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Abstract

Machine learning methods have been employed to make predictions in psychiatry from genotypes, 

with the potential to bring improved prediction of outcomes in psychiatric genetics; however, their 

current performance is unclear. We aim to systematically review machine learning methods for 

predicting psychiatric disorders from genetics alone and evaluate their discrimination, bias and 

implementation. Medline, PsychInfo, Web of Science and Scopus were searched for terms relating 

to genetics, psychiatric disorders and machine learning, including neural networks, random 

forests, support vector machines and boosting, on 10 September 2019. Following PRISMA 

guidelines, articles were screened for inclusion independently by two authors, extracted, and 

assessed for risk of bias. 63 full texts were assessed from a pool of 652 abstracts. Data were 

extracted for 77 models of schizophrenia, bipolar, autism or anorexia across 13 studies. 

Performance of machine learning methods was highly varied (0.48-0.95 AUC) and differed 

between schizophrenia (0.54-0.95 AUC), bipolar (0.48-0.65 AUC), autism (0.52-0.81 AUC) and 

anorexia (0.62-0.69 AUC). This is likely due to the high risk of bias identified in the study designs 

and analysis for reported results. Choices for predictor selection, hyperparameter search and 

validation methodology, and viewing of the test set during training were common causes of high 

risk of bias in analysis. Key steps in model development and validation were frequently not 

performed or unreported. Comparison of discrimination across studies was constrained by 

heterogeneity of predictors, outcome and measurement, in addition to sample overlap within and 

across studies. Given widespread high risk of bias and the small number of studies identified, it is 

important to ensure established analysis methods are adopted. We emphasise best practices in 

methodology and reporting for improving future studies.
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Introduction

Machine learning represents a contrasting approach to traditional methods for genetic 

prediction. It has increased in popularity in recent years following breakthroughs in deep 

learning [1–4], and the scaling-up of datasets and computing power. The ability to function 

in high dimensions and detect interactions between loci [5] without assuming additivity 

makes such methods an attractive option in statistical genetics, where the effects of myriad 

factors on an outcome is difficult to pre-specify. Calls to address the complexity of disorders 

like schizophrenia with machine learning have also become more frequent [6–8]. However, 

the predictive performance of machine learning methods in psychiatric genetics is unclear, 

and a recent review of clinical prediction models across various outcomes and predictors 

found them to be no more accurate than logistic regression [9]; it is therefore timely to 

review their predictive performance in psychiatry.

Genome-wide association studies, genetic prediction and psychiatry have each been 

reviewed with respect to machine learning [10–16]. Recently, single nucleotide 

polymorphism (SNP)-based prediction has been reviewed across diseases [17]. However, 

psychiatry presents a distinct problem from somatic and neurological diseases as a result of 

genetic correlation between disorders [18] and the risk of class mislabelling due to 

biological heterogeneity that may underlie symptom-based diagnoses [19].

We systematically reviewed literature related to the question: what is the ability of machine 

learning (ML) methods to predict psychiatric disorders using only genetic data? We report 

discrimination, methodology and potential bias for diagnostic or prognostic models and 

compare to logistic regression (LR) and polygenic risk scores (PRS) where available.

Materials and methods

Search Strategy

Medline via Ovid, PsychInfo, Web of Science and Scopus were searched for journal articles 

matching terms for machine learning, psychiatric disorders and genetics on 10th September 

2019. Searches were broad, with terms for psychiatric disorders including schizophrenia, 

bipolar, depression, anxiety, anorexia and bulimia, attention-deficit hyperactivity disorder, 

obsessive compulsive disorder, Tourette’s syndrome or autism. Terms for machine learning 

were also wide-ranging, including naïve Bayes, k-nearest neighbours (k-NN), penalised 

regression, decision trees, random forests, boosting, Bayesian networks, Gaussian processes, 

support vector machines and neural networks, but excluding regression methods without 

penalty terms, such as logistic regression. Searches were developed and conducted by MBS 

and were restricted to English language journal articles on humans, with no limits on search 

dates. Two authors (MBS, KC) independently reviewed all abstracts for inclusion. Full texts 

were assessed if either author had chosen to access them and independently screened against 

inclusion criteria. Where conflicts occurred a third author (VEP) was consulted as an arbiter. 

An example search for Medline (Ovid) is given in the supplementary (Table S1).
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Inclusion and Exclusion Criteria

Studies were restricted to cohort, cross-sectional or case-control designs of individuals for 

binary classification of a single DSM or ICD-recognised psychiatric disorder compared to 

unaffected individuals, where only genotyping array, exome or whole-genome sequencing 

data were used as predictors. Studies based solely on gene expression were excluded, but 

designs which made use of gene expression or functional annotations to inform models of 

genetic data were accepted. No further restriction was made on participants. Studies were 

excluded if they only predicted medication response, sub-groups within a psychiatric 

disorder or a psychiatric phenotype secondary to another disease. Studies were also 

considered ineligible if they had a clear primary aim of drawing inference at the expense of 

prediction, if they developed a novel statistical method or only made use of unsupervised or 

semi-supervised methods. The review was registered to PROSPERO in advance (registration 

number CRD42019128820).

Extraction and Analysis

A data extraction form was developed through discussion between all authors; items from 

the critical appraisal and data extraction for systematic reviews of prediction modelling 

studies (CHARMS) checklist [20] were included as-is or modified, and additional items 

were included based on expert knowledge and relevance to the review topic, with reference 

to the genetic risk prediction studies (GRIPS) statement [21] for items pertaining to genetic 

prediction studies (Table S2). The form was piloted with five publications, containing 40 

extracted ML models between them, and updated before being applied to all texts.

The discrimination of machine learning methods was extracted independently by two 

authors (MBS, KC) as area under the receiver operating characteristic curve (AUC), or c-

statistic. Model performance measures for classification by accuracy, sensitivity and 

specificity were also extracted. 95% confidence intervals for validation were estimated for 

AUC using Newcombe’s method [22]. Results were not meta-analysed due to sample 

overlap, present in at least half of studies (see Table S3), which cannot easily be accounted 

for in the meta-analysis. Information on participants, predictors and model development and 

validation were also obtained. LR or PRS models were also extracted when present. Though 

LR can be considered a machine learning approach, for the purpose of this review we regard 

it as a contrasting method due to its widespread use in classic statistical analysis. The 

presence of LR and PRS as comparators was not made a requirement due to their sparsity in 

the literature.

Risk of bias (ROB) and applicability were assessed using the prediction model risk of bias 

assessment tool (PROBAST) [23]. PROBAST consists of 20 questions designed to signal 

where ROB may be present in either the development or validation of a model across 4 

categories: participants, predictors, outcome and analysis. These include, for instance, 

questions on how missingness or complexities in study design were handled. Information on 

handling of population structure, a common confound in genetic association studies, was 

also extracted to aid ROB assessment. Reporting of the systematic review follows the 

preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines 

[24]. Extraction and ROB are detailed further in the supplementary.
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Results

Selection

1,241 publications were identified through searches in Ovid Medline, PsychInfo, Scopus and 

Web of Science which included restrictions to English language journal articles (Figure S1). 

After merging and removing duplicates, 652 studies were assessed for inclusion. Of these, 

63 full texts were assessed to determine eligibility. 14 publications were selected, with two 

merged as publications included the same models on the same dataset. A final total of 13 

studies were selected for inclusion, containing 77 distinct machine learning models.

Studies

A wide range of machine learning methods were applied to schizophrenia (7 studies, 47% of 

models), bipolar disorder (5 studies, 39% of models), autism (3 studies, 10% of models) and 

anorexia (1 study, 4% of models) (Table 1), with no studies identified for the 6 remaining 

disorders. Single nucleotide polymorphisms (SNPs) were the most common source of 

genetic data. Copy number variants (CNVs) and PRSs were each incorporated in models 

from a single study, and exome-sequencing data formed the basis of two studies. Datasets 

typically consisted of publicly-available genome-wide association studies (GWAS); potential 

sample overlap was established for at least 7 studies (Table S3). Briefly, 3 studies [25–27] 

included controls for the 1958 Birth Cohort [28] or the UK Blood Service [29], 4 studies 

included controls from Knowledge Networks [25, 30–32], 2 studies used a Swedish 

population-based sample [32, 33], and 3 studies used the same dataset, or provided a 

common reference for part of the dataset [25, 30, 31]. The remaining 6 studies [34–40] 

either gave unclear information, reported no previous reference for the dataset, or used 

datasets which appear to be separate from other studies. Where samples overlap, all models 

included in the review are distinct, using different predictors or modelling approaches. 

Additional overlap or cryptic relatedness may be present between studies.

Missingness was reported clearly in about half of all studies and models. When reported, it 

was most commonly handled by imputation after excluding genotypes with high 

missingness. Studies also reported complete-case analysis and inclusion of missing values in 

coding of predictors (Table S4).

Machine Learning Methods

Support vector machines (SVMs) and neural networks were the most popular, followed by 

random forests and boosting. SVMs were split roughly equally between using a linear kernel 

(3 studies, 7 models), a radial basis function (RBF) kernel (3 studies, 6 models), or an 

unreported kernel (3 studies, 6 models). Authors applying neural networks most commonly 

used multilayer perceptrons (3 studies, 6 models), an RBF network (2 studies, 5 models) or 

restricted Boltzmann machines (RBMs; 1 study, 9 models), with linear networks, 

convolutional neural networks (CNNs) and embedding layers each used once. Weak learners 

in boosted models were mainly decision trees, with the exception of a method which 

combined feature selection with the boosting of RBF-SVMs in AdaBoost [35]. Penalised 

regression was employed alongside linear and non-linear methods as least absolute 

shrinkage and selection operator (LASSO; 3 studies, 4 models) or ridge regression (1 study, 
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2 models). 51% of all models were implemented in R or WEKA; Matlab and Python were 

preferred for neural networks (Table S5).

Risk of Bias

Risk of bias was assessed for each model within each study (Figure S2). All models 

displayed risk of bias, mostly in relation to participants (study design and inclusion/

exclusion criteria), outcome (standardised definition and assessment of outcomes) and 

analysis. Within-study ROB for participants was due to the use of case-control studies. 

Predictors were mostly rated to have unclear or low ROB; instances of high ROB were 

limited to predictors which are unavailable at the point of model use. Outcome definitions or 

measurements often differed between cases and controls.

Models displayed high ROB during analysis. This was often traced to inappropriate or 

unjustified handling of missingness and removal of enrolled participants prior to analysis, 

predictor selection using univariable methods and failure to account for overfitting. No 

studies reported calibration measures. In addition to PROBAST, information on population 

structure within studies was extracted (Table S6). Most studies did not illustrate genetic 

ancestry across all observations in the current publication using dimensionality reduction, 

and none reported any evaluation of the final trained model for bias due to population 

structure. However, 2 studies (18% of models) visualised principal components for a 

subsample or showed a table of reported ancestry for participants [31, 39]. Where ancestry 

was not addressed in a study, it was most often visualised in a referenced publication (55% 

of all models). 2 studies (13% of models) had no details or references which addressed 

genetic ancestry.

Across-study ROB was not formally assessed. For schizophrenia, bipolar and autism, studies 

with smaller numbers of cases in the development set report AUC less often, instead 

preferring classification metrics such as accuracy, sensitivity and specificity.

PROBAST encourages assessment of studies for applicability to the review question as this 

is often narrower than inclusion criteria [23]. Concern was identified for models in three 

studies [30, 39, 41]. All others demonstrated either low concern or unclear applicability. 

Reasons for concern were attributable to outcomes which combined closely-related 

disorders, or the use of post-mortem gene expression data, whereas the review question 

focussed on models of single disorders with potential use in diagnosis or prognosis.

Model Performance

Over half of all models assessed discrimination using AUC (58% models). A wide range of 

classification metrics and measures of model fit were also reported (Table S7), with less than 

a quarter of models clearly reporting choosing a decision threshold a priori (Table S8).

Around 79% of models, from 12 studies, reported some form of internal validation (Table 

S9). The majority of these were k-fold cross-validation (57% of all models; 8 studies), a 

resampling approach which involves testing a model on each of k independent partitions of a 

dataset, every time training on the remaining k-1 folds. 10-fold cross-validation (CV) was 

most commonly used, with just below half of all cross-validated models invoking repeats 
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with different random splits. The remainder of studies using internal validation created a 

random split between training and testing sets (21% of all models; 5 studies), or applied 

apparent validation, where training and testing are both done on the whole sample [31]. A 

minority reported external validation (26% of models; 2 studies). Use of internal validation 

was not reported for 16 models from a single study [25], but for which geographic and 

temporal external validation was given. External validation was reported for one other study, 

but with partly overlapping participants between development and validation sets [32].

Model performance varied by choice of statistical method, sample size and number of 

predictors within studies (Table S10). Discrimination for models of schizophrenia (Figure 1) 

was extremely varied (0.541-0.95 AUC), with the highest AUC from exome data using 

XGBoost (0.95 AUC) [33]. In this study, Trakadis et al. (2019) used counts of variants in 

each gene, after annotation and predictor selection, on participants with part-Finnish or 

Swedish ancestry [42]. Similarly high AUC (0.905 AUC) made use of multiple 

schizophrenia-associated PRS [32]. However, the authors identify the presence of both the 

development and validation samples in the psychiatric genomics consortium (PGC) GWAS 

used to generate the schizophrenia PRS [43], in addition to having overlapping controls 

between internal validation (model development) and external validation (replication) 

samples. All other schizophrenia models involved learning from SNPs [27, 30, 34–36], with 

the exception of Wang et al. (2018) [39] where gene expression data from post-mortem 

samples informed the weights in a conditional RBM trained on genotypes.

Predictive ability for bipolar disorder (Figure 1) was consistently lower than for 

schizophrenia, frequently overlapping with chance (0.482-0.65 AUC). Models were trained 

on genotypes, excepting a study [38] using exome data to train a CNN as part of the Critical 

Assessment of Genome Interpretation (CAGI) competition [44], for which moderate 

discrimination was achieved (0.65 AUC).

Significantly fewer models were reported for autism (8 models, 3 studies) and anorexia (3 

models, 1 study) (Figure 1). Varying predictive performance was illustrated in autism 

(0.516-0.806 AUC). High AUC (0.806 AUC) was shown for a single prediction model [40], 

while models developed with a greater sample size by Engchuan et al. (2015) using CNVs 

were closer to or overlapping with chance (0.516-0.533 AUC) [37]. The only models 

predicting anorexia nervosa had moderate discriminative ability between cases and controls 

(0.623-0.693 AUC) [26].

Logistic regression and polygenic risk scores

Three studies reported AUC for either logistic regression (5 models) or polygenic risk scores 

(12 models) alongside machine learning methods. PRS were weighted by summary statistics 

from a GWAS on the same disorder as the outcome and used as the sole predictor in a 

logistic regression model. Though discrimination shows some difference between model 

types, the number of studies for comparison is low and results are clustered by study and 

type of validation (Figure S3).
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Predictors

Coding of predictors was mostly unclear or unreported (7 studies, 55% of models). Coding 

was unclear if it was implied through the description of the type of classifier or software but 

not clearly articulated for the reported study. PRS were continuous [32] while counts of 

variants-per-gene or genes-per-gene-set were used for exomes and CNVs respectively [33, 

37]. SNPs were coded under an additive model, a z-transformation of additive coding, or 

one-hot encoded (one predictor per genotype at a locus) (Table S11). GWAS summary 

statistics from external datasets were also used in the selection, weighting or combining of 

predictors (9 studies, 64% models; Table S12).

Predictor selection was adopted by most (12, 73% of models) and limited to filter-based 

selection, used prior to modelling, and embedded selection, an integral part of the prediction 

model (Table S13). The latter involved LASSO regression, or ensembles and hybrids of 

decision trees and decision tables, in addition to a modified AdaBoost [35]. Filters were 

based on internal or external univariable association tests (GWAS). Embedded and wrapper-

based methods, which typically ‘wrap’ a model in forward or backward-selection, were both 

also used prior to any predictive modelling. Modification of predictors using information 

from the test set was the most common cause of information ‘leaking’ from the test set to the 

training set, a source of inflation in performance measures (Table S14).

Sample size

Total sample size was generally low where a single sample had been used, but higher if 

genotypes from publicly-available amalgamated datasets used in a GWAS had been 

downloaded (median 3486, range 40-11853) (Table S10). Number of events in development 

followed a similar pattern (median 1341, range 20-5554) as class imbalance was minimal 

(median 1, range 0.65-2.93, calculated as non-events over events). Around half of studies 

gave sufficient information to calculate events per variable (EPV) (median 0.69, range 

0.00063-74.6). It could not be calculated where the number of candidate predictors where 

not reported for models in 2 studies [25, 39]; approximations are given in the supplementary 

where reporting was unclear in a further 5 studies [26, 32–34, 36, 38] (Table S10).

Hyperparameter Search

Hyperparameter search was mostly unreported or unclear (41 models, 9 studies), with some 

models reported as having been used with default settings. Ambiguous reporting resulted 

from description of search and tuning for a specific model, with no clarity as to whether 

these conditions applied to other models in the study. Only 19% of models clearly reported 

attempting different hyperparameters for the extracted models (Table S15). Studies also 

report non-standard final hyperparameters, such as uneven batch size in neural networks, or 

showed good accuracy for a model which is highly sensitive to tuning of crucial 

hyperparameters, yet few reported tuning (Table S16). It is therefore likely that most studies 

evaluated several hyperparameter choices but did not report this.
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Discussion

All studies displayed high risk of bias in model development and validation with infrequent 

reporting of standard modelling steps. Performance measures consequently demonstrated a 

wide range of abilities to discriminate between cases and controls (0.482-0.95 AUC). These 

are likely optimistic owing to the high risk of bias identified through PROBAST and 

unaddressed sample overlap and population structure, as two studies showing the highest 

AUCs left these issues unresolved [32, 33]. Though potential bias and effective sample size 

limit overall interpretation of discrimination, low standards of model development, 

validation and reporting are a clear and consistent theme throughout all studies. Broad 

discrimination has also been observed for machine learning studies in cancer genomics [45]; 

more established fields with clearer predictor-response relationships, such as medical 

imaging, are much more consistent [46].

Issues relating to ROB often rest on distinctions in methodology between clinical prediction 

modelling, machine learning and genetic association studies. For instance, genetic studies 

most commonly employ a case-control design. Such studies are extremely useful for 

identifying genetic risk factors for rare outcomes, but are considered inadequate for 

prediction modelling as absolute risks cannot be estimated; instead, case-cohort, nested case-

control, or prospective cohort designs are preferred [47]. Case-cohort and nested casecontrol 

designs involve sampling from an existing cohort and can be used for prediction models if 

the sampling fraction in controls is accounted for in analysis [48]. To project the prediction 

to the whole population in case-control studies, positive and negative predictive values 

should be corrected in accordance with the disease prevalence in the population and ratio of 

cases and controls in the sample [49]. Similarly, univariable tests of association are applied 

routinely in GWAS, and are often used in selection of predictors for genetic prediction 

models. Their application in prediction modelling though is usually discouraged, as 

predictors may differ in their importance when evaluated in isolation as compared to when 

considered concurrently with other variables [50].

Lack of adherence to appropriate procedures for machine learning are also a common cause 

of a model being assessed as at high risk of bias. Standard model validation procedures were 

followed by some researchers; however, many ‘leaked’ information between training and 

testing sets through not applying predictor manipulations or selection in only the training 

set/fold, or using the testing set/fold to adjust model hyperparameters, which can impose 

significant bias on estimates of prediction performance [51].

Most studies provided a measure of classification or discrimination for each model; none 

reported a measure of calibration. Model calibration compares observed and predicted 

probabilities of the outcome occurring, and is a crucial part of model development [52] 

which has been noted for its absence in genetic prediction literature [53]. Authors reporting 

only classification measures, such as accuracy, sensitivity or specificity, should also note that 

measures of discrimination are preferred as they use all the information over predicted 

probabilities and delay any thresholding of risks to a more appropriate time. Of 

discrimination measures, the AUC is the most widely used in both machine learning and 

genetics [54, 55].
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Hyperparameter optimisation is an essential part of developing machine learning models as 

it determines how they navigate the bias-variance trade-off and learn from data [56]. It is 

therefore surprising that it was so often unreported or subject to a small number of manual 

experiments. Hyperparameters should be systematically searched to ensure a model is not 

over or under-fit. Randomised search has been shown to be more effective than grid search 

where two or more such parameters require tuning [57], though grid search is also 

recommended by practitioners for SVMs, often with an initial ‘coarse’ search followed by a 

more thorough exploration of a finer grid of values [58]. The importance of search is 

particularly relevant in domains where there are a small number of events per candidate 

predictor [59], such as genomics, as appropriate hyperparameter choices can reduce 

overfitting.

Split-sample approaches were used by several studies, but should be avoided in favour of 

resampling methods such as bootstrapping or k-fold cross-validation [60]. The latter is an 

appropriate form of internal validation for traditional statistical methods; however, estimated 

prediction accuracies become overly-optimistic if done repeatedly, as when used for 

hyperparameter tuning through repeated rounds of CV. Nested cross-validation, where 

hyperparameters are optimised in an inner-fold and evaluated in the outer-fold, has been 

shown to give more realistic estimates [51, 61] but was not used in any studies. A single 

study presented both internal and external validation of models [32], for which a large drop 

in performance is seen upon replication. Though partly due to sample overlap between the 

development set and the summary statistics used for generating a PRS, difficulty with 

replication is a wider issue in polygenic risk prediction. Risk scores for psychiatric disorders 

typically explain a small proportion of variance in a trait [62], with generalisation issues 

compounded by variants with small effect sizes and different allele frequencies between 

populations. Risk scores generated through machine learning methods have the potential to 

be more affected by these issues if appropriate modelling procedures are not followed.

A source of bias not explicitly covered in PROBAST is population structure. Genetic 

ancestry has the potential to bias both associations [63, 64] and predictions [65, 66] from 

genetic data. Supervised machine learning methods have proved particularly sensitive in 

detecting ancestry [67–69]. Few researchers discussed visualising ancestry or reported 

exclusions, and none reported modelling adjustments, even when previous association 

studies on the same datasets had demonstrated stratification and included principal 

components as covariates. The extent of the bias introduced in these studies is not clear: 

evidence mostly relates to deliberately predicting populations in humans using ML or 

looking at bias in complex trait prediction from PRS. While the potential for population 

stratification to impact predictions is apparent, the method for dealing with it when using 

machine learning methods is not. Several techniques have been proposed, including 

modifications to random forests [70]; exclusions by, or inclusion of, principal components; 

and regressing-off the linear effects of principal components on SNPs before modelling (for 

example [71, 72]). Whether any combination of these is sufficient to reduce the effects of 

population stratification in nonlinear machine learning predictions has not been 

demonstrated.
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General reporting guidelines for machine learning prediction models are yet to be developed 

[73], though recommendations for undertaking [74, 75] evaluating [76] or reporting [77] 

exist for machine learning in omics data, psychiatry and medicine respectively, in addition to 

reporting guidelines outside of machine learning [21, 78]. We encourage authors to report on 

implementation, samples, predictors, missingness, hyperparameters and handling of 

potential information leakage, and consult guidelines where needed. Finally, we advocate for 

machine learning methods to be reported alongside polygenic risk scores as a standard 

baseline model for comparison. The potential for machine learning methods to provide 

improved prediction has received heightened attention in recent years. Any such outcome 

cannot occur without adherence to standards for the development, validation and reporting 

of models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. discrimination for all models.
n: number of cases in training set. Studies: a [35], b [40], c [34, 36], d [39], e [25], f [38], g 

[31], h [30], i [26], j [33], k [37], l [32], m [27]. 1SVM kernel not reported. 2Modified 

architecture with intermediate phenotypes in training set only. 3Modified architecture with 

intermediate phenotypes for training and test sets. 4,5,6,7Internal and external validation are 

shown for study l, where validations for the same model are denoted with the same number. 
8Two-way MDR. 9Three-way MDR. 10Neural network embedding layer. 11Accuracy 

calculated from confusion matrix. AB: AdaBoost, BN: Bayesian networks, BFTree: best-
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first tree, CIF: conditional inference forest, cRBM: conditional restricted Boltzmann 

machine, CI: confidence interval, CNN: convolutional neural network, CNV: copy number 

variation, DTb: decision tables, DTNB: decision table naïve Bayes, DT: decision tree, EC: 

evolutionary computation, GE: gene expression, GBM: gradient boosting machine, k-NN: k-

nearest neighbours, LASSO: least absolute shrinkage and selection operator, LNN: linear 

neural network, MDR: multifactor dimensionality reduction, MLP: multi-layer perceptron, 

NB: naïve Bayes, NN: neural network, PRS: polygenic risk scores, RBF: radial basis 

function, RF: random forests, SNP: single nucleotide polymorphisms, SVM: support vector 

machine, XGB: extreme gradient boosting.
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Table 1
overview of studies

First Author (Year) Disorder Machine Learning Methods Data Models Comparators

Aguiar-Pulido et al. (2010; 

2013)
1 Schizophrenia

AdaBoost, BFTree, DNTB, decision 
tables, SVM (kernel not reported), 
naïve Bayes, Bayesian networks, MDR, 
neural network (RBF, linear, 
perceptron), evolutionary computation

SNPs 12

Yang et al. (2010) Schizophrenia AdaBoost (of SVM (RBF)), SVM 
(RBF) SNPs 2

Pirooznia et al. (2012) Bipolar Disorder
Bayesian networks, random forest, 
neural network (RBF), SVM (kernel not 
reported)

SNPs 16 PRS, LR

Li et al. (2014) Bipolar Disorder, 
Schizophrenia LASSO, Ridge, SVM (linear) SNPs 6

Engchuan et al. (2015) Autism Neural network (perceptron), SVM 
(Linear), random forest, CIF CNVs 4

Acikel et al. (2016) Bipolar Disorder MDR, random forest, k-NN, naïve 
Bayes SNPs 5

Guo et al. (2016) Anorexia nervosa LASSO, SVM (RBF), GBM SNPs 3

Laksshman et al. (2017) Bipolar Disorder Decision tree, random forest, neural 
network (CNN) Exomes 3

Chen et al. (2018) Schizophrenia Neural network (perceptron) PRS 4 PRS, LR

Wang et al. (2018)
Schizophrenia, 
Bipolar Disorder, 
Autism

Neural networks (cRBM) SNPs, gene 
expression 9 LR

Ghafouri-Fard et al. (2019) Autism Neural network (with embedding layer) SNPs 1

Trakadis et al. (2019) Schizophrenia LASSO, random forest, SVM (kernel 
not reported), GBM (XGBoost) Exomes 4

Vivian-Griffiths et al. 
(2019) Schizophrenia SVM (linear, RBF) SNPs 8 PRS

1
Merged in extraction [34, 36]. BFTree: best-first decision tree, CIF: conditional inference forest, cRBM: conditional restricted Boltzmann 

machine, CNN: convolutional neural network, DNTB: Decision table naïve Bayes, GBM: gradient boosting machine, ?-NN: ^-nearest neighbours, 
LASSO: least absolute shrinkage and selection operator, LR: logistic regression, MDR: multifactor dimensionality reduction, PRS: polygenic risk 
score, RBF: radial basis function, SVM: support vector machine
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