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Abstract

Spatial metabolomics is an emerging field of omics research that has enabled localizing 

metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. 

Spatial metabolomics and its enabling technology—imaging mass spectrometry—generate big 

hyper-spectral imaging data that have motivated the development of tailored computational 

methods at the intersection of computational metabolomics and image analysis. Experimental and 

computational developments have recently opened doors to applications of spatial metabolomics 

in life sciences and biomedicine. At the same time, these advances have coincided with a rapid 

evolution in machine learning, deep learning, and artificial intelligence, which are transforming 

our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial 

metabolomics through the eyes of a computational scientist, review the outstanding challenges, 

provide a look into the future, and discuss opportunities granted by the ongoing convergence of 

human and artificial intelligence.
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Introduction

Spatial metabolomics is a field of omics research focused on the detection and interpretation 

of metabolites, lipids, drugs, and other small molecules in the spatial context of cells, 

tissues, organs, and organisms (1). Spatial metabolomics is a rapidly emerging field, fueled 

by the strong and evergrowing need in biology and medicine to characterize biological 

phenomena in situ, as well as by the recently revealed key roles of metabolism in health and 
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disease. This field is concerned with a variety of biomedical questions, including the tumor 

molecular microenvironment (2), functions of immune cells during homeostasis and 

immunotherapy (3), interactions between host and microbiota (4) and their contribution to 

inflammation (5), regulation of early development (6), metabolic regulation of epigenetics 

(7), and metabolic dysregulations during infection (8) and inflammation (9, 10). Over the 

past decade, this growing interest has stimulated rapid progress in the development of 

enabling technologies—in particular, imaging mass spectrometry (MS)—that have achieved 

unprecedented sensitivity, coverage, and robustness as they have become accessible to 

biologists (11–20).

This article provides a review of the challenges in spatial metabolomics and imaging MS, 

the dominant technology for spatial metabolomics, through the eyes of a computational 

scientist. In particular, we discuss how artificial intelligence (AI), machine learning, and 

deep learning are used in spatial metabolomics and what potential they have to transform 

this field. Our considerations contribute to a broader discussion of an issue recently raised in 

Nature Metabolism: why the metabolism field risks missing out on the AI revolution (21). 

Using publication numbers in PubMed, the most comprehensive database of publications in 

life sciences and biomedicine (Figure 1), one can divide the evolution of technologies for 

spatial metabolomics in the twenty-first century into three periods: prior to 2009, from 2009 

until 2015, and since 2015. Prior to 2009, metabolomics and imaging MS were developing 

with an over-exponential speed and reached levels comparable to machine learning and deep 

learning, respectively. From 2009 until 2015, metabolomics and machine learning showed 

similar exponential growth in the number of publications in the life sciences. 

Correspondingly, both imaging MS and deep learning were growing at the same pace. 

However, in 2015 the situation changed, with deep learning exhibiting an over-exponential 

explosion of popularity, whereas the growth of metabolomics and imaging MS slightly 

slowed down, despite still growing exponentially. These numbers suggest that, indeed, 

metabolomics and in particular spatial metabolomics could benefit more from the rise of 

deep learning. Although this observation is also true for other omics fields such as genomics, 

proteomics, and transcriptomics that show trends similar to metabolomics (not shown in 

Figure 1), in this review we focus on challenges and opportunities specific to spatial 

metabolomics.

We review the principles and unique advantages of spatial metabolomics and outline the 

state of the art as well as challenges in data analysis in this field. Then, we focus on the 

outstanding challenges that have received attention but still need solutions and provide an 

outlook on how novel computational approaches such as machine learning and AI can open 

up new avenues in spatial metabolomics. We discuss in detail the use of machine learning, 

big data, and AI approaches in this field, as well as current bottlenecks, in particular, the 

lack of so-called ground truth data, and how they can be addressed. We provide a list of 

benchmark datasets and software tools that can serve as entry points for newcomers. Overall, 

we hope that this review will help beginners in the field of spatial metabolomics orient 

themselves to the variety of existing computational methods and problems and help 

experimentalists establish stronger collaborations with computational scientists, in particular 

by explaining the benefits and prerequisites of modern computational methods.
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Bulk Metabolomics and The Need for in Situ Analyses

Bulk metabolomics is performed by extracting metabolites from samples such as in vitro 

cultured cells, tissues, or biofluids and then subjecting them to further detection and 

quantification of endogenous and exogenous metabolites, often using MS (22–24). Although 

this approach is widely accepted and can successfully detect remodeling of metabolism in an 

organism or its parts, even in bodily fluids (25–27), it cannot pinpoint the localization of 

metabolites in specific organelles, cells, anatomically or histologically defined parts of 

tissues, or organs. This makes biological interpretation of metabolomics data challenging 

and hinders the association of overall metabolic changes with a particular tissue, organ, or 

spatially localized aberration such as a tumor. This problem can be partially overcome by 

dissecting tissues (28, 29) or organs (30) before performing bulk metabolomics on individual 

dissected parts. However, such experiments are hardly scalable, are time consuming, and 

require expertise and the development of tailored methods for sample handling, 

normalization, data analysis, and visualization, making them out of reach for most scientists.

Imaging Mass Spectrometry as Enabling Technology

Addressing the need for in situ metabolomics, researchers have developed a variety of 

spatial metabolomics approaches over the past two decades, enabling the detection of 

metabolites, lipids, and other small molecules in a broad range of biological samples, with 

two-dimensional (2D) or 3D spatial resolution on the scales of organisms, organs, tissues, or 

cells (1). In this review, we focus on spatial metabolomics based on imaging MS (12–20, 

31). MS is the most widespread technique for bulk metabolomics (32) and provides an 

unsurpassed combination of molecular coverage, sensitivity, and specificity. Imaging MS 

combines the spatially resolved sampling of molecules with their detection in a mass 

spectrometer. The sampling is systematically performed by dividing the surface of a sample, 

usually a tissue section, into a virtual grid of pixels. For every pixel in the grid, molecules 

are desorbed from the area of the pixel using a laser or another ablation method, followed by 

the generation of a mass spectrum representing relative intensities of molecules within the 

pixel.

Imaging MS was proposed at the end of the twentieth century, in particular for localizing 

proteins in cryosections (33, 34); readers are referred to Reference 35 for a historical 

perspective. Since then, the application’s focus has shifted toward the detection of 

metabolites, lipids, and small molecules, in particular with the introduction of so-called 

high-resolving MS (36). Over the past two decades, imaging MS created one of the fastest-

growing fields in MS, with most vendors providing commercial solutions. Acknowledging 

other approaches to spatial metabolomics such as Fourier-transform infrared spectroscopy 

(37), Raman spectroscopy (38), near-infrared spectroscopy, and molecular cartography (39), 

here we focus on imaging MS as the enabling and most popular technology for spatial 

metabolomics (Figure 1).

The various flavors of imaging MS can be categorized by their so-called source, that is, the 

apparatus by which molecules are ablated from a sample in a spatial manner, and by the 

analyzer, that is, the mass spectrometer used for detecting and characterizing molecules 
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desorbed from every pixel (35, 40). The most common source type is matrix-assisted laser 

desorption/ionization (MALDI), where molecules are ablated and simultaneously ionized by 

a laser (36). Other prominent source types include liquid-based desorption electrospray 

ionization (DESI) (41); secondary ion mass spectrometry (SIMS), which uses an ion beam 

(42, 43); infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI), 

which combines infrared laser and electrospray ionization (44), and the similar laser ablation 

electrospray ionization (LAESI) (45); nanostructureinitiator mass spectrometry (NIMS) 

(46); and nanospray desorption electrospray ionization (nanoDESI) (47).

Machine Learning, Deep Learning, and Artificial Intelligence

Machine learning, deep learning, and AI are pushing the boundaries of our understanding of 

the tasks that can be solved by a computer in everyday life. Examples include autonomous 

driving, AlphaGo, and IBM Watson. The fields of life sciences and biomedicine are 

presently embracing these approaches with big hopes that they will transform healthcare and 

science, in particular when using rich omics or imaging data. In this section, we provide 

definitions and references introducing and reviewing key concepts and achievements.

Machine learning is an approach to solving a problem that learns from the data rather than 

encodes decisions based on expert knowledge (48). Deep learning is a subfield of machine 

learning that uses deep artificial neural networks, a method that has transformed machine 

learning by outperforming other methods, first for computer vision and later for other 

problems (49). AI is the broadest field of these three and is concerned with making 

computers perform intelligent tasks as well as or better than humans (50). In Figure 1, which 

shows the number of publications in PubMed in various fields, one can clearly see the over-

exponential rise of deep learning applications in the life sciences and medicine since 2015 

and its impact on the adoption of AI in these fields.

For a comprehensive introduction to machine learning from the medical perspective, 

including its areas of greatest promise and its challenges, in particular the central challenge 

of the availability of high-quality data for training (so-called ground truth), readers are 

referred to Reference 51. To dive deeper into the computational principles of deep learning 

with applications in biology, see Reference 52, and for applications in biomedicine, see 

References 53 and 54. Reference 55 reviews the use of machine learning and deep learning 

in healthcare with a focus on types of machine learning. For a comprehensive review of AI 

in medicine and its potential to transform the business model in healthcare by capitalizing on 

massive quantities of data generated in modern medicine, see Reference 56. With the onset 

of AI in healthcare, there is a hope for positive transformations not only in high-income 

countries but also in resource-poor healthcare settings (57).

Imaging Mass Spectrometry Data

An imaging MS dataset represents a collection of mass spectra, each with its associated x-y 
pixel position. It can also be viewed as a hyperspectral image consisting of multiple ion 

images or channels, with every ion channel corresponding to a particular mass-to-charge 

(m/z) value and representing relative intensities of ions with this m/z value (58). The number 

of pixels is usually between 10,000 and 100,000 and is often limited by the MS throughput 
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operating at 1–50 Hz (1 Hz representing 1 spectrum/s). The recent progress in high-speed 

imaging MS, as well as technological solutions supporting the stability of laser focusing 

(59), enables collecting even bigger datasets.1 This progress will likely enable routine 

collection of datasets with over one million pixels in the next year or two. The 

dimensionality of an individual spectrum depends on the analyzer and is usually on the order 

of 103 for time-of-flight (TOF) analyzers, 104 for quadrupole time-of-flight (QTOF) 

analyzers, and over 104 for Fourier transformation (FT) analyzers. High-resolution data 

collected using FT analyzers, such as Fourier transformation ion cyclotron resonance 

(FTICR) or Orbitrap, are often reduced in the spectral dimension by applying so-called 

centroiding. Centroiding is a procedure applied to every spectrum that, for every spectral 

peak, selects one central m/z value (the so-called centroid), and its associated intensity is 

often calculated as the area under the peak (see Figure 2). Centroiding is essential for FT 

data as it reduces the dimension and size of multigigabyte data by an order of magnitude.

Key Parameters of Imaging Mass Spectrometry and How They Affect the Data

In Table 1, we summarize key parameters of imaging MS that have the most profound 

impact on the data. The sample preparation (60), source type, and analyzer polarity 

predetermine which molecular classes will be desorbed and ionized and thus highly affect 

the molecular content of the data. These parameters do not directly affect the spectral 

properties of the data, which makes most of the data analysis methods agnostic to them. The 

analyzer type, however, has a strong impact on the spectral properties and size of the data 

and thus affects signal processing, data analysis, and molecular analysis. The mass-resolving 

power predetermines how detailed the spectra are and whether two molecules with similar 

m/z values can be resolved from each other; it is a critical parameter affecting data size and 

molecular ambiguity. Finally, mass accuracy, or how accurately the measured centroids of 

the spectral peaks for a molecule represent its theoretical m/z value, is a critical property of 

imaging MS data, as it substantially affects data quality, molecular ambiguity, and overall 

interpretability. The mass accuracy is different from other parameters, as it cannot be set 

during the experiment but can be affected by multiple factors, including the calibration and 

stability of the mass spectrometer and even the thickness of the analyzed sample (for TOF 

analyzers). Only a few imaging MS software packages (including open-source MSiReader 

as well as some vendor-provided packages) provide an easy way to estimate mass accuracy 

for already collected data.

Common Data Analysis Steps

The steps of a typical data analysis workflow in imaging MS–based spatial metabolomics 

include signal processing, visualization, statistical analysis, molecular identification, 

molecular validation, and interpretation (Figure 3). Presently, the focus of computational 

methods development has shifted toward molecular identification as well as molecular 

validation and interpretation, with low-level signal processing increasingly performed by the 

vendor software.

1For example, see this public METASPACE dataset from a mouse brain tissue provided by Dhaka Bhandari (University of Giessen), 
which contains over 500,000 pixels: https://metaspace2020.eu/annotations?
db=SwissLipids-2018-02-02&ds=2019-08-19_11h28m42s&offs=0.
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Challenges Compared to Bulk Metabolomics

As discussed above, in situ analysis is often desired and necessary in order to interpret 

metabolomics data and link them to particular aspects of metabolism compartmentalized 

within particular organelles, cells, tissues, or organs. Spatial metabolomics using imaging 

MS provides unique opportunities to investigate tissue sections and overlay metabolite 

localization with microscopy images. However, these advantages of spatial metabolomics 

come with some limitations compared to bulk MS-based metabolomics. Here, we discuss 

two aspects that are critical for the understanding of imaging MS data and that often drive 

tailored computational developments in this field.

First, in imaging MS the molecular material from a pixel is represented in one spectrum. In 

contrast, in bulk metabolomics, the molecular material is often separated by another 

molecular property prior to MS analysis, e.g., by the time of retention through a 

chromatographic column, as in liquid chromatography–mass spectrometry (LC-MS). This 

leads to the high complexity of imaging mass spectra and, more specifically, to a high 

number of peaks in a spectrum, potential overlap of molecular signals, and high noise and 

variability of spectral intensities. The emerging use of ion mobility separation (IMS) for 

imaging MS, where the molecules are first separated based on their collisional cross section 

by flying through a buffer gas, has the potential to overcome this limitation. Computational 

developments are urgently needed to make use of this additional dimension (61).

Second, imaging MS predominantly exploits the so-called MS1 type of MS where m/z 
values of ionized analytes are measured in a mass spectrometer. On the contrary, bulk 

metabolomics largely relies on tandem MS (abbreviated as MS/MS or MS2) where analytes 

are first fragmented into their structural parts whose m/z values are measured in a mass 

spectrometer (22, 32, 62). Although MS/MS cannot reconstruct the molecular structure 

completely, it reduces potential ambiguity, as an MS/MS spectrum encodes additional 

structural information that is missed in MS1. This leads to a general inability of imaging MS 

to discern structural isomers, namely, molecules with the same molecular formula. Examples 

of isomeric molecules include D-glucose, D-galactose, and L-galactose, which all have the 

molecular formula C6H12O6, or diglycerides DG(16:0_16:0) and DG(18:0/14:0), which all 

have the molecular formula C35H68O5. In imaging MS, MS/MS spectra can be collected for 

selected ions only, normally not in a true imaging mode but for a few pixels only, and are 

generally of low quality due to the overall low amount of molecular material contained in 

one pixel. Currently, all commercial types of mass spectrometers suffer from this limitation 

and imaging MS/MS analysis is not supported in vendor-provided software. Below we 

discuss emerging solutions to this problem.

Recent Computational Advances

The field of spatial metabolomics in its current evolution is enabled by imaging MS 

technology developed over the past two decades. In particular, in the past decade, the field 

consolidated a noticeable community of computational methods developers, both in 

academia and industry, who together addressed several challenges. In this section, we review 

recent computational advances.
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Data Handling and Signal Processing

Data handling was a considerable challenge in imaging MS just a decade ago, particularly 

when using FTICR or Orbitrap analyzers that can generate millions of m/z bins. Since then, 

most vendors introduced efficient data formats, often including centroiding or other types of 

data compression, which reduced data size and facilitated data storage and handling. The 

crucial success on the way to data interoperability was the development of the imaging MS 

data format imzML (63). imzML is an open format and is supported by the majority of 

vendors by allowing users to export their data into this format, and by leading open-source 

packages where imzML files can be loaded and processed. Thus, imzML is the main means 

of data exchange between software packages. However, for computational analysis, it is 

recommended that data be stored in some internal format. imzML is not efficient for data 

access, particularly when dealing with large data with a large number of pixels, because in 

imzML every spectrum is stored with its metadata. Similarly, imzML is poorly suited for the 

emerging use of IMS in imaging MS where the number of spectra is increased by a factor of 

102–104. Discussions about a new version of imzML are ongoing but no concrete plans are 

announced yet. Independently of their support of the imzML format, several vendors have 

announced that they will either provide access to their data through open interfaces or create 

APIs for interacting with their software, which should provide computational methods 

developers fast direct access to data and would help vendors integrate open-source 

developments.

Signal processing is a foundational step and is essential for any data analysis. Substantial 

methods development efforts were devoted to this topic in the early years of imaging MS, in 

particular, to address the problems of spectral normalization and spectral centroiding (58, 

64, 65). Various methods of spectral normalization were demonstrated to improve data yet 

are known to produce artifacts (13). The problem of the choice of normalization is still open, 

as there are no ground truth data that would contain known distributions of molecules and 

could be used for objective comparison of existing normalization methods. Currently, every 

scientist or lab decides based on their own empirical experiences whether to apply spectral 

normalization at all and which type of normalization to use. This hinders the comparison of 

the data between labs and can potentially lead to artifacts, particularly when analyzing new 

types of samples. This problem is an example of how the lack of ground truth data can 

hamper computational developments; below we discuss this aspect in detail.

Spectral centroiding (previously often called peak picking) is a process of converting a 

spectral peak corresponding to an ion to a centroid m/z value with an associated intensity 

(Figure 2). An ion species generates a spectral peak representing a random distribution of 

m/z measurements of the ions of that species. The shape of a peak is close to a Gaussian 

function but varies depending on the analyzer type and resolving power. Peaks in FTICR and 

Orbitrap data have a clean smooth shape whereas peaks in TOF and QTOF data are noisier. 

Using a higher-resolving power leads to narrower peaks. Working with centroided data is 

often easier since it simplifies the data and compresses it at approximately a 10x rate. 

Substantial efforts devoted to spectral centroiding over the past two decades have led to the 

development of robust methods, and currently, most vendors support the export of 

centroided data, often into the centroided imzML format.
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TOF baseline correction is a process of detecting and removing background baseline in a 

TOF mass spectrum, which was a considerable challenge in the early days of imaging MS; 

see Reference 58 for more details. With the introduction of high-resolving power analyzers 

(FTICR, Orbitrap, QTOF), using TOF in imaging MS became less popular (36), which 

shifted the interest of methods developers away from TOF-specific signal processing.

Visualization

Visualization of imaging MS data in its spatial coordinates can provide an intuitive and 

easily interpreted view into which metabolites are detected, where they are localized, and 

what spatial associations exist between molecules. Even more informative can be a visual 

overlay of ion images with a microscopy image from the same or a consecutive section that 

can aid in associating metabolites with histopathologically defined regions (e.g., tumor or 

stroma), cells of a particular type or phenotype (e.g., stem cells, cells exhibiting 

macrovesicular steatosis or a particular cell cycle phase), or expression of a particular 

protein or transcript (e.g., a metastasis marker or cell-type marker) imaged using an 

orthogonal technique such as immunohistochemistry, immunofluorescence, or fluorescence 

in situ hybridization.

Numerous methods have been developed and implemented in vendor-provided and academic 

software packages for visualizing ion images, overlaying them with microscopy images and 

enhancing the contrast (13, 40). Since working with imaging MS data involves visual 

examination and comparison of numerous ion images, the choice of a colormap for 

visualization has been a matter of debate at various conferences. Presently, as in many other 

fields (66), rainbow and jet colormaps are highly discouraged while perceptually uniform 

colormaps like viridis are recommended. Interestingly, this topic in imaging MS is so 

important that it stimulated the development of a novel colormap, cividis, which is 

perceptually uniform and adapted for people with color vision deficiency (67).

Unsupervised Data Analysis

Although visual examination of individual ion images corresponding to specific metabolites 

is essential and part of everyday work for any imaging mass spectrometrist, this can hardly 

be done for all 103–105 ion channels contained in a regular imaging MS dataset. Moreover, 

some compressed visual representation of a whole imaging MS dataset is desired for quality 

control, expert assessment, and hypothesis generation. This has stimulated the development 

of unsupervised methods that can represent the molecular and spatial content of an imaging 

MS dataset with one or a few images. Here, we briefly discuss this topic; for a 

comprehensive review, see Reference 68, where 40 methods are reviewed and discussed in 

detail. For an experimental viewpoint and how unsupervised analysis fits into a complete 

data analysis pipeline, see Reference 13.

Most unsupervised data analysis methods in imaging MS can be categorized into 

dimensionality reduction (component analysis methods), spatial segmentation (or clustering 

of pixels), and clustering of ion images. Since the early days, dimensionality reduction has 

predominantly been performed by using component analysis or factorization methods such 

as principal component analysis (PCA) and non-negative matrix factorization (NMF). PCA 
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and NMF have obtained substantial popularity, as they can visualize both distinct spatial 

regions and associated spectral patterns. Other methods have been evaluated and developed; 

see Reference 68 for a comprehensive list. Spatial segmentation aims at partitioning a 

sample into distinct regions of molecularly similar pixels and is one of the most popular 

approaches for data representation in imaging MS. Besides naïve clustering of spectra, 

segmentation methods tailored for imaging MS have been developed, in particular with the 

aim of reducing strong pixel-to-pixel variability by employing image processing (69), 

spatially aware clustering (70), post hoc smoothing of obtained segmentation maps (71), or 

spatially shrunken centroids (72). Clustering of ion images was proposed to investigate 

spatial similarities between ion images (73, 74), and its usefulness for supervised analysis 

was recently demonstrated (75). Among other methods for data representation, self-

organizing maps were shown to visualize chemically similar regions of interest (76–78). 

Manifold learning methods such as t-SNE (t-distributed stochastic neighbor embedding; 79) 

and UMAP (uniform manifold approximation and projection; 80, 81) are gaining popularity 

for visualizing spectra or ion images in 2D space, for aiding data interpretation, and for 

finding clusters of similar pixels or images.

Quantifying the Quality of Ion Images

Even in a high-quality imaging MS dataset, a considerable proportion of ion images either 

are prohibitively noisy or contain a large number of pixels with zero intensities. This can be 

due to the images representing molecular concentrations close to the limit of detection. 

Since they are noisy, such images need special treatment or otherwise can pollute 

downstream analysis. Expert-performed visual examination of ion images to assess their 

informativeness is still a part of many workflows in imaging MS. Recently, several methods 

were developed that can automatically quantify the quality or informativeness of an ion 

image, including the spatial measure of spatial chaos, gray-level co-occurrence matrices, or 

the drug homogeneity index (82–85). The developed methods have been evaluated using 

either a small set of preselected 250 ion images (82) or 634 pairs of crowdsourced expert-

ranked images (83). Open-source implementations of these methods are available that have 

stimulated their integration into academic and commercial software packages. Looking into 

the future, despite the fact that these methods already provide acceptable performance, they 

may be further improved by modern computer vision methods such as deep learning, 

especially if bigger training sets were provided.

Filtering Out Off-Sample Ion Images

Any imaging MS dataset contains ion images corresponding to either solvent (in DESI and 

nan-oDESI) or MALDI matrices, as well as other background contaminants. These ion 

images exhibit the so-called off-sample localization with high-intensity pixels outside of the 

sample area. Representing technical artifacts rather than biological content yet exhibiting 

high intensities, these images may confound statistical analysis and lead to false positives in 

molecular identification. Until recently, no automated solutions for filtering off-sample ion 

images were provided. MSiReader software provides a semisupervised way for filtering off-

sample ion images that requires selecting the off-sample area manually (86). We have 

recently created a high-quality ground truth set of 23,238 ion images where every image has 

been annotated by an expert as either on-sample, off-sample, or unknown (87). Then, we 
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trained a deep learning model and were able to automatically reproduce expert judgments 

with high accuracy. Furthermore, we have shared the model and integrated it into the 

METASPACE cloud software (87), thus making it widely available.

Quantifying Colocalization Between Metabolites

Various applications require calculating the colocalization of molecules in an imaging MS 

dataset. This is often needed for untargeted spatial metabolomics in order to discover 

metabolites that are accumulated in particular regions or spatially associated with each other. 

The most common scenarios include finding metabolites that are spatially associated with 

another molecule (e.g., either a known oncometabolite or an unknown ion found through 

statistical analysis) or that exhibit a particular spatial localization (e.g., localized within a 

region found through spatial segmentation or within a particular histopathological region 

visible in microscopy).

Various measures for quantifying colocalization between ion images have been proposed, 

including the Pearson correlation, cosine score, and Euclidean L2-measures (58, 69, 88, 89), 

applied to either intact or transformed images, e.g., after hotspot removal or log 

transformation (40). Novel measures adopted from other fields have been proposed, 

including the structural similarity index and the hypergeometric similarity measure (90–92). 

For finding molecules colocalized with a region of interest, researchers have developed a 

non-negative least squares approach (93). We have recently created a gold standard set based 

on judgments of 42 experts, evaluated several existing measures, and proposed new 

measures that can reproduce expert judgments, including those based on deep learning (81). 

This gold standard set is publicly available and can be used for training machine learning 

and deep learning models to achieve even higher performance.

Spatial Quantitation of Metabolites

Absolute quantitation or estimation of the concentration of a molecule in sampled pixels or a 

spatial region of interest is essential for modeling in quantitative biology, as well as for 

pharma-cokinetics/pharmacodynamics studies during drug development. Recently, several 

protocols for quantitative imaging MS were developed (94–96); see Reference 13 for a 

review. Until recently, imaging MS was called a semiquantitative technology, meaning that it 

can be used to compare intensities between pixels but does not provide absolute quantitation 

of molecular concentrations. However, several studies have demonstrated that imaging MS 

can achieve quantitation with a high agreement of 70–90% with LC-MS, a gold standard for 

quantitative bulk metabolomics (97, 98). Similar to quantitative LC-MS, this can be 

achieved for targeted analysis of a predetermined set of metabolites and requires a careful 

experimental design, including authentic internal standards. Developing computational 

methods supporting spatial quantitation is an active area of research and development. The 

only open-source software that supports quantitation is MSiReader (86), with non-open-

source packages also available (99).

Spatial Metabolomics in Three Dimensions

The advance and increasing popularity of 2D spatial metabolomics has led to a growing 

interest in performing spatial metabolomics in 3D. This would not only provide a richer 
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representation of metabolite localization but would also allow metabolite data to be overlaid 

with other established and emerging 3D imaging data from magnetic resonance imaging 

(MRI), microcomputed tomography, or block-face and light-sheet microscopy. Such 

multimodal imaging would be particularly useful for biological and medical applications 

involving animal models, e.g., creating a molecular-anatomical atlas or finding metabolites 

spatially colocalized with xenograft or cancer metastases.

This growing interest has led to the development of methods for 3D spatial metabolomics of 

tissue specimens, which is normally performed by serial sectioning followed by the 2D 

analysis of obtained sections and 3D reconstruction; see Reference 100 for a review. Other 

approaches include SIMS, where an ion beam ablates layers of molecules (101), which can 

be applied only to small samples such as individual cells. 3D molecular cartography has 

been proposed for the analysis of not only biological surfaces but also organs like the lung 

(28, 39). Early reports of serial 3D imaging MS (102–107) revealed associated challenges: 

long acquisition times, the need for special software for registering serial sections, and the 

need for special protocols and software for simultaneously coregistering 3D images with 

other 3D imaging modalities so that hundreds to thousands of ion images can be explored in 

3D. Since then, commercial software has been developed that helps create a 3D imaging MS 

dataset and visualize the localization of ions in 3D; see, e.g., Reference 107. Despite the 

availability of such software, presently 3D imaging MS is not widespread because it requires 

substantial manual work for sample sectioning and preparation, takes extensive instrument 

time, and reduces laser lifetime when used in MALDI imaging MS. In 2015, we argued that 

3D imaging MS was at its tipping point (100). Since then, a niche for this technology is still 

to be found, potentially in clinical applications where 3D imaging methods such as MRI are 

already in place (108, 109).

Outstanding Computational Challenges

As reviewed in the previous section, over the past two decades many computational 

challenges have been addressed that have removed barriers for applications of imaging MS 

in various biomedical areas. However, several challenges are still outstanding and require 

computational developments. In this section, we review such challenges, what have been the 

key bottlenecks, and how they can be addressed in the future. This section can be of interest 

for computational scientists who are interested in contributing to cutting-edge developments. 

It can also serve as a note of caution for imaging MS practitioners and experimentalists 

informing them about gaps of knowledge and about areas of active ongoing computational 

research.

Molecular Identification

Molecular identification is the process of finding molecules represented in imaging MS data 

and is probably the biggest challenge in imaging MS–based spatial metabolomics. 

Molecular identification is a key challenge even in bulk metabolomics, where chemical 

separation (e.g., liquid chromatography, gas chromatography, and, increasingly, IMS) and 

MS/MS aid finding signals corresponding to known molecules and help de novo 

reconstruction of the putative structures of unknown molecules (110–112). This challenge 
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was so prominent that several competitions were organized in 2012–2017 to motivate 

computational developments and aid methods comparison (113). In imaging MS, as 

discussed above, the problem is exacerbated by both the general inability of collecting 

spatially resolved MS/MS spectra in an untargeted fashion and the complexity of spectra due 

to the lack of separation. Since imaging MS cannot resolve isomeric molecules (see 

discussion above), the problem of metabolite identification in this field is often termed 

metabolite annotation.

Until recently, a common approach for metabolite annotation in imaging MS was to match 

spectral signals or peaks of interest against a molecular database by their m/z values (e.g., 

using the Human Metabolome Database or SwissLipids database), a process often called m/z 
matching. However, we have shown that m/z matching is unreliable and cannot provide 

results with a false discovery rate (FDR) lower than 25% even when using a stringent m/z 
tolerance of ±2.5 ppm (114). This means that among the reported molecules, 25% or more 

would be false-positive hits. This leads to high ambiguity and increased experimental and 

data analysis time for follow-up experiments and overall slows down molecular data 

interpretation.

To provide a reliable solution to this challenge, we have recently developed an FDR-

controlled metabolite annotation (114). This approach uses a novel metabolite–signal match 

score that exploits both spectral and spatial information from imaging MS data and matches 

it to theoretically predicted properties of a metabolite such as its fine isotopic pattern. Our 

approach substantially outperforms m/z matching and can annotate 102–103 ions at 10% 

FDR (115). We have implemented it as the free and open-source cloud software 

METASPACE, which is currently being used by over 200 users from over 100 imaging MS 

labs and has already helped annotate more than 5,000 datasets (115).

Despite the fact that METASPACE provides a viable solution to metabolite annotation in 

imaging MS, several challenges remain. First, currently we can annotate approximately 1% 

of imaging MS data (102 molecules out of a dataset with 104 m/z channels). The 

overwhelming majority of the data is left unannotated, sometimes called dark matter. This 

gap exists due to our limited understanding of ionization pathways or principles of how an 

analyte forms a signal in imaging MS. Only empiric and fragmentary knowledge is available 

about in-source fragmentation, adduct formation, neutral losses, and clusters formation. 

Second, the lack of MS/MS and additional chemical separation (see discussion of IMS 

below) does not allow structural isomers or isobars to be resolved. The state-of-the-art 

approach is to perform MS1-based annotation of imaging MS data, complement it with a 

bulk LC-MS/MS-based metabolomics, and perform m/z matching between the molecules 

annotated by imaging MS and identified with LC-MS/MS. This, however, does not 

necessarily fully resolve the ambiguity. Previously we published an example (114) where 

two isomeric lipids (a galactosylceramide and a glucosylceramide, both with the molecular 

formula C48H91NO8) annotated in MALDI imaging MS data of a mouse brain tissue section 

were both identified by LC-MS/MS. This leaves open the possibilities of both lipids having 

either the same spatial distribution or different distributions, with the ion image 

corresponding to C48H91NO8 being a composite of them. Third, our preliminary results 

(unpublished) show that most of the imaging MS methods are prone to in-source 
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fragmentation. In MS, in-source fragmentation is the process of fragmenting off a structural 

part of a molecule during ionization or desorption, reported both for metabolites (116) and 

for lipids (117). An example of in-source fragmentation is the loss of one or two phosphate 

groups from endogenous ATP, a key energetic metabolite, leading to false detection of ADP 

or AMP even if they are not present in the sample. The in-source fragmentation is 

particularly dangerous since it happens in the MS source and no improvements of the 

analyzer (using MS/MS or additional separation) can help understand whether a detected 

molecule (e.g., ADP) is an endogenous one or is an in-source fragment of another molecule 

(e.g., ATP).

Machine learning was successfully employed to perform automated metabolite identification 

in bulk metabolomics (118, 119) but is yet to be applied to metabolite identification in 

imaging MS. Using machine learning attracts substantial interest because another approach, 

developing a comprehensive theoretical model of ionization, is likely unfeasible due to lack 

of knowledge as well as dependence of ionization on various parameters. The current 

bottleneck of developing such methods is the lack of a library of authentic molecular 

standards, similar to MS/MS spectral libraries in LC-MS/MS metabolomics, which should 

be sufficiently big to represent the complexity of imaging mass spectra. However, once such 

libraries in imaging MS are created, this should stimulate developments in this field, with 

some machine learning methods from bulk metabolomics possibly adaptable. This will not 

only enable detection of currently unannotated—and thus invisible—molecules but also 

provide more accurate quantitative information by resolving ionization pathways and 

integrating all signals corresponding to a particular metabolite.

Molecular Digital Pathology

Digital pathology, or using advanced computational methods to assist pathologists in 

assessing digitalized pathological slides, is an emerging field of medicine facilitated in 

particular by progress in machine learning and AI (120). In addition to morphometric 

information captured by microscopy, there is continuing interest in exploiting imaging MS 

to provide additional molecular layers of spatio-molecular information with the aim of 

elucidating hidden morphological features, helping precision medicine by visualizing 

localization of disease- or patient-specific biomarkers, assisting early assessment of 

treatment, and improving prognosis (14, 20, 121, 122). Developing imaging MS–based 

molecular digital pathology attracts substantial efforts, in particular, developments aimed at 

reducing acquisition times (123, 124), protocol developments (125), and computational 

developments. Presently, imaging MS is not yet employed for digital pathology due to the 

competitiveness of microscopy-based digital pathology methods and the complexity and 

high price of imaging mass spectrometers and associated sample preparation. However, the 

search is open for pathological scenarios and questions where imaging MS would 

outperform microscopy-based digital pathology. This direction certainly requires the 

development of advanced and tailored AI-based methods to successfully exploit highly 

multiplex yet noisy spatial information provided by imaging MS to achieve greater 

performance than using morphometric information provided by microscopy.
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Lack of Ground Truth Data

Development of advanced computational methods requires ground truth data or high-quality 

data with desired labels or outputs (51) (Figure 4). For example, for molecular identification 

this can be data from known molecules, and for spatial segmentation this can be a dataset 

comprehensively and manually segmented by experts. Such data are required not only for 

training machine learning methods but also for evaluating and comparing other 

computational methods. However, creating such ground truth data is a key challenge since 

the data should be representative, diverse, big, and either generated in a special manner so 

that they contain only known outputs (e.g., a mixture of authentic molecular standards) or 

annotated by experts (51).

Progress in addressing many outstanding computational challenges in imaging MS has been 

hindered by the lack of ground truth data. For example, numerous spatial segmentation 

methods have been developed (68), but without ground truth data, comparing them is highly 

subjective because it is not known which spatial regions in a tissue section have distinct 

molecular compositions. The lack of ground truth for molecular identification is even more 

critical since it is not known a priori which molecules are contained in the tissue section, 

which of them are detected by imaging MS, and what are their true localizations, in 

particular due to various ionization effects affecting the detection and intensities in 

individual pixels (suppression, in-source fragmentation, and chemical overlap with other 

isomers, particularly matrix clusters). Overall, this situation leads to arbitrary and empiric 

choices of methods, slows down computational developments, makes it impossible to train 

and evaluate machine learning and deep learning models, and leads to overall inertia in 

adopting novel methods since it is hard to prove objectively that a novel method constitutes 

an improvement.

Several approaches have been proposed to tackle this formidable challenge, which can be 

broadly categorized into four classes: data simulation, depositing spots of authentic 

standards on a glass slide, creating mimetic tissue with authentic standards, and 

crowdsourcing by engaging experts. Simulating data by composing spectra generated using 

physical-probabilistic models into an imaging MS dataset with prespecified spatial regions 

and molecular composition has not received broad recognition. In particular, this approach 

replicated the complexity of real data only to a limited extent. Depositing spots of authentic 

standards in a solution onto a glass slide with subsequent drying seems to be the most 

straightforward approach to obtaining ground truth data that can be used for molecular 

identification and other problems, similar to spiking authentic standards in bulk 

metabolomics. However, this approach only works well for a few standards (e.g., drugs in 

pharmaceutical applications) since the spot formation process depends on the molecular 

composition and concentration. When not optimized, drying creates inhomogeneous spots 

with either a so-called coffee ring effect (where most crystals are localized at the perimeter 

of the spot) or one or a few big crystals forming in the center of the spot. Using mimetic 

tissue, or a tissue homogenate with authentic standards implanted at different locations or 

layers (97, 126), was proposed initially for quantitative imaging MS. This approach became 

the primary approach to estimating the response curve, the relationship between 

concentration and intensity measured in imaging MS. This method did not become popular 
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in evaluating computational methods, possibly due to a limited number of authentic 

standards that can be spiked in. However, with considerable experimental effort this can be 

improved, and hopefully in the future it will provide computer scientists with experimentally 

obtained ground truth data with sufficiently rich and known molecular composition. 

Crowdsourcing, an approach successfully used in other areas, was recently exploited by us 

in three studies (81, 83, 87). In each of these studies, we engaged experts, collected their 

judgments, curated them, evaluated the agreement between them, and integrated high-quality 

judgments into high-quality gold standard data. Crowdsourcing has proven useful for 

problems that are solved by experts during their routine analysis of imaging MS data. We 

applied it to estimate the quality of ion images (83), recognize off-sample images (87), and 

quantify colocalization between ion images (81).

Creating ground truth for imaging MS–specific problems is a major effort, but one that can 

transform this field by employing machine learning and deep learning methods. We expect 

that the importance of these efforts will become increasingly recognized with more research 

efforts focused on this topic.

The Future of Spatial Metabolomics

Spatial metabolomics, fueled by biomedical demands and stimulated by recent successes, is 

attracting growing attention of experimental and computational methods developers. Novel 

technological solutions are being introduced to address the outstanding challenges and to 

improve spatial resolution, sensitivity, and specificity. Here, we review the most promising 

technological directions and provide a look into the future of computational methods—in 

particular, machine learning, deep learning, and AI—needed to capitalize on these 

developments.

Integration of Ion Mobility Separation

IMS is a technology to separate ions in gas phase by their structural properties, namely, their 

collisional cross section (CCS), by flying through a buffer gas (127, 128). IMS can be 

integrated into an imaging mass spectrometer between the source and analyzer, thus 

providing another molecular-chemical dimension (61, 129). In bulk proteomics, 

metabolomics, and lipidomics, IMS was shown to increase specificity (by separating 

structural isomers by their CCS and by matching signals to either measured or theoretically 

predicted CCSs) and sensitivity when coupled to a fast analyzer (by analyzing every CCS 

peak separately, thus avoiding ion suppression) (129). Recently, several vendors released 

imaging mass spectrometers with IMS. We expect that this will spur computational 

developments, in particular by enabling novel metabolite identification methods, but also 

will require novel approaches to data handling and analysis because using IMS increases the 

data size by a factor of 102–104. Already available libraries of measured CCS values and the 

high reproducibility of CCS values, even between different platforms, make machine 

learning a perfect choice for CCS prediction. Early success in machine learning CCS 

prediction has been achieved for both metabolites (130) and lipids (131, 132). With the 

increasing popularity of IMS in imaging MS one can expert machine learning to play a 

greater role in this field.
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Using Chemical Derivatization to Detect Invisible Metabolites

Recently, it was repeatedly and convincingly demonstrated that both sensitivity and 

specificity of imaging MS can be substantially improved when molecules are chemically 

derivatized in situ by applying a chemical reactant onto the tissue section that modifies 

particular molecules through a known chemical reaction that increases their ionization (133–

136). Chemical derivatization is successfully used in other fields of analytical chemistry (gas 

chromatography–MS, LC-MS), where protocols and derivatization agents are already 

available (24, 137). However, using it in imaging MS settings is far from easy. The 

efficiency of the derivatization can depend on the tissue composition, and partial 

derivatization can distort quantification and spatial artifacts. We expect that with the 

mounting interest in applying imaging MS to biological problems focusing on metabolic 

pathways and classes that are of key importance yet hardly detectable (e.g., glycolysis, 

tricarboxylic acid cycle, signaling lipids such as phosphatidylinositol phosphates, 

microbiota-derived molecular signals such as short-chain fatty acids), on-tissue chemical 

derivatization will be further explored and will require novel computational methods 

addressing these outlined challenges. One can expect computational chemistry and machine 

learning methods to play a stronger role in predicting the effects of chemical derivatization 

in MS and in imaging in particular.

Molecular Interpretation of the Detected Metabolites

Molecular annotation or identification reduces tens of thousands of signals associated with 

m/z values to a list of molecules and associated ion images. Statistical analysis can help 

further reduce the list to those molecules that are associated with some known or discovered 

spatial pattern or that represent a difference between conditions. Molecular interpretation of 

the obtained molecular information is currently one of the key challenges, with hardly any 

tools available. In other omics fields, identification and statistical analysis are often followed 

by enrichment analysis to find associated pathways or other molecular, cellular, or functional 

properties (138). Enrichment analysis helps estimate the statistical significance of the 

representation of a metabolic pathway, molecular class, or other property (e.g., 

compartmentalization with a particular organelle) in the results. Although in conventional 

metabolomics and lipidomics, enrichment analysis is becoming commonplace, with open-

source software available (139, 140), currently there are no solutions for imaging MS that 

take into account the imaging specifics (ambiguity, spatial localization, and molecular 

coverage). We are not aware of machine learning or deep learning being used for these 

purposes. However, recent advances of Semantic Web approaches such as the resource 

description framework (RDF) in chemoinformatics, with various SPARQL (SPARQL 

Protocol and RDF Query Language) endpoints available for many chemical resources 

including metabolomics [ChEBI (Chemical Entities of Biological Interest)] and lipidomics 

(SwissLipids), promise automated integration of different omics fields (141–143).

The Emergence of Spatial Single-Cell Metabolomics

Single-cell metabolomics and lipidomics are experiencing a boom in growth (15, 144–151). 

These advances are motivated by discoveries of the single-cell extent of biology with the 

help of other single-cell omics, particularly single-cell RNA-seq, and enabled by the rapidly 
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increasing sensitivity of MS–based metabolomics and lipidomics. Along with other 

approaches such as microextraction and Raman spectroscopy, imaging MS is playing a key 

role in this field since it ensures high sensitivity and requires minimal sample preparation, 

thus minimizing analyte loss. At the same time, imaging MS can be used to profile cells in 

situ, thus not only minimizing the cell perturbation required in conventional metabolomics 

but also allowing the association of molecular information with the spatial context, such as 

cell morphometric information or cell–cell interactions. Various single-cell metabolomics 

and lipidomics imaging MS approaches have been proposed and have demonstrated the 

potential of obtaining rich metabolic and lipidomics profiles that can predict cell types and 

associated molecular changes with perturbations (152–155). We have recently demonstrated 

that single-cell metabolomics can discover molecularly distinct cell subpopulations even in 

cell cultures (155). Moreover, these subpopulations were associated with nonalcoholic 

steatohepatitis, a critical pathological condition and a key factor in the progression toward 

liver cancer (156). Computational methods for analysis and interpretation of the obtained 

single-cell metabolomics data are yet to be developed, in particular for addressing batch 

effects, reducing confounding factors, visualizing highly multiplex data from thousands of 

cells, discovering molecular features and subpopulations hidden behind noise, and ultimately 

discovering links between cell types, phenotypes, and states and their metabolism. AI and 

machine learning were demonstrated to be indispensable in the field of single-cell 

transcriptomics (157). We expect this to happen in the field of single-cell metabolomics as 

well where such approaches are already needed to analyze, visualize, and interpret big and 

often spatial data generated from single cells.

Metaspace as A Community Artificial Intelligence Platform

AI, machine learning, and deep learning are revolutionizing the life sciences and 

biomedicine (51, 52, 55, 56). Do the metabolomics and spatial metabolomics fields risk 

missing out on the AI revolution (21)? On one hand, the complexity of metabolomics, with 

hundreds of thousands of possible molecules in the metabolome, lipidome, and exosome 

(exogenous molecules that come from the environment), poses challenges that can hardly be 

addressed using theoretical methods and that need AI solutions. Moreover, spatial 

metabolomics, combining metabolomics questions and spatial imaging data, can be a perfect 

field for deep learning methods, which perform well at image analysis. On the other hand, 

presently machine learning and AI approaches are applied in spatial metabolomics only to a 

limited degree and have not yet demonstrated their full potential.

The key bottleneck in exploiting these modern approaches is the lack of ground truth data, as 

discussed above. Moreover, engaging machine learners requires clearly formulated and high-

impact but yet unsolved problems. The fast development of machine learning–based 

identification approaches in LC-MS/MS–based metabolomics (158, 159), in particular 

fueled by competitions on manual and automated identification (113), suggests that 

molecular identification in imaging MS will be the high-priority challenge for machine 

learning as soon as sufficient ground truth data are provided. We recently developed several 

AI approaches that combined formulating a problem, selecting data, collecting expert 

judgments, creating a gold standard set, and developing deep learning methods. Our 

developments used public data from METASPACE and a knowledge base of spatial 
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metabolomes and led to the implementation of novel features for METASPACE users. 

METASPACE already includes over 3,500 public imaging MS datasets and is continuously 

populated by users from more than 100 labs across the world. Using METASPACE helped 

us engage experts and select representative data from various imaging MS technologies. 

Hence, METASPACE already serves as a community AI platform (Figure 5). We aim at 

further facilitating AI developments on this platform by following open-source and open-

access principles, demonstrating the benefits of making data public, providing high-quality 

data, connecting computer scientists with experimentalists, and overall removing barriers for 

methods developers.

Software

In this section, we review open-source software packages for imaging MS. Our aim is to 

help experimentalists navigate existing solutions and to provide examples for methods 

developers. The software packages were selected based on our subjective knowledge of their 

popularity among users and the existence of training options such as regular workshops, in 

addition to a short survey we conducted on Twitter.

METASPACE is a cloud software for metabolite and lipid identification as well as a public 

knowledge base of spatial metabolomes (115). METASPACE requires data in the centroided 

imzML format and can be used for online browsing of ion images for annotated metabolites 

and lipids, sharing the results, and organizing them into projects. Since recently, 

METASPACE also includes methods for visualization and data analysis.

MSiReader is a stand-alone software for visualization, signal processing, and unsupervised 

analysis of imaging MS data (86). MSiReader is equipped with a rich graphical user 

interface and since recently supports quantitation. MSiReader supports the imzML format 

and can be used either in Windows or on any operating system if the Matlab environment is 

provided.

Cardinal is an R package implementing statistical analysis methods including spatial 

segmentation, classification, and class comparison (160). Using Cardinal requires basic 

knowledge of R as no graphical interface is provided.

A growing number of open-source software packages help working with imaging MS data. 

imzMLConverter (https://github.com/AlanRace/imzMLConverter) helps convert data into 

the imzML format. pyImzML parser (https://github.com/alexandrovteam/pyimzML) helps 

with reading and writing imzML files using Python. rMSI (161) and RmsiGUI (162) are R 

packages with a graphical user interface for data visualization and analysis that provide 

alternatives to MSiReader. OpenMSI is a cloud data hosting and visualization platform 

(163). Recently, a Galaxy workflow for imaging MS was developed that represents an 

attractive alternative to those already using Galaxy (164). MetaboLights is a general 

repository for metabolomics data deposition that can also be used for imaging MS data 

(165). For a longer list of software with a focus on exploratory analysis, see Reference 68.
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Conclusions and Outlook

Spatial metabolomics is a rapidly emerging field that promises—and has already delivered—

discoveries of how metabolism is regulated in the spatial context of tissues. At the 

intersection of metabolomics, mass spectrometry, and imaging, this technology not only 

opens novel avenues to understanding biology in its spatial context in situ but also creates 

novel challenges in the analysis and interpretation of generated high-dimensional data. The 

revolution of AI, machine learning, and deep learning offers a unique opportunity for 

addressing these challenges using these modern computational approaches. However, 

grasping this opportunity requires concerted efforts of experimentalists and computer 

scientists to create high-quality ground truth data such as libraries for metabolite annotation 

in imaging MS in order to train machine learning models and evaluate their performance. 

We hope that this review will help build bridges between experimentalists and computer 

scientists by introducing key concepts, reviewing outstanding challenges that need 

computational solutions, and highlighting the need for creating ground truth data, and thus 

ultimately will benefit this fascinating, challenging, and interdisciplinary field.
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Data Availability

In this section, we briefly overview the available data that can be used for methods 

development, training machine and deep learning models, and methods evaluation. In 2015, 

we published benchmark datasets from different biological systems from several labs (166). 

These datasets included serial 3D imaging MS data, but individual serial sections can also be 

used as 2D datasets. The datasets include MALDI-TOF and DESI-Orbitrap data, and 

although they still can be used for methods development, they do not represent the state of 

the art in terms of spatial and spectral resolution. MetaboLights hosts several imaging MS 

studies where both data and metadata can be downloaded; the data can be found by 

searching “imaging mass spectrometry.” METASPACE provides the largest collection of 

public imaging MS datasets. Currently, it provides access to annotated data only; we are 

planning to implement user-approved access to associated imzML data for public datasets. 

We have also published ground truth data from three crowdsourcing studies aimed at 

estimating the quality of ion images (https://github.com/alexandrovteam/IMS_quality), 

recognizing off-sample ion images (https://github.com/metaspace2020/offsample), and 

quantifying colocalization between ion images (https://github.com/metaspace2020/coloc).
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Figure 1. 
The popularity of different technologies in the life sciences and biomedicine and their 

evolution over time. The plot shows the numbers of PubMed-indexed publications in a given 

year containing the keywords shown in the figure key. We highlight three time periods, 

before 2009, from 2009 until 2015, and after 2015, which we discuss in the main text. The 

inset shows the popularity of several technologies for metabolomics applications from 1995 

until 2018. Abbreviations: FTIR, Fourier-transform infrared spectroscopy; NIR, near-

infrared spectroscopy.
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Figure 2. 
An imaging mass spectrometry (MS) dataset represents a collection of spectra acquired from 

a raster of pixels representing the surface of a tissue section. Peaks are often reduced to 

centroids, especially for Fourier transform ion cyclotron resonance and Orbitrap high-

resolving power analyzers. An ion image represents relative intensities of the ion across all 

pixels. An imaging MS dataset can represent spatial localization of up to 103 molecules at a 

false discovery rate (FDR) of 10%.
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Figure 3. Steps of a typical data analysis workflow in imaging mass spectrometry. Abbreviations: 
LC-MS/MS, liquid chromatography with tandem mass spectrometry; MS/MS, tandem mass 
spectrometry.
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Figure 4. Ground truth is needed for methods development (training machine learning and deep 
learning models) and methods evaluation at the same time, which requires considerable effort.
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Figure 5. 
METASPACE as an example of an open community platform for artificial intelligence 

developments in the field of spatial metabolomics. METASPACE provides a free cloud 

engine for metabolite annotation and encourages users to make their data public, thus 

creating an open knowledge base of spatial metabolomes. The open public data help engage 

experts to create ground truth necessary for the development of machine learning methods. 

Implementing these methods in METASPACE improves the platform and adds new 

functionality that, in turn, attracts more users, thus creating a sustainable open platform for 

both imaging mass spectrometry practitioners and computational method developers.
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Table 1
Imaging MS parameters and how they affect data properties

Parameters of imaging MS Affected aspects and data properties

Sample preparation MALDI matrix (e.g., DHB, DAN) Desorption and ionization (and hence detectable molecular classes), spatial 
resolution (but not critically), sensitivity

Solvent (e.g., acetonitrile) Desorption and ionization, sensitivity

Source Source type (e.g., MALDI, DESI, 
SIMS, IR-MALDESI)

Desorption and ionization, sensitivity (and thus the number of ion channels), 
potentially spatial resolution (and thus the number of pixels)

Analyzer Analyzer type (FTICR, Orbitrap, TOF, 
QTOF)

Strongly affects spectral properties (dimensionality, noise, background, and, 
in particular, TOF) and molecular ambiguity; affects spatial properties (noise, 
resolution) to a lesser degree

Polarity (positive, negative) Which ions are detected (and hence molecular classes)

Mass-resolving power (e.g., 50,000 or 
120,000 at 200 m/z)

Critically affects molecular ambiguity (inversely proportional) and data size 
(proportional)

Mass accuracy Critically affects data quality, molecular ambiguity, and interpretability

Abbreviations: DAN, 1,5-diaminonapthalene; DESI, desorption electrospray ionization; DHB, 2,5-dihydroxybenzoic acid; FTICR, Fourier 
transformation ion cyclotron resonance; IR-MALDESI, infrared matrix-assisted laser desorption electrospray ionization; MALDI, matrix-assisted 
laser desorption/ionization; MS, mass spectrometry; QTOF, quadrupole time-of-flight; SIMS, secondary ion mass spectrometry; TOF, time-of-
flight.
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