to BM niches and the in situ measurement of cytokine mRNA 373 

synthesis. 374 

Conceptually, our data supports a model where the establishment of unique niches is mediated 375 

by differential localization of professional cytokine producing cells to cellular scaffolds. 376 

Distinct niche milieus might differentially regulate hematopoietic activities, in line with recent 377 

data from genetic studies42. In the future, it will be of interest to investigate whether such 378 

extrinsic, niche-driven variations determine early fate decisions of hematopoietic stem cells23.  379 

Overall, our approach, which combines single-cell RNAseq and spatially resolved 380 

transcriptomics, reveals the molecular, cellular and spatial organization of BM niches and offers 381 

a novel and broadly applicable strategy to systemically map the organization of whole organs. 382 
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 579 

Figures and Figure Legends 580 

 581 

Figure 1. Identification of BM resident cell types by scRNA-seq. a, Overview of the FACS 582 

sorting strategy. In total, 5 consecutive single-cell RNA sequencing runs were performed. Right 583 

panel: t-SNE projection of all cells with respective experiment colour-coded. b, t-SNE 584 

projection of all cells with clusters colour-coded. Abbreviations used: T: T cells, NK: Natural 585 

killer cells, s. pre-B: small pre-B cells, l. pre-B: large pre-B cells, DC: Dendritic cells, Prog.: 586 

progenitor. * Lin-Kit+Sca1high HSCs reside at the interface of LMPPs and Megakaryocyte 587 

progenitors, see also figure S3g.  588 
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 589 

590 

Figure 2. Characterization of BM resident cell types. a, Gene expression levels of Sca1, 591 

Endomucin (Emcn), Nestin, and Ng2, with relevant populations colour-coded. MAGIC47 was 592 

used for imputation of drop-out values. b, Deep imaging of a BM section immunostained with 593 

antibodies against Sca-1 and Emcn. Scale bar = 20 µm. c, Enrichment of gene expression 594 

signatures of Ng2+ MSCs, Adipo-CAR and Osteo-CAR cells in previously published 595 

transcriptomes of relevant genetically labelled populations5,7–9. See Figure S4b for further 596 

populations, and the supplementary note for a detailed evaluation of the algorithm used 597 

(CIBERSORT). Error bars indicate the standard error of the mean across n=3 bulk 598 

transcriptome samples per class.  d, Boxplots of the scaled expression level of selected genes 599 

in single cells from the Adipo-CAR, Osteo-CAR and Osteoblast populations. For the right 600 

panel, the mean expression of all genes annotated with the gene ontology term ‘ossification’ 601 

was computed for each cell. e, Projection of all mesenchymal cell types using PHATE48 with 602 

time derivatives of gene expression state, as determined by RNA velocity22, highlighted as 603 
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arrows. f, Comparison of cell type frequencies between distinct cell isolation methods used for 604 

scRNAseq. 605 

 606 

607 

Figure 3. Spatial allocation of BM resident cell types by integrated single-cell and spatial 608 

transcriptomics. a, Scheme of experimental design. 12 µm bone sections were stained for 609 

arterioles (Sca1) and sinusoids (Emcn), respectively. Areas of approximately 14.500 µm2 610 

surrounding arteries (dark yellow box), sinusoids (yellow box) and the endosteum (blue box), 611 

as well as areas with no vessels (grey box) and sub-endosteal areas (dotted blue box) were 612 

collected by laser capture dissection and subjected to RNA-seq. A confocal image is shown for 613 

illustrative purposes. For images acquired under the laser capture dissection microscope and 614 

selected areas see Figure S7b. b, Expression of osteoblast-, sinusoid- and arteriole-specific 615 

genes in scRNA-seq data (10x) and spatial transcriptomics from different niches (LCM: LCM-616 

seq data). c, Enrichment of population marker genes (Table S1) among genes with differential 617 

expression between niches (Table S2). d, Schematic outline of the computational data analysis 618 

strategy used. e,f, Estimated abundance of different cell types in microscopically distinct 619 

niches. Error bars indicate standard error of the mean of the estimate across n=11 to n=28 620 

samples per class. 621 
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 622 

Figure 4. Localization of key mesenchymal cell types by immunofluorescence. a, Left 623 

panel: Single-cell gene expression levels of Cxcl12 and Alpl with relevant cluster identity 624 
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colour-coded. MAGIC47 was used to impute drop-out values.  Right panel: Sample high-625 

resolution ROI from a whole-mount image of a femur from a Cxcl12-GFP mouse, stained for 626 

Alpl and the sinusoidal marker Emcn. An Alpl+Cxcl12-GFP+ cell distant from sinusoids is 627 

highlighted by an arrowhead. b, Quantitative analysis of a full whole-mount image, see also 628 

Figure S9a. Left panel: Sample ROI, scale bar: 50µm. Central panel: 3D segmentation of the 629 

same ROI. Cxcl12-GFP+ cells were classified as Osteo- or Adipo-CAR cells based on the Alpl 630 

signal. Right panel: Quantitative assessment of Alpl+ Osteo-CAR cells (red) and Alplneg Adipo-631 

CAR cells (green) between sinusoidal and non-sinusoidal niches in central BM. c, Whole-632 

mount imaging of a femur from a Cxcl12-GFP mouse, stained for Alpl and the arteriolar marker 633 

Sca1. Arrowheads point to Alpl+Cxcl12+ cells near, but not overlapping with, Sca1+ arteriolar 634 

endothelial cells. Scale bars in ROIs: 10µm. See figure S9b for a second whole-mount image. 635 

d, Left panel: Single-cell gene expression levels of SM22 (Tagln) and Pdpn with relevant 636 

cluster identity colour-coded. Central  panel: Immunofluorescence staining of a BM arteriole 637 

stained for SM22, Pdpn and CD31. Right panel: Immunofluorescence staining of a BM arteriole 638 

stained for Pdpn, Sca1 and Pdgfra. Scale bar: 20 µm. e, Left panel: Single-cell gene expression 639 

levels of Col1a1 and Pdpn with relevant cluster identity colour-coded. Right panel: 640 

Immunofluorescence staining of Col1a1, Pdpn and DAPI at the endosteal surface. Scale bar: 641 

20 µm. f, Immunofluorescence staining of Pdpn at the endoestum, cortical bone and periosteum. 642 

  643 
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 644 

Figure 5. Inference of cellular interactions from single-cell gene expression data by RNA-645 

Magnet. a, t-SNE highlighting the cell type each single cell is most likely to physically interact 646 

with (RNA-Magnet: Location, indicated by colour), and the estimated strength of adhesion 647 

(RNA-Magnet: Adhesiveness, indicated by opacity). b, Scatter plot comparing the estimated 648 

strength of adhesion (RNA-Magnet score) to the degree to which each cell type is differentially 649 

localised between niches (spatial transcriptomics, see also Figure 3c). c, Left panel: Heatmap 650 

depicting a summary of inferred localisation based on RNA-Magnet. Fraction of cells assigned 651 

to a certain niche is colour-coded. Right panel: Bar chart indicating the correlation between the 652 

RNA-Magnet estimate of localization and the LCM-seq estimate of localization. 653 

 654 
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 655 

Figure 6. Cellular and spatial sources of key cytokines in the bone marrow. a, Contribution 656 

of cell types to distinct cytokine pools. Mean gene expression across all cells constituting each 657 

cell type is compared. b, Single-cell gene expression levels of Cd200 and Itgb3 (CD61) from 658 

10x genomics data in CD45negLinnegCD71negVcam1+ cells. MAGIC47 was used to impute drop-659 

out values. Relevant populations are colour-coded.  c, Surface marker levels of CD200 and 660 

CD61 from indexed scRNAseq data in CD45negLinnegCD71negVcam1+ cells. FACS index values 661 

for n=91 cells subjected to indexed scRNAseq (see methods). The colour indicates the most 662 

similar cell type from the main data set as identified by scmap49. d, Intra-cellular FACS analyses 663 

of Cxcl12 expression in total BM, lineage-negative BM, Lin-CD31+ endothelial cells and 664 
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CD61/CD200 subpopulations of CD45negLinnegCD71negCD51+Vcam1+ CAR cells. Statistics 665 

were performed using an unpaired t test. ***: p < 0.001, **: p<0.01*,: p<0.05 e, Quantification 666 

of the number of growth factors (GFs) and cytokines expressed by each cell type, and the 667 

fraction of total mRNA devoted to producing growth factors and cytokines. For a list of growth 668 

factors and cytokines used, see Table S3. f, Relative expression of cytokines and growth factors 669 

in Adipo-CAR cells and Fibroblasts. g, Expression of Cxcl12, Kitl, and summed expression of 670 

all cytokines and growth factors in arteriolar, sinusoidal and non-vascular niches from spatial 671 

transcriptomics data. P-values for differential expression relative to non-vascular niches are 672 

from limma/voom50 (Cxcl12, Kitl) or a Wilcoxon ranksum test (sum); ***: p < 0.001, *: p<0.05.  673 

h, Expression of cytokines, chemokines and growth factors in the different niches measured by 674 

LCM-seq. Only factors with significant differences between niches are included. 675 

 676 

 677 

Figure 7. Systems-level analysis of signaling potential in the BM. a, Inference of signaling 678 

interactions between cell types by RNA-Magnet. If a cell type is enriched in expression of 679 

ligands for receptors expressed by a second cell type, a line is drawn between these cell types, 680 

with colour indicating the ligand-producing cell type and line width indicating the strength of 681 

enrichment. For details, see methods and figure S9e for a fully labelled version of the figure. b, 682 

Summary of niche composition, as estimated from LCM-seq (see also figure 3f). c, Inference 683 

of signalling interactions between niches and cell types. Line width indicates the strength of 684 

enrichment for expression of ligand-receptors pairs. Cell types are arranged as in subfigure b. 685 
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 686 

Figure S1. Cellular composition of populations defined by flow cytometry. a, Abundance 687 

of different gates as fraction of total. b, Quantification of cell type composition for each FACS 688 

gate shown in main figure 1a. 689 
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 690 

Figure S2. Expression of marker genes for haematopoietic populations highlighted on t-691 

SNE. For full lists of marker genes, see table S1. 692 
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 693 

Figure S3. Expression of marker genes for non-haematopoietic populations highlighted 694 

on t-SNE. For full lists of marker genes, see table S1. 695 
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 696 

Figure S4. Comparison of cell type transcriptomes determined by scRNA-seq to data from 697 

bulk populations described in literature. a, Enrichment of gene expression signatures of 698 

haematopoietic populations in immune cell transcriptomes published by the immgen 699 

consortium (data source: GEO GSE109125)51. b, Enrichment of gene expression signatures of 700 

non-haematopoietic populations in published transcriptomes of populations defined by genetic 701 

markers5,7–9,52; see methods for specification of data sources, and see the supplementary note 702 

for a detailed evaluation of the algorithm used. Error bars indicate standard error of the mean 703 

for n=3 to n=6 bulk transcriptome samples per class. 704 

 705 

 706 

Figure S5. Comparison of clustering methods. a, The optimal number of mesenchymal cell 707 

clusters was determined using the SOUP method15, a semi-soft clustering algorithm designed 708 

to distinguish between distinct cell types and transition states between cell types. b, Main 709 

cluster identity from SOUP highlighted on the t-SNE from figure 1b (mesenchymal cell types 710 

only). c, Comparison of clusters identified by Seurat (Figure 1b) to clusters identified by SOUP 711 

(Figure S5b) demonstrates strong overlap between both methods. 712 

 713 
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 714 

Figure S6. Comparison of cell isolation methods and reference datasets. a,b, Additional 715 

single-cell RNA-seq data was generated as described, except that bone marrow was derived by 716 

flushing bones and  subjected or not subjected to enzymatic digestion. Data was projected to 717 

two dimensions using t-SNE and cell type labels were assigned using the anchoring approach 718 

implemented in seurat353. c,d, Single-cell RNA-seq data from a recent study of different 719 

genetically labelled populations from flushed bone marrow27 was projected to two dimensions 720 

using t-SNE and cell type labels were assigned using the anchoring approach implemented in 721 

seurat353. e, Comparison of cell type frequencies between various published datasets. 722 
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 723 

Figure S7. Technical properties of the LCM-seq dataset. a, Boxplots comparing the number 724 

of genes observed per sample in different protocols. All samples were down-sampled to 1 725 

million reads for comparison. For the dataset presented in main figure 3, the protocol relying 726 

on random priming was used. b, Representative images of samples collected for LCM-seq; 727 

scale bar corresponds to 100 µm. c, Immunofluorescence staining of a BM arteriole stained for 728 

Col1a1, Pdpn and CD31. Scale bar: 20 µm. d, Schwann cell markers were lowly expressed 729 

across all niches e, haematopoietic markers were highly expressed across all niches. 730 
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 731 

Figure S8. Evaluation of the CIBERSORT algorithm, see also supplementary note. a, 732 

Heatmap of population-specific marker genes used for the algorithm. b,c, Simulations to assess 733 

the ability of CIBERSORT to decompose individual samples; see supplementary note for detail. 734 
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d, CIBERSORT estimates of cell type composition of total bone marrow, compared to the cell 735 

type composition estimate from 10x genomics (see figure S1b). e,f, Simulations to assess the 736 

ability of CIBERSORT to identify changes in population frequencies across multiple samples; 737 

see supplementary note for detail. g, FACS was used to assemble 8 different pools of B220+ B-738 

cells, CD3+ T/NK-T cells and Gr1+SSChigh neutrophils. Each pool contained a total of 100 cells 739 

at predefined ratios of B cells, T cells and neutrophils. Pools were then fixed and processed 740 

using the LCM-seq protocol, and CIBERSORT was used to decompose their composition. 741 

Estimates for T and NK cells, as well as different B-cell subpopulations, were summed for the 742 

display. h, Simulations to assess the ability of CIBERSORT to discriminate between similar 743 

cell types; see supplementary note for detail. Red squares highlight pairs of similar cell types. 744 

i, Stability of the CIBERSORT estimates from main figure 3e with regard to re-sampling of the 745 

marker gene lists used; see supplementary note for detail. 746 

 747 
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 748 

Figure S9. Whole-mount imaging and data analysis. a, Whole-mount imaging data of a 749 

Cxcl12-GFP bone section stained for Alpl and Emcn was segmented in 3D using the imaris 750 

software. Large Alpl+ surfaces (red, corresponding to endosteum and arteries) were identified 751 

and any GFP+ spots with <20µm proximity to these structures were excluded from further 752 

analysis (yellow spots). Remaining GFP+ spots were classified as within 15µm of sinusoidal 753 

vessels (purple dots), of away from sinusoidal vessels (cyan dots). GFP+ spots were further 754 

classified as Alpl+ (right panels, red spots) or Alpl- (right panels, green spots). b, Like in main 755 

figure 4c. In ROI 3, asterisk correspond to GFP+Alpl+ protrusions on, but clearly distinct from, 756 

Sca1+ arteriolar endothelial cells. In ROI 4, various z-sections of a highly reticulate Cxcl12-757 

GFP+Alpl+ cell are shown. 758 

 759 
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760 

Figure S10. Analyses using RNA-Magnet. a, Overview of the receptor-ligand list used. See 761 

methods for data sources, and table S3 for the complete list. b, Stability of the RNA-Magnet 762 

location estimate for different choices of the fuzzification parameters k and x0. For each 763 

parameter set, RNA-Magnet location estimates were summarised per cell type, and compared 764 

to the summarised location estimate displayed in figure 5c. The asterisk indicates the parameter 765 

set used in figure 5c. c, Choice of local neighbourhoods. As detailed in the methods section, 766 

RNA-Magnet works by identifying interactions specific to a single cell compared to similar 767 

cells. The figure displays the size of local neighbourhoods for four representative cells 768 
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demarked by a black triangle. d, Detailed comparison of location estimates obtained from 769 

LCM-seq and RNA-Magnet. See also main figure 5c. e, Fully labelled display of the network 770 

from main figure 7a. f, Expression of selected cytokines and growth factors involved in bone 771 

remodelling. 772 

 773 

 774 

Figure S11. Index-sorting analysis of LinnegVcam1+ cells. a, Sorting scheme used b, 775 

Expression of key marker genes confirm the cell type assignment obtained by scmap, cf. main 776 

Figure 6c. 777 

 778 

Methods 779 

Mouse experiments 780 

Mice were purchased from the distributors Janvier and Envigo, and housed under specific 781 

pathogen-free conditions at the central animal facility of the German Cancer Research 782 

Center. All animals used were 8-12 weeks old C56Bl/6J females. All animal experiments were 783 
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performed according to protocols approved by the German authorities (Regierungspräsidium 784 

Karlsruhe). 785 

 786 

Tissue harvesting and processing 787 

Femurs, tibiae, hips and spines were dissected and cleaned from surrounding tissue. For all cell 788 

sorting and flow cytometry analyses, bones were crushed in cell suspension medium (RPMI 789 

1640 (Sigma) containing 2% fetal bovine serum) using a mortar and a pestle. Dissociated cells 790 

were filtered through a 40 µm filter, spun down at 1500 rpm for 5 min, then incubated with 5 791 

ml ACK lysis buffer (Thermo Fisher Scientific) for 5 min at room temperature for red blood 792 

cell lysis. Neutralization was achieved with 20 ml cell suspension medium. Cells were then 793 

lineage-depleted using Dynabeads Untouched Mouse CD4 Cells Kit (Thermo Fisher Scientific) 794 

according to manufacturer’s recommendations, using a home-made lineage cocktail.  795 

For cell extraction from bones, crushed bone chips were washed four times each with 10 ml of 796 

cell suspension medium, then incubated with 10 ml of digestion medium (1 mg/ml of each 797 

Collagenase II and Dispase in HBSS, all from Gibco) for 30 min at 37 °C in a water bath. Cell 798 

suspension was then removed and filtered through a 40 µm filter and the digestion reaction was 799 

stopped by adding 40 ml of cell suspension medium. From this point on, cells were treated 800 

exactly the same as bone marrow cells above. 801 

 802 

Flow Cytometry 803 

Lineage-depleted bone and bone marrow cells obtained following crushing and digestion were 804 

stained with FACS antibodies (Table S4) for 30 min on ice, then washed with cell suspension 805 

medium. For intracellular CXCL12 staining, cells were fixed/permeabilized using BD 806 

Cytofix/Cytoperm (BD) for 30 min on ice, washed with BD Perm/Wash (BD) and incubated 807 

overnight with anti-CXCL12 antibody (1:10), then washed with BD Perm/Wash. All flow 808 

cytometric analyses were performed using BD Fortessa flow cytometers. Cell sorting was done 809 

using BD Aria I, Aria II and Aria Fusion sorters. 810 

 811 

scRNA sequencing – 10x Genomics  812 

For single-cell RNA sequencing using 10x genomics, bone and bone marrow cells were 813 

processed as described above. In addition to FACS markers, cells were stained with a DNA dye 814 

(Vybrant™ DyeCycle™ Violet, Thermo Fisher Scientific) to exclude debris and ensure that 815 

only cells are sorted for droplet-based scRNA-seq. For this purpose, cells were incubated with 816 

2.5 µl/ml Vybrant dye in cell suspension medium for each 3x106 cells at 37 °C for 30 min in a 817 
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water bath. Following the incubation, cells were placed on ice and for each experiment, a total 818 

of 1.0-1.5x104 events were sorted immediately into 15 µl PBS containing 2% FBS. Cell 819 

numbers were confirmed using LUNA™ Automated Cell Counter (Logos Biosystems). 33.8 µl 820 

of cell suspension were used as input without further dilution or processing, with final 821 

concentrations around 100-200 cells/µl.  Reverse transcription and library construction were 822 

carried out following the Chromium Single Cell 3’ Reagent v2 protocol (10x genomics, 823 

Pleasanton, CA) according to manufacturer’s recommendations. Total cDNA synthesis was 824 

performed using 14 amplification cycles, with final cDNA yields ranging from approximately 825 

2 ng/µl to 10 ng/µl. 10x genomics sequencing libraries were constructed as described and 826 

sequenced on an Illumina Next-Seq500, with read length 26+58 or 26+98. 827 

 828 

FACS-indexed scRNA sequencing 829 

Lineage-depleted bone marrow cells were obtained by crushing and stained with the following 830 

antibodies on ice for 30 min: CD41, CD45, CD51, CD61, CD71, CD200, Ter119 and VCAM1 831 

(Table S4). Indexed single-cells were sorted into 5µl of Smart-Seq2 lysis buffer (2µM Oligo-832 

dT30VN primer, 2mM dNTP mix (10mM each, NEB), 1:50 RNAse inhibitor (promega) and 833 

1:125 Triton X-100 10% (Sigma-Aldrich)) and immediately snap frozen in an ethanol and dry 834 

ice bath. Plates were kept at -80 ºC until processing. cDNA amplification was performed using 835 

a modified Smart-Seq2 protocol by adding, after 3 min at 72 ºC, 5µl of RT mix containing 1× 836 

SMART First Strand Buffer (Clontech), 2 mM dithiothreitol (Clontech), 2 µM template 837 

switching oligo (Exiqon), 10 U µl−1 SMARTScribe (Clontech) and 10 U µl−1 RNASin plus 838 

(Promega). Transcriptome amplification was performed using 1X KAPA HiFi HS MM and 839 

0.1µM ISPCR primer, with 21 PCR enrichment cycles. Libraries were constructed using in 840 

house produced Tn554 at 1:100 dilution and sequenced on an Illumina Next-Seq 500 sequencer, 841 

with 75 cycles single end sequencing. 842 

 843 

Bone preparation and sectioning for immunofluorescent staining 844 

Femurs were dissected and cleaned from muscle, and placed immediately in 4% PFA at 4°C 845 

for 30 min. Subsequently, femurs were washed three times in 1X PBS before incubating with 846 

15% sucrose for 2 h, followed by 30% sucrose for another 2 hours. All incubations were 847 

performed at 4 °C. Femurs were placed in OCT and frozen at -80 °C until sectioning. 848 

For sectioning, a cryotome (ThermoFisher) was used to generate 12 µm sections at -20 to -22 849 

°C, which were then transferred to slides using the CryoJane Tape-Transfer System (Leica 850 

Biosystems). Slides were post-fixed with 4% PFA for 1 min to enhance the adherence of 851 
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sections to the slide, then washed for 2 min by dipping in PBS. Sections were stained with 852 

antibodies in blocking buffer (PBS containing 10% goat serum and 0.2% Triton X100, see table 853 

S4 for antibodies used) at 4°C overnight, then washed by dipping into PBS for 1 min. Secondary 854 

antibody staining was done in blocking buffer at room temperature for 2 h. Sections were 855 

imaged using an LSM710 microscope (Zeiss) equipped with a polychromatic META detector 856 

(Lasers: 458, 488, 514, 561, 594, and 633nm), and an Olympus FV3000 Confocal laser 857 

scanning microscope with 4 GaAsP spectral detectors, FRAP and FRET  (Lasers: 405, 445, 858 

488, 514, 561, 594 and 640 nm). Imaris software (v8.41) was used for data analysis and 859 

representation. 860 

 861 

Whole mount imaging of immunostained mouse femurs 862 

The employed whole mount staining protocol has been previously described in detail11. Briefly, 863 

femurs were isolated, the surrounding connective and muscle tissue carefully removed and 864 

fixed in 2% paraformaldehyde in PBS (6h, 4°C).  After dehydration in 30% sucrose in PBS 865 

(72h, 4°C) the femurs were embedded in OCT medium, snap-frozen and bi-sectioned using a 866 

cryotome. The remaining thick bone marrow slice was incubated in blocking solution overnight 867 

(0.2% Triton X-100, 1 % bovine serum albumin, 10% donkey serum, in PBS) at 4°C and 868 

afterwards stained with primary and secondary antibodies (see table S4) diluted in blocking 869 

solution for 2-3 days each, including three one hour washing steps with PBS in between. The 870 

samples were immersed in RapiClear 1.52 for 6 hours to increase optical transparency. Images 871 

were acquired on an SP8 Leica confocal microscope system. Imaris software (v8.41) was used 872 

for data analysis and representation. 873 

 874 

Bone sectioning for LCM-seq 875 

Femurs for LCM-seq were carefully processed following guidelines of good RNA work 876 

practice. Femurs were harvested and cleaned as quickly as possible, then placed immediately 877 

in ice-cold 4% PFA, fixed for 30 min, and dehydrated in 15% and 30% sucrose solutions, 878 

prepared using RNase-free sucrose powder (Acros Organics), for 2 h each. All incubation steps 879 

were carried out on ice. Femurs were then flash-frozen in a 2-Methylbutane and dry ice bath 880 

and stored overnight at -80°C. Bone sectioning for RNA retrieval was performed in a sterilized 881 

cryotome, blades were wiped with RNaseZAP (Sigma) and slides were stored on dry ice until 882 

staining (on the same day). For staining, we adapted a shortened immunostaining protocol55 883 

starting with thawing the slide quickly at room temperature, then incubating with the primary 884 

antibody (1:20 to 1:40, depending on the antibody) on an aluminum rack on ice for 10 min, 885 
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washing in ice-cold PBS for 30 s, then adding the secondary antibody for 5 min on ice. Higher 886 

antibody concentrations may be needed for antibodies of lower quality. Final wash and 887 

dehydration were done as follows: dipping for 30 s in each ice-cold PBS, RNase-free H2O, 888 

70%, 95% and 100% ethanol, in this order.  889 

 890 

LCM-seq 891 

Bone sections were processed using the Zeiss PALM MicroBeam Axio Observer Z1 (Zeiss), 892 

with a monochromatic Axiocam 506 mono camera, shooting laser at 355 nm and filter sets 893 

FS18 C adv (Dapi), FS44 C adv (FITC) and FS45 C adv (mCherry). Image acquisition and 894 

sample isolation were carried out using a LD Plan-NEOFLUAR 20X/0.4 objective with the 895 

adjustment ring set to 1 (Zeiss). Cutting energy was set to 45 and focus to 67, while laser pulse 896 

catapult (LPC) energy was used with delta of 12. For cutting and shooting we used the 897 

“CloseCut + AutoLPC” option. No more than 4 sections were processed and scanned in parallel, 898 

keeping collection time after staining under 30 min. A 3-channel colour image was acquired 899 

for each sample, as well as before/after LPC images and metadata including day of collection, 900 

slide number and distance of the area of interest from the bone lining. Areas of 14500 µm2 on 901 

average, corresponding to around 200-300 cells, were isolated from different bone marrow 902 

districts and collected separately in 200 µl AdhesiveCap opaque Eppendorf tubes. After LPC, 903 

each collection lid was covered with 15µl of a 1:16 dilution of proteinase K in PKD buffer 904 

(Qiagen), incubated at room temperature for 5 min and subsequently snap frozen in dry ice and 905 

stored at -80°C  overnight. For reverse crosslinking, samples were thawed for 5 min at room 906 

temperature, spun for 30 s to collect all the liquid at the bottom and incubated for 1h at 56°C 907 

on a PCR block56. After incubation, samples were resuspended in 100 µl TRI Reagent (Sigma-908 

Aldrich) under a laminar flow hood and stored in 8-PCR-strips at -80°C until RNA extraction. 909 

RNA extraction and library construction were performed in batches of 16. In brief, after 910 

thawing and spinning, each sample was transferred to a 1.5 ml Eppendorf tube and 20 µl 911 

chloroform were added. Phase separation was achieved at room temperature after vigorous 912 

shaking and spinning at 12500 rpm for 5 min, 40 µl of aqueous phase were collected from each 913 

sample and added to 75.5 µl of isopropanol and glycoblue (Invitrogen) diluted 1:150 as co-914 

precipitant. RNA was then dehydrated at -80°C for at least 24-36 h and precipitated by 915 

centrifugation at 4°C and maximum speed. Supernatant was removed, the pellet washed once 916 

with EtOH 70%, air dried and resuspended in 8 µl nuclease-free water. Library preparation 917 

followed the SMARTERÒ stranded Total RNA-Seq Kit v2 – Pico Input Mammalian (Takara 918 

Bio, Japan). Due to the degraded nature of input material we omitted the fragmentation step, 919 
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and 16 enrichment cycles were used in the final RNA-seq amplification. Libraries were then 920 

eluted in a minimal volume of 12 µl and sequenced on Illumina Next-Seq500, with 75bp single 921 

end reads. 922 

 923 

Bioinformatic data analysis – Single cell data 924 

Raw sequencing data were processed using the CellRanger pipeline (10x genomics, Pleasanton, 925 

CA), or kallisto57 (for indexed scRNAseq). Count tables were loaded into R and further 926 

processed using the Seurat R package58. We removed all cells with less than 500 distinct genes 927 

observed, or cells with more than 5% of UMIs stemming from mitochondrial genes. PCA was 928 

then performed on significantly variable genes, and the first 16 PCs were selected as input for 929 

clustering and t-SNE, based on manual inspection of a PC variance plot (“PC elbow plot”). 930 

Clustering was performed using the default method from the Seurat package, with resolution 931 

parameter set to 5. While lower resolution parameters caused biologically distinct groups with 932 

a low number of cells to be merged into single clusters (e.g. sinusoids and arterioles were 933 

merged into a single cluster), this relatively large parameter resulted in groups with a high 934 

number of cells to be split into an undesirable number of subgroups. We therefore computed 935 

the mean scaled gene expression values for each cluster and performed hierarchical clustering 936 

of the means using a correlation distance. Clusters with correlations of greater 0.8 were then 937 

merged together to result in the final clusters displayed in figure 1b. Marker genes for each 938 

population were identified using the FindMarkersAll function and ROC-based test statistics. 939 

For mapping of cells to a reference, the Seurat label transfer routines53  were used (Figure S6), 940 

except in the context of single-cell index-sorting (Figure 6c, S11), where the cell number was 941 

insufficient for this method and scmap49 was used instead. All mapping results were confirmed 942 

by the analysis of marker gene expression (Figure S11b and data not shown). For figure 2e, 943 

RNA velocity was run with a neighbourhood size of 50 and a linear velocity scale. The result 944 

was insensitive to the choice of parameters, except that the relative arrow lengths varied (data 945 

not shown). 946 

 947 

Bioinformatic data analysis – LCM-seq and bulk RNA-seq data 948 

Reads were aligned to version 38.73 of the mouse genome using STAR59, and reads falling on 949 

exons of genes were counted using htseq-count60. Samples containing less than one million 950 

reads on feature, as well as two outlier samples identified by PCA, were removed from the data 951 

set. Differential expression between niches was determined using the limma/voom workflow50 952 

while accounting for batch (i.e. slide number). Cell type proportions in the different samples 953 
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were then estimated using a custom R implementation of the CIBERSORT algorithm13, run on 954 

raw count data. CIBERSORT requires the specification of a population-specific gene 955 

expression ‘signature matrix’; for that purpose, average gene expression profiles were 956 

computed for each cell type and 1571 population-specific genes (Figure S8a, genes were 957 

defined by specificity to a given population of 0.8 or greater, as quantified from areas under the 958 

ROC curve). To simplify analyses, we merged the highly similar HSPC subtypes into one 959 

population for CIBERSORT. Beyond the selection of genes, the CIBERSORT algorithm does 960 

not have any free parameters. Further considerations underlying the analyses using 961 

CIBERSORT, as well as a discussion on the impact of selecting different sets of genes, are 962 

detailed in the Supplementary Note.  963 

For reanalysis of published RNA-seq data (Figure 2c, S4), count tables were created from raw 964 

sequencing data available in GEO (GSE89811 and GSE48764), or count tables were 965 

downloaded from GEO (GSE109125). For published microarray data, raw expression matrices 966 

were downloaded from GEO (GSE33158, GSE43613, GSE57729). It has previously been 967 

shown61 that CIBERSORT can be reasonably applied to decompose microarray data using a 968 

RNA-seq reference. 969 

 970 

Data visualization 971 

All plots were generated using the ggplot2 (v. 3.1.0) and pheatmap (v. 1.0.10) packages in R 972 

3.4.1. Boxplots are defined as follows: The middle line corresponds to the median; lower and 973 

upper hinges correspond to first and third quartiles. The upper whisker extends from the hinge 974 

to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile 975 

range, or distance between the first and third quartiles). The lower whisker extends from the 976 

hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers 977 

are called "outlying" points and are plotted individually62. 978 

 979 

RNA-Magnet 980 

We developed RNA-Magnet with the goal of predicting potential physical and signalling 981 

interactions between single cells and cell populations, based on expression patterns of cell 982 

surface receptors and their cognate binding partners. Potential physical interactions were scored 983 

based on receptors that bind to surface molecules expressed on a second cell (e.g. Selectin P 984 

ligand-Selectin P, or homophilic interactions of cadherins), or based on receptors binding to 985 

structural extracellular matrix components (e.g. Integrin a1b1-Collagen). Signaling 986 
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interactions were scored based on receptors binding to secreted ligands (e.g. CXCL12-987 

CXCR4).  988 

 989 

Curation of Receptor-Ligand pair lists 990 

This approach depends on reliable lists of ligand-receptor (LR) pairs. Starting from an existing 991 

list of human LR pairs63, we manually verified all entries for which the mouse orthologues of 992 

both the receptor and the ligand were expressed in bone marrow cells. We realized that several 993 

entries in this list were not based on intercellular receptor-ligand interactions, but rather 994 

intracellular interactions, such as chaperone-receptor interactions (e.g. Calreticulin is not an 995 

extracellular ligand but an endoplasmic reticulum bound chaperone of several surface 996 

receptors64). Other entries were based on mistakes in text mining (e.g. the antibacterial protein 997 

Camp was confounded with cAMP), or happened to be co-mentioned in abstracts without 998 

evidence for physical binding (e.g. CXCL12 is co-mentioned with CD4 in many abstracts, but 999 

we found no support for CXCL12being a ligand of CD4). For some entries, we found no 1000 

literature reference at all. All of these entries were removed. Furthermore, interactions 1001 

involving activated components of the complement system were removed as they are irrelevant 1002 

to homeostatic bone. Ligands were classified as membrane-bound, soluble, or structural ECM 1003 

components based on Gene Ontology annotations and Uniprot. In ambiguous cases, annotations 1004 

were verified manually. 1005 

The resulting list thereby contained many relevant ligand-receptor pairs, but it lacked most 1006 

intercellular interactions involving two transmembrane proteins. We therefore used books65–67, 1007 

reviews68–72 and the KEGG reactome database to systematically create a list of intercellular 1008 

interactions involving two transmembrane receptors; literature evidence for each interaction 1009 

included in the final list is provided in table S3. We paid specific attention to integrin-mediated 1010 

interactions in order to include information on the specific heterodimers capable of binding a 1011 

given ligand68. In total, the final receptor-ligand pair list contains 721 high-confidence receptor-1012 

ligand pairs with expression in bone marrow resident cells (Figure S10a). 1013 

 1014 

Scoring of receptor and ligand expression in single cells  1015 

Surface receptors are frequently expressed lowly at the mRNA level, as we and others have 1016 

observed in studies combining FACS index sorting and single-cell mRNA sequencing23,73. Low 1017 

efficiencies of reverse transcription (‘dropout’) therefore cause these genes to frequently be 1018 

missed at the single cell level. While their expression can be imputed using MAGIC47, the 1019 

absolute mRNA level of receptor genes is a poor proxy of absolute amounts of protein (e.g. 1020 
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CD4 mRNA is very lowly, but the protein very highly expressed). We therefore transformed 1021 

MAGIC estimates of gene expression to a fuzzy logic variable to encode if the gene is 1022 

‘expressed’ or ‘not expressed’: 1023 

𝑓"𝑥$,&' =
1

1 + 𝑒,-∗"/0,12,/3'
 1024 

with 1025 

𝑥$,&4 =
𝑥$,& − min"𝑥&'

max"𝑥&' −min	(𝑥&)
 1026 

where 𝑥$,& is the MAGIC gene expression estimate of a gene g in cell i. Parameters were set to 1027 

𝑥0 = 0.5 and 𝑘 = 10. Here, 𝑥0 specifies the threshold value as a fraction of maximal gene 1028 

expression above which the gene is considered expressed, and k specifies the degree of 1029 

fuzziness, with f(x) tending towards Boolean logic for 𝑘 → ∞. Within a reasonable range, the 1030 

choice of these parameters had no or only a minimal impact on the final result of RNA-Magnet 1031 

(see Figure S10b). 1032 

 1033 

Scoring of interaction strength between single cells and reference cell populations 1034 

RNA-Magnet provides scores of interaction strengths between a ‘sending’ cell population (i.e. 1035 

a ligand-secreting cell population) and target ‘receiver’ cells. We therefore first computed 1036 

population means of gene expression, and then applied a fuzzy logic AND operation to 1037 

determine if the ligand l is expressed by the sending population K, and the receptor r is 1038 

expressed by the recipient cell c: 1039 

𝑠(𝑟, 𝑙, 𝑐, 𝐾) = 𝑓"𝑥I,J'
1
|𝐾|L𝑓(𝑥$,M)

$NO

 1040 

Where |K| is the number of cells in K. The total interaction strength between sending population 1041 

K and recipient cell c was then computed as 1042 

𝑆(𝑐,𝐾) = L L 𝑠(𝑟, 𝑙, 𝑐, 𝐾)
M∈R(J)J∈S

 1043 

Where R is the set of all receptors and L(r) is the set of all ligands binding to receptor r. In the 1044 

case of physical (receptor-receptor or receptor-ECM) interactions, we assume that if r is a 1045 

receptor of l, l is also a receptor of r. 𝑆(𝑐, 𝐾) was then normalised to sum to 1 across all 1046 

populations included. 1047 

 1048 

Specificity scoring 1049 
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So far, the interaction score S depends on the total number of ligands secreted by a population 1050 

K and sensed by a single cell c. This leads to somewhat trivial statements: For example, 1051 

osteoblasts secrete more ECM components than other populations and the interaction score S 1052 

between any cell and osteoblasts would therefore be higher than the interaction score between 1053 

any cell and e.g. sinusoids. In the context of inferring localization, it is therefore crucial to 1054 

identify if a cell specifically interacts with a given cell type. In particular, we observed that 1055 

highly similar cell types display differential localization (cf. figure 2; for example, fibroblast 1056 

and CAR subtypes display differential localisation). We account for this by considering the 1057 

scores relative to an average score seen in similar cells: We computed a local background level 1058 

of interaction scores for each cell c and sending population K by 1059 

 1060 

𝐵(𝑐,𝐾) =L"1− 𝑔(𝑑(𝑐, 𝑖), 𝑥′Y, 𝑘′)'
$

∗ 𝑆(𝑖, 𝐾) 1061 

With 𝑑(𝑐, 𝑖) specifying the correlation distance between cell c and cell i, and g being a logistic 1062 

function with parameters x0’ and k’. 𝐵(𝑐, 𝐾) was then normalized to sum to 1 across all 1063 

populations included, and subtracted from 𝑆(𝑐, 𝐾) to obtain specificity scores 1064 

𝑆′(𝑐, 𝐾) = 𝑆(𝑐, 𝐾) − 𝐵(𝑐, 𝐾) 1065 

Thereby, we quantified how much more likely a given cell is to interact with a target cell 1066 

population compared to similar cells. Parameters x0’ and k’ define the size of the neighborhood 1067 

among which cells were considered similar; they were set such that biologically similar 1068 

populations (e.g. CAR cell subtypes, fibroblasts subtypes, or vessel types) were included as part 1069 

of the same neighbourhood (see figure S10c). 1070 

 1071 

In the context of signalling, a similar reasoning applies: CAR cells secrete the largest number 1072 

of ligands and therefore, the interaction score S between almost any cell and CAR cells is 1073 

highest, occluding more specific interactions. We therefore again compute specificity scores, 1074 

but set k to 0 (i.e. we simply take the mean of all cells as background), so as to quantify how 1075 

much more a given cell is affected by signals from a sending population, compared to the 1076 

‘typical’ cell. 1077 

 1078 

High-level analyses 1079 

For figure 5, we used osteoblasts, sinusoidal cells, arteriolar cells and smooth muscle cells as 1080 

‘anchor’ population with highly specific localisation to endosteal, sinusoidal and arteriolar 1081 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718395doi: bioRxiv preprint 

https://doi.org/10.1101/718395
http://creativecommons.org/licenses/by-nc/4.0/


 46 

niches. We then estimated the preferred localisation of each cell c to one of these four niches N 1082 

as 1083 

𝑙𝑜𝑐(𝑐) = argmax
ON]

𝑆′(𝑐, 𝐾) 1084 

and we estimated an ‘adhesiveness’ score for each cell based on the total number of receptors 1085 

it expresses (cf. equation 1) 1086 

𝑎𝑑ℎ(𝑐) =L𝑓(𝑥IJ)
J∈S

 1087 

For figure 7a+b, we visualized which populations specifically interact with each other by 1088 

computing population-wise mean RNA-Magnet scores, and setting a threshold value above 1089 

which cell types were connected in a graph. 1090 

𝑅4(𝐾,𝑀) = L
1
|𝑀|𝑆′(𝑖, 𝐾)

$∈b

 1091 

Finally, to obtain an estimate of total signal derived from different niches in figure 7c, we 1092 

applied RNA-magnet to ligand expression data from LCM-seq. 1093 

 1094 

Code availability 1095 

Our implementation of RNA-Magnet and CIBERSORT, as well as vignettes for re-creating key 1096 

analysis steps are available at http://git.embl.de/velten/rnamagnet/ 1097 

 1098 

Data availability 1099 

Data are available for interactive browsing at http://nicheview.shiny.embl.de. Raw sequencing 1100 

data and count tables are available through GEO (GSE122467, reviewer access token 1101 

spqnisgszdopdkh). 1102 

 1103 

Supplementary Table S4. Antibodies used in this study. 1104 

Antibody Clone Company 

Alpl Goat Polyclonal ThermoFisher 

Anti-Goat IgG AF 546 (whole mount) Donkey polyclonal ThermoFisher 

Anti-Rat IgG DyLight 650 (whole 

mount) 

Donkey polyclonal ThermoFisher 

B220 RA3-6B2 eBioscience 

CD105 MJ7/18 eBioscience 

CD106 (VCAM1) 429 BioLegend 

CD11b M1/70 eBioscience 
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CD140a (PDGFRa) APA5 eBioscience 

CD144/VE-Cad VECD1 BioLegend 

CD200 OX-90 BD 

CD31 390 eBioscience 

CD4 RM4-4 eBioscience 

CD41 eBioMWReg30 eBioscience 

CD45 30-F11 eBioscience 

CD51 RMV-7 eBioscience 

CD61 2C9.G2 BD/BioLegend 

CD71 C2 BD 

CD8 53-6.7 BD 

Collagen I Rabbit polyclonal Bio Trend 

CXCL12/SDF-1 79018 R&D 

Donkey Anti-Goat IgG H&L Donkey polyclonal Abcam 

Donkey Anti-Rabbit IgG H&L Donkey polyclonal Abcam 

Elastin Rabbit polyclonal Abcam 

Endomucin (IF, LCM) V.7C7 eBioscience 

Endomucin (whole mount) V.7C7 Stanta Cruz 

Goat anti-rat IgG Goat polyclonal BioLegend 

Goat Anti-Syrian hamster IgG H&L Goat polyclonal Abcam 

Gr1 RB6-8C5 eBioscience 

Podoplanin 8.1.1 BioLegend 

Sca-1 (IF, LCM, FACS) D7 eBioscience 

Sca-1 (whole mount) E13-161.7 BioLegend 

SM22 Rabbit polyclonal Abcam 

Streptavidin APC-eFluor™ 780 

Conjugate 

- eBioscience 

Ter119 TER-119 eBioscience 

 1105 
 1106 
  1107 
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Supplementary Note  1108 

Cell type decomposition from spatial transcriptomics using CIBERSORT 1109 

 1110 

CIBERSORT13 is an algorithm for estimating the cell type composition of a bulk sample, given 1111 

a gene expression profile of the sample and a known gene expression profile for each cell type 1112 

potentially contributing to the sample. Mathematically, the expected expression level xj of gene 1113 

j in a bulk sample is the sum of cell type averages, sij, weighted by cell type fractions ai: 1114 

𝑥c = L𝑎$𝑠$c
$

 1115 

Since the number of genes included is always much larger than the number of cell types, this 1116 

formulation results in a well-determined system of linear equations. Conventional approaches 1117 

for its solution however fail to distinguish similar populations and are strongly subjected to 1118 

experimental noise74. CIBERSORT avoids these problems through the use of support vector 1119 

regression, which has been described to a) internally select an optimal subset of minimally 1120 

correlated genes, b) penalize each cell type going into the estimate, favoring sparse solutions 1121 

and c) have a linear penalty function, making it more robust against outliers driven by technical 1122 

variability. 1123 

We used a per-cell type average gene expression matrix defined on 1571 genes with specificity 1124 

to the individual populations (Figure S8a, genes were defined by specificity to a given 1125 

population of 0.8 or greater, as quantified from areas under the ROC curve); we will discuss 1126 

below how the choice of marker gene pre-selection impacts our results. To simplify analyses, 1127 

we merged the highly similar HSPC subtypes into one population for CIBERSORT. In total, 1128 

25 cell types were used for all CIBERSORT analyses. 1129 

 1130 

Evaluation using simulations and bulk RNA sequencing 1131 

To critically evaluate the performance of the CIBERSORT algorithm, we performed a 1132 

simulation study and confirmed the results using bulk RNA-sequencing. As detailed in the 1133 

following, we found that the algorithm excels at comparing relative cell type abundancies 1134 

between niches (i.e. ‘cell type X localizes to niche A over niche B and niche C’), but performs 1135 

only moderately at estimating cell type proportions within a single niche (i.e. it cannot draw 1136 

statements like ‘niche A consists to 70% of cell type X and 30% of cell type Y’). We therefore 1137 

focus our analyses to statements of the first type.  1138 

 1139 
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First, we evaluated the ability of CIBERSORT to estimate cell type proportions in a single 1140 

niche, i.e. a single bulk RNA sequencing sample composed of the cell types described in figure 1141 

1b. For this purpose, we in silico created a bulk RNA sequencing sample by drawing cell type 1142 

frequencies from a uniform Dirichlet distribution with 25 dimensions, resulting in a vector of 1143 

cell type frequencies a (ground truth). We then assumed that a pooled sample of a total of 1000 1144 

cells was to be sequenced. We sampled 1000*a single cells from each population in our main 1145 

dataset, and summed the gene expression values for each gene across all cells contained in the 1146 

sample, resulting in a gene expression vector x. This vector was then decomposed using 1147 

CIBERSORT to result in an estimate of cell type frequencies â. We found that Pearson and 1148 

Spearman correlations between the ground truth a and the estimate â were on the order of 0.6 1149 

(Figure S8b, c); however, populations contributing with more than 1% were identified reliably 1150 

with an area under the curve (AUC) of 0.95. Correlations improved to above 0.9 if a smaller 1151 

number of cell types were selected that contribute to the bulk sample, while leaving the 1152 

population reference unchanged (Figure S8c).  1153 

To confirm this result, we created bulk RNA sequencing data of total bone marrow and 1154 

compared the CIBERSORT estimate of its cellular composition to the estimate from our single 1155 

cell RNA-seq experiment. We found that despite the different RNA-seq protocols used, the 1156 

performance was as expected from our simulation study (Figure S8d; R=0.71, median 1157 

correlation for a sample composed of 12 cell types: 0.77).  1158 

Next, we evaluated the ability of CIBERSORT to estimate changes in cell type proportions 1159 

across multiple samples. For this, we repeated the sampling experiment 15 times and quantified 1160 

the correlation between estimates across samples for each cell type (Figure S8e, f). An optimal 1161 

performance with correlations >0.95 was found for all populations.  1162 

To confirm this result, we used FACS to assemble 8 different pools of B220+ B-cells, CD3+ 1163 

T/NK-T cells and Gr1+SSChigh neutrophils. Each pool contained between 5 and 80 cells of each 1164 

type, for a total of 100 cells. Pools were then fixed and processed using the same protocol used 1165 

for the laser microdissected samples, and CIBERSORT was used to quantify their composition. 1166 

As expected from the simulation study, changes in cell type proportions across samples were 1167 

very accurately identified with a Pearson R of 0.83-0.92 (Figure S8g). 1168 

In line with previous studies13,75, these analyses suggest that CIBERSORT excels at identifying 1169 

changes in cell type proportion across multiple samples but performs only moderately at 1170 

estimating cell type proportions in a single sample. We therefore restrict the use of 1171 

CIBERSORT to comparing relative cell type abundancies between niches, and do not determine 1172 

absolute cell frequencies. 1173 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718395doi: bioRxiv preprint 

https://doi.org/10.1101/718395
http://creativecommons.org/licenses/by-nc/4.0/


 50 

 1174 

Finally, we also evaluated the extent to which CIBERSORT is capable of discriminating cell 1175 

types that exhibit similar gene expression profiles (e.g. distinct fibroblast populations or Adipo- 1176 

and Osteo-CAR cells). We therefore simulated 100 bulk samples assuming that cell types co-1177 

occur in a pre-specified manner. Mathematically, we first manually specified a correlation 1178 

structure of cell type co-occurrence C (of dimensions 25x25). We then sampled a cell type 1179 

frequency matrix A (of dimensions 100x25) with a covariance structure C. Importantly, 1180 

correlations were thereby specified and sampled at the level of cell types, and not at the level 1181 

of genes. We then created a bulk RNA expression profile in silico for each sample (row in A) 1182 

as described above, and applied CIBERSORT to estimate its cellular composition. This resulted 1183 

in a matrix of estimated cell type proportions Â. Column correlation structures of A and Â are 1184 

compared in figure S8h. Importantly, cell type co-occurrence is correctly identified and not 1185 

influenced by similarity in the gene expression profile of the reference populations. 1186 

 1187 

In summary, the simulation and bulk RNA sequencing study performed here supports previous 1188 

evaluations of CIBERSORT: The algorithm is ideally suited for identifying changes in cellular 1189 

composition between multiple samples. A more detailed analyses of its performance e.g. with 1190 

regard to noise can be found in ref. 13. 1191 

 1192 

Impact of marker gene selection on CIBERSORT results 1193 

While CIBERSORT internally selects an optimal set of marker genes, it also requires the pre-1194 

specification of a set of reasonably specific markers. To gauge the dependence of CIBERSORT 1195 

results on marker genes, we repeated the analyses of LCM samples (Figure 2) 60 times, each 1196 

time using a random subset of 50%, 75% or 90% of the marker genes of each population. For 1197 

each cell type, we subsequently quantified the fraction of resampling runs that result in the same 1198 

primary location. The result (Figure S8i) allows us to assess the stability of the CIBERSORT 1199 

estimates as follows: 1200 

For Osteoblasts (n=108 marker genes) and Smooth muscle cells (n=82), any 50% of marker 1201 

genes can be left out while still allowing unanimous placement of these cells at the endosteum 1202 

or arteries, respectively. 1203 

For Arteriolar fibroblasts (n=54), Arteriolar endothelial cells (n=50) and Fibroblast-1204 

Chondrocyte precursors (n=37), any 25% of marker genes can be left out while still allowing 1205 

unanimous placement of these cells at their respective locations. 1206 
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For Adipo-CAR cells (n=71), Osteo-CAR cells (n=61), Chondrocytes (n=86) and stromal 1207 

fibroblasts (n=26), if 25% of marker genes are dropped, this resulted in location swaps in 1208 

between 10% and 30% of cases. However, the swap was mostly between the primary and a 1209 

potential secondary location of the cells. 1210 

For Sinusoidal endothelial cells (n=33), endosteal fibroblasts (n=69), and MSCs (n=23), 1211 

estimates depended more strictly on lists of marker genes used. Small numbers of specific 1212 

markers, elevated intra-population heterogeneity and/or a more ubiquitous localization of these 1213 

cells may be factors contributing to the estimation uncertainty. For sinusoids and endosteal 1214 

fibroblasts, we provide further evidence for their localization in figures 2b and 4e, respectively. 1215 
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