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Abstract

We propose a forward-backward splitting algorithm to integrate deep learning into maximum-a-
posteriori (MAP) positron emission tomography (PET) image reconstruction. The MAP 

reconstruction is split into regularization, expectation-maximization (EM), and a weighted fusion. 

For regularization, the use of either a Bowsher prior (using Markov-random fields) or a residual 

learning unit (using convolutional-neural networks) were considered. For the latter, our proposed 

forward-backward splitting EM (FBSEM), accelerated with ordered subsets (OS), was unrolled 

into a recurrent-neural network in which network parameters (including regularization strength) 

are shared across all states and learned during PET reconstruction. Our network was trained and 

evaluated using PET-only (FBSEM-p) and PET-MR (FBSEM-pm) datasets for low-dose 

simulations and short-duration in-vivo brain imaging. It was compared to OSEM, Bowsher 

MAPEM, and a post-reconstruction U-Net denoising trained on the same PET-only (Unet-p) or 

PET-MR (Unet-pm) datasets. For simulations, FBSEM-p(m) and Unet-p(m) nets achieved a 

comparable performance, on average, 14.4% and 13.4% normalized root-mean square error 

(NRMSE), respectively; and both outperformed OSEM and MAPEM methods (with 20.7% and 

17.7% NRMSE, respectively). For in-vivo datasets, FBSEM-p(m), Unet-p(m), MAPEM, and 

OSEM methods achieved average root-sum-of-squared errors of 3.9%, 5.7%, 5.9%, and 7.8% in 

different brain regions, respectively. In conclusion, the studied U-Net denoising method achieved a 

comparable performance to a representative implementation of the FBSEM net.

Index Terms

Deep learning (DL); image reconstruction; MRI; positron emission tomography (PET)

I Introduction

MODEL-BASED image reconstruction of positron emission tomography (PET) has now 

almost superseded conventional reconstruction methods by accounting for all statistical and 
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physical processes of data acquisition in the image reconstruction. Founded on a Bayesian 

framework, these techniques can even model the prior probability distribution of the 

unknown activity distribution. Different image priors have been proposed in the literature, 

particularly to suppress noise in the reconstructed images without compromising image 

quality [1]. Based on Markov random fields, the majority of these priors aim to assign a low 

probability to images that have large local intensity differences between their voxels based 

on the hypothesis that those differences are due to noise. The major limitation of these 

hypothesis-driven priors is that they might not only suppress noise but also legitimate image 

details and boundaries, depending on the strength of hyperparameters chosen before 

reconstruction. Thus, edgepreserving and anatomically informed priors have been used to 

reduce noise while preserving PET details [2]–[5]. However, their performance highly 

depends on their functional form and hyperparameters, which are often hand-engineered and 

selected before reconstruction.

Machine learning and deep learning (DL) and techniques have recently shown promise in 

many aspects of PET imaging from photon detection to image reconstruction and 

quantification [6], [7]. In particular, deep convolutional-neural networks (CNNs) have an 

immense potential to learn most representative image features from a multimodal training 

space and hence give rise to data-driven priors which can surpass hypothesis-driven ones.

Recent developments for leveraging supervised DL techniques in PET image reconstruction 

can be categorized into three groups: 1) direct mapping of PET sinograms to PET images 

using end-to-end neural networks [8], [9]; 2) image enhancement of PET images in terms of 

noise [10], [11] or convergence [11], [12]; and 3) model-based DL reconstruction, which 

combines DL with conventional model-based reconstruction methods [13]. Direct 

techniques aim to learn the whole process of image reconstruction including the PET system 

matrix, using fully connected as well as convolutional layers, resulting in a complex learning 

task for which a large and diverse training corpus is presumably required. Image 

enhancement techniques aim to map low-dose (LD) or low-resolution or underconverged 

images to their target full-dose, high-resolution, and fully converged images using CNNs. 

On the other hand, DL reconstruction networks aim to merge the power of model-based 

Bayesian algorithms with neural networks through unrolling an iterative optimization 

algorithm, which provides an elegant theoretical foundation for designing robust data 

correction and image prior models.

Gong et al. [13] proposed an unrolled network, based on the alternating direction method of 

multipliers (ADMM) algorithm, which alternates between PET maximum-likelihood 

expectation-maximization (MLEM) reconstruction and supervised learning of a deep image 

prior using a U-Net model [14]. Gong et al. [15] further explored unsupervised learning of 

this network using MR images and noisy PET images as inputs and targets, respectively. To 

ensure the convergence of the network, the ADMM’s penalty parameter was experimentally 

chosen and U-Net’s parameters were initialized using separately reconstructed PET images. 

Cui et al. [16] used a similar deep image prior for unsupervised denoising of PET images. 

For an optimally chosen number of training iterations (epochs), it was shown this method 

outperformed a number of known denoising methods.
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Lim et al. [17] proposed a DL reconstruction network by unrolling a block coordinate 

descent (BCD) algorithm, which alternates between MLEM PET reconstruction and 

iterationdependent denoising modules that are composed of convolution, soft thresholding 

(as an activation function), and deconvolution layers. The network’s regularization 

hyperparameter was finely tuned to achieve the highest contrast-to-noise ratio (CNR).

In this work, we 1) propose an optimization algorithm for Bayesian maximum-a-posteriori 
(MAP) PET image reconstruction, which generalizes De Pierro’s MAPEM algorithm [18] 

for any differentiable convex prior; 2) unroll the resulting algorithm into a model-based deep 

reconstruction network in which CNNs are used to learn image features while activity 

images are reconstructed from emission data; 3) learn any hyperparameter from data; 4) 

optionally incorporate anatomical side information into PET reconstruction without 

substantial suppression of PET unique features as seen with conventional MR-guided 

reconstruction algorithms; and importantly 5) investigate whether deep reconstruction 

methods can outperform DL-based denoising methods and whether the redesign of the 

current reconstruction workflow for PET scanners is justified, which would be required for 

clinical deployment. In this article, the proposed deep reconstruction network was evaluated 

using realistic 3-D brain simulations and in-vivo PET-MR scans and was compared with 

conventional ordered subsets expectation-maximization (OSEM), MR-guided MAPEM, and 

DL-based denoising using PET only and PET-MR input channels.

II Material and Methods

A Forward-Backward Splitting Expectation-Maximization

The Bayesian MAP reconstruction of PET emission data is obtained by the following 

maximization:

x = argmax
x

L(y ∣ x) − βR(x)

L(y ∣ x) = ∑
i

yilog [Hx]i + bi − [Hx]i + bi

(1)

where L is the Poisson log likelihood of measured data, y, given an activity distribution, x. H 
is PET system matrix and b is the expected accidental coincidences. R is a penalty function 

that imposes prior information about x, controlled by the regularization parameter β. 

Equation (1) can be solved using optimization transfer techniques as long as a separable, 

differentiable, and convex surrogate can be defined for R. Consequently, a monotonically 

convergent MAP expectation-maximization (EM) algorithm is obtained [18]. In this work, 

we use a forward-backward splitting (FBS) algorithm [19] for solving (1) for any 

differentiable convex prior. The FBS algorithm in fact generalizes the projected gradient 

descent (also known as Landweber algorithm) by substituting its projection operator with a 

proximal mapping operator. As a result, the optimization is performed in the following steps:

xReg
(n) = x(n − 1) − γβ ∇R x(n − 1) (2)
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x(n) = argmax
x

L(y x) − 1
2γ x−xReg

n 2 . (3)

Equation (2) is the gradient descent minimization of R with the step size of γ, whereas (3) is 

a proximal mapping [19] associated with the log likelihood L with 1/γ as a regularization 

hyperparameter that controls the data fidelity of x to y and its proximity to xReg
(n)  The 

quadratic prior in (3) is separable. Following [20], a separable surrogate is then defined for 

the function L, whereby (3) can be rewritten as:

x(n) = argmax
x

∑
j

xj, EM
(n) ln xj − xj − 1

2γsj
xj − xj, Reg

(n) 2
(4)

where xEM
(n)  is given by the following MLEM update:

xj, EM
(n) =

xj
(n − 1)

sj
∑
i

ℎijyi
∑kℎikxk

(n − 1) + bi
, sj = ∑

i
ℎij (5)

By setting the derivative of the objective function of (4) to zero, a closed-form solution is 

obtained as follows [21]:

xj
(n) =

2xj, EM
(n)

1 − δjxj, Reg
(n) + 1 − δjxj, Reg

(n) 2
+ 4δjxj, EM

(n)

δj = 1
γsj

.

(6)

Algorithm 1 summarizes the resulting forward-backward splitting EM (FBSEM) algorithm, 

which is accelerated by the ordered subsets (OS) method. As a result, the optimization of (1) 

is split into three steps: 1) the regularization of the previous image estimate (7); 2) the EM 
update of the previous image estimate (8); and 3) the fusion of the resulting two images (9), 

weighted by γ and the subset-dependent sensitivity image s (m).

Algorithm 1 can be used for the following commonly used quadratic prior, weighted by MR 

information (wjb):

Algorithm 1

FBSEM for MAP PET Image Reconstruction

  Initialize: x (0,1) = 1, number of iterations (Nit) and subsets (Nsub)

  For n = 1,…, Nit

        For m = 1,…,Nsub
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xj, Reg
(n, m) = xj

(n − 1, m) − γβ ∂
∂xj

R x(n − 1, m) (7)

xj, EM
(n, m) =

xj
(n − 1, m)

sj
(m) ∑

i ∈ Ωm

ℎijyi
∑kℎikxk

(n − 1, m) + bi
(8)

xj
(n, m) =

2xj, EM
(n, m)

1 − δjxj, Reg
(n, m) + 1 − δjj, Reg

(n, m) 2
+ 4δjxj, EM

(n, m)

δj = 1
γsj

(m) , sj
(m) = ∑

i ∈ Ωm
ℎij

(9)

      End

  End

R(x) = 1
2∑

j
∑

b ∈ Nj
wjb xj − xb

2
(10)

where j is a neighborhood of voxels around the jth voxels. For this prior, by setting β = 

(1/2) and γ = [1/(Σb wjb)] in (7),we obtain

xj, Reg
(n, m) = 1

2∑
b

wjb
∑

b ∈ Nj
wjb xj

(n − 1, m) + xb
(n − 1, m)

(11)

where by Algorithm 1 is reduced to De Pierro’s MAPEM algorithm [18]. As γ→∞, this 

algorithm reduces to the OSEM algorithm. In this article, we used a CNN-based model for R 
and unrolled the FBSEM algorithm into an recurrent-neural network (RNN) with N = Nit x 

N sub reconstruction states, in which model parameters are shared across all states, hence the 

number of trainable parameters became independent of the number of reconstruction updates 

[22]. As shown in Fig. 1, a D-layer learning unit with a non-negativity constraint [imposed 

by a final rectified linear unit (ReLU) layer] was used, whereby (7) was converted to a 

residual learning unit [23]. Of course, alternative CNN models such as convolutional 

encoder-decoders (e.g., U-Net [14]) could also be used.

The proposed network was trained in a supervised manner using a training dataset composed 

of Ns reference highdefinition high-dose (HD) PET images xsRef , low-definition LD PET 

sinograms yS, bS , and optionally co-registered MR images xsMR . The training was 

formulated as the minimization of the mean-squared-error loss function between the 

network’s output xS
(N)  and the reference image xsRef:
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θ = argmin
θ

1
Ns

∑
s = 1

Ns
xs(N) − xsref 2

xs(N) = FBSEMθ ys, bs, x(0), xsMR

N = Nit × Nsub

(12)

where model parameters, θ ∈ ℝd, include convolution kernels, biases, batch normalization 

(BN) parameters, and γ. x (0) is an initial image estimate. Equation (12) was optimized using 

the Adam optimizer.

B Simulation and In-Vivo Datasets

T1-weighted MPRAGE MR images of 70 epilepsy and dementia patients, referred for PET-

MR brain imaging at PET Centre St. Thomas’s Hospital in London, were used for 

generating realistic brain PET-MR phantoms. The MR image matrix and voxel sizes were 

230 × 230 × 254 and 1.04 × 1.04 × 1.01 mm3, respectively. The images were segmented into 

gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), skull, and skin using the 

SPM12 software.1 For each dataset, an FDG PET phantom was generated as follows. 

Random uptake values of 96.0 ± 5.0 and 32.0 ± 5.0 (arbitrary units) were, respectively, 

assigned to GM and WM regions, leading to uptake ratio of 3:1 between GM and WM. Low 

values (>16) were assigned to the remaining regions. Four circular lesions with random radii 

in 2-8 mm (uniformly distributed) and random locations were generated with the hot-to-cold 

ratio of 50%. The uptake value of 144.0 (1.5× of GM) was assigned to hot lesions and 48.0 

(0.5× of WM) was assigned to cold ones. An attenuation map was also generated by 

assigning attenuation values of 0.13, 0.0975, and 0 cm-1 to skull, tissues, and air, 

respectively. The PET, attenuation map, and T1-MR images were resampled into the voxel 

sizes and field of view of the standard PET images from the Siemens mMR scanner, with 

matrix and voxel sizes of 344 × 344 × 128 and 2.08 × 2.08 × 2.03 mm3, respectively.

For data augmentation, the resulting images were rotated in the axial direction with three 

random angles within [0, 15] degrees, resulting in 210 datasets. Noisy sinograms were then 

generated, using image-space point-spread-function (PSF) modeling in the forward model, 

attenuation, normalization, and Poisson noise. Random and scatter coincidences were not 

modeled. Each sinogram had a matrix size of 344 (radial bins) × 252 (azimuthal angles) × 

837 (sinogram plans), as per the standard sinogram format for the mMR scanner.

For each dataset, a high-definition HD sinogram and a low-definition LD sinogram were 

generated. For HD sinograms, 1 billion counts and a PSF with 2.5-mm full-width-at-half-

maximum (FWHM) Gaussian kernels were considered, while for LD ones randomly chosen 

count levels in [90-120] million with PSF of 4.5-mm FWHM were considered. The HD data 

were reconstructed using the OSEM algorithm with Nit = 10, N sub = 14, and PSF = 2.5 mm 

to generate a reference image. The LD data were reconstructed using the same number of 

updates with and without PSF modeling (PSF = 4 mm) and with post-reconstruction 

Gaussian filtering (4-mm FWHM). Fig. 2, top, shows one simulated example dataset. For in-
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vivo datasets, 45 PET-MR brain datasets of patients suspected of epilepsy and dementia 

were retrospectively collected from our PET centre in St. Thomas’s Hospital. Following the 

injection of ~220 MBq [18F]FDG and uptake time of 60 min, patients underwent a 

simultaneous T1-MPRAGE MR scan and a 30-min PET scan on a Siemens mMR scanner. 

MR acquisition and parameters were as follows: repetition time: 1700 ms, echo time: 2.63 

ms, inversion time: 900 ms, number of averages: 1, flip angle: 9°, and acquisition time of 

382 s. For PET attenuation correction, a standard Dixon sequence and a UTE sequence was 

performed. The MR images were rigidly registered to PET images using SPM12 with 

default co-registration parameters and normalized mutual-information cost function.

The datasets were split into 35 training and ten test ones. PET list-mode data were 

histogrammed into full-dose 30-min sinograms and LD 2-min sinograms. For one test 

dataset, the list-mode data were further histogrammed into 1-min and 30-s sinograms. To 

obtain an HD reference image, the full-dose sinograms were reconstructed with PSF 

modeling (using image-space 4-mm FWHM Gaussian kernels) and an MR-guided MAPEM 

algorithm with a quadratic prior (10), weighted using the Bowsher method [24] with  of 3 

× 3 × 3. The FBSEM algorithm was used for optimization. The regularization parameter β 
was chosen to be as small as possible while still mitigating PSF Gibbs-like artifacts.

Fig. 2, bottom, shows a full-dose (30-min) brain scan of a subject reconstructed by 1) OSEM 

using 72 updates followed by 5-mm Gaussian smoothing (Siemens e7 tools’ default); 2) 

OSEM with 140 updates; and 3) MR-guided MAPEM with 210 updates. As shown the 

default reconstruction suffers from oversmoothing and lack of convergence, while increasing 

the number of updates improved the convergence at the cost of PSF overshoot artifacts (see 

arrows). The MAPEM image shows less artifacts.

C Network Training

In this study, the proposed FBSEM was trained and evaluated in two modes: one with PET-

only inputs (FBSEM-p) and one with both PET and MR inputs (FBSEM-pm). For 

comparison purposes, we also included a post-reconstruction U-Net denoising model trained 

on the same datasets with two modes: using PET only (Unet-p) and then using both PET and 

MR (Unet-pm) input images. For this purpose, the original U-Net proposed in [14] was 

extended to 3-D with two modifications: inclusion of BN before ReLU activation and using 

trilinear upsampling in the decoder part of the network. The FBSEM and U-Net networks 

were trained in supervised learning sessions using both simulation and in-vivo training 

datasets. Each training dataset consists of an LD sinogram, attenuation and normalization 

correction factors, scatter and random sinograms, reference (HD/full-dose) PET images, LD 

PET images, and co-registered MR images. All sinograms were generated using Siemens e7 

tools. All reference and LD sinograms were corrected for frame length and radionuclide 

decay before reconstruction, hence the resulting PET images were in counts-per-second 

units and had a similar dynamic range, which helped accelerate the training of the networks.

Table I summarizes the number of training and test datasets used for the training of the 

networks together with other parameters that were experimentally chosen. In this table, 

depth refers to the number of layers in the FBSEM net (see Fig. 1) and the number of 

resolution levels (or scales) in U-Net. Both networks were implemented in PyTorch and 
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trained on a workstation equipped with a Nvidia Quadro k6000 12-GB graphic card. Thanks 

to the parallelism of the FBSEM net, the EM-update module was implemented in Python 

using a GPU-enabled PET projector, while regularization and fusion modules (with trainable 

parameters) were implemented in PyTorch with GPU acceleration.

The training of unrolled 3-D reconstruction networks is extremely time consuming and 

memory demanding. To tackle these issues for training of the proposed FBSEM-p(m) nets 

on both simulations and in-vivo datasets, the following fivefold strategy was used: 1) the 

sinograms were radially trimmed by a factor of 3 and accordingly our PET projector was 

modified; 2) data minibatch size was set to 1; 3) the networks were initialized with OSEM 

PET images (ten iterations and four subsets); 4) the networks were unrolled for 12 

reconstruction states (three iterations and four subsets). Nonetheless, it is important to note 

that our initial 2-D simulations (not shown in this article, see [25]) demonstrated that fully 

unrolled FBSEM nets initialized by uniform images perform well irrespective of the initial 

estimate2; and 5) the fifth acceleration strategy to reduce training time: validation datasets, 

that are often used to choose an optimal epoch at which the model has the minimum 

generalization error, were not used in this study.

D Evaluation

For each test dataset, six different methods were evaluated, including conventional OSEM, 

MR-guided MAPEM, Unet-p, Unet-pm, FBSEM-p, and FBSEM-pm. For simulations, the 

performance of these methods was evaluated based on: 1) CNR between GM and WM 

tissues, that is, the mean activity in GM minus mean activity in WM, divided by variance of 

activity in WM and 2) quantification errors of hot lesions and normalized root-mean square 

error (NRMSE) across the whole brain. For in-vivo datasets, the high-resolution MR images 

were parcellated into different cortical and subcortical regions using FreeSurfer software 

suite.3 The reconstructed LD PET images were mapped into the MR space for region-wise 

quantifications with respect to the reference image in terms of mean (μ), standard deviation 

(SD), and their root sum square, RSS = μ2 + SD2.

III Results

Fig. 3 shows the reconstruction results of a test simulation dataset for different methods 

considered in this study, from standard OSEM and conventional MAPEM to new DL image 

denoising and reconstruction methods. Among the methods that only reply on PET data, the 

results show that both Unet-p and FBSEM-p improve upon the OSEM reconstruction by 

reducing the noise and contrast to a large extent. For those methods that utilize the additional 

MR information, Unet-pm and FBSEM-pm both outperform the MAPEM algorithm, which 

suffers from lack of convergence and suppression of the PET lesions (see the arrow in the 

coronal view). These results show that Unet-p(m) and FBSEM-p(m) perform similarly on 

most of the anatomical regions except over the small lesions, as shown in this example test 

dataset. The performance of the reconstruction methods was the objectively evaluated for all 

simulation test datasets based on CNR between GM and WM, quantification errors in hot 

lesions, and NRMSE in the whole brain. As shown in Fig. 4, the Unet-pm and FBSEM-pm 

show the highest CNR as these methods reduced noise and at the same time improved the 
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convergence. Unet-p showed slightly higher CNR than MAPEM and FBSEM-p, while as 

could be expected OSEM method achieved the lowest CNR. For hot lesions, the MAPEM 

and FBSEM-p resulted in the highest (-25.7%) and lowest (-7.4%) quantification errors with 

respect to reference images. The results show that Unet-pm notably outperformed FBSEM-

pm net over the lesions by achieving errors of 10% versus 17.6%. The NRMSE performance 

of the methods shows that Unet-pm and FBSEM-pm networks result in the lower overall 

errors.

For our simulations, training parameters and schedules chosen according to Table I, these 

results show that Unet-p outperforms FBSEM-p.

Based on these simulation results, in the training of FBSEM net for in-vivo datasets, as 

shown in Table I, we increased the number of kernels and reduced its depth (due to GPU 

memory limitations), which resulted in 1.5 times more trainable parameters compared to 

simulations. At the same time, we pushed the U-net to its limit of performance, by 

increasing the number of its kernels (based on the capacity of our GPU memory), resulting 

in ~5 times more trainable parameters compared to simulations.

Figs. 5 and 6 compare the reconstruction results of the studied methods for two 2-min in-
vivo scans in comparison with their reference 30-min scans (i.e., 15 times longer scan). As 

shown, the OSEM reconstruction notably suffers from noise, while MAPEM shows the lack 

of convergence, despite its regularization parameter was chosen fairly low; even after 2.5-

mm Gaussian filtering the images show some background noise. The results show that Unet-

p and FBSEM-p networks achieve fairly comparable performance. Likewise, Unet-pm and 

FBSEM-pm networks performed similarly and produced images that are visually close to 

their reference images.

Fig. 7 compares the performance of these methods based on mean FDG uptake in WM, 

cortical GM, and subcortical GM regions averaged over all in-vivo test datasets. Table II 

summarizes the error percentage of mean activity in each anatomical region averaged over 

the test datasets, reporting the mean, SD, and RSS of mean and SD for all regions. As seen 

in Fig. 7, all methods underestimated the mean activity in cortical and subcortical GM 

regions, except for the pallidum. For these datasets, FBSEM-p(m) nets achieve the closet 

mean activity to reference scans in most of the GM regions. The results in Table II show that 

Unet-p and FBSEM-p both achieve RSS errors of 4.7%, with a slight difference in mean and 

SD errors, and outperform the OSEM method. Among the methods using MR side 

information, FBSEM-pm shows the lowest RSS (3.0%) compared to Unet-pm (6.8%) and 

MAPEM (5.9%).

In this work, the DL methods were trained for mapping 2-min data to their reference 30-min 

data. In order to evaluate their generalization and performance for shorter scan durations, we 

applied them to an in-vivo dataset with scan durations of 2 min, 1 min, and 30 s (i.e., 15 x, 

30 x, and 60 × shorter than their reference scan, respectively). Fig. 8 compares the results for 

all methods. Note the regularization parameters of the FBSEM-p(m) nets were not modified 

despite they have been trained for 2-min datasets. Likewise, the regularization parameters of 

MAPEM for 1-min and 30-s datasets were set to the one chosen for 2-min dataset of this 
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subject. As seen, with shortening scan duration, noise notably dominates OSEM and 

MAPEM reconstructions. The Unet-p and FBSEM-p both show similar qualitative 

performance for 2- and 1-min datasets, however for 30-s one, FBSEM-p tends to show less 

residual noise. For this subject, both Unet-pm and FBSEM-pm nets demonstrate a consistent 

performance across all three scan durations, which shows their ability to generalize to 

datasets that they have never been trained for.

IV Discussion

In this study, we applied a proximal splitting technique for MAPEM reconstruction. For a 

specific regularization parameter (β) and step size (γ), the resulting optimization algorithm 

reduces to De Pierro’s MAPEM algorithm which is known to be monotonically convergent. 

However similar to Green’s one-step-late algorithm [26], for an arbitrarily large 3, this 

algorithm may not converge to a global maximum. A possible solution could be imposing a 

non-negativity constraint on (7). In fact, as shown in Fig. 1, the residual learning unit (RLU) 

used in our FBSEM net applies a ReLU activation function to the sum of the input image 

and the output of the CNN layers in order to explicitly ensure the non-negativity of the 

output. Moreover, our proposed FBSEM algorithm makes use of oS for acceleration which 

is known to cycle over a number of image estimates, especially for unbalanced subsets. A 

possible solution is to upgrade the oSEM update in (8) by a row-action maximum-likelihood 

algorithm (RAMLA) [27], which is a convergent oS algorithm. Moreover, since the FBSEM 

algorithm is based on an optimization transfer approach, convergence can be slow. In this 

study, we used a CNN-based prior for regularization in the FBSEM net. Depending on 

whether the learned prior is convex or not, the trained FBSEM net can be convergent (if N 

sub = 1) or nonconvergent. The convexity of the learned priors which do not have an explicit 

functional form can potentially be tested using nonparametric techniques [28], which is 

behind the scope of this article.

Our proposed reconstruction network has a number of advantages. Compared to the recently 

proposed BCD net [17] or EM net [29], which alternate between an MLEM reconstruction 

and a CNN-based image denoising module, model parameters in FBSEM net are shared 

across all reconstruction states (similar to RNNs), while BCD and EM nets employ separate 

networks for each reconstruction states. Sharing model parameters not only notably reduces 

the number of trainable parameters but also allows the trained network to be used with a 

different number of iterations during inference [22]. Unlike BCD net and Gong et al. [13], 

the regularization (penalty) parameter is learned from the data and the network can be 

initialized with a uniform image estimate. Unlike EM net and similar to BCD net, the data-

fidelity-based EM update and the CNN-based regularization operations are performed in 

parallel in our network, and during training, the backpropagation was set to pass only 

through the regularization and fusion steps eliminating the need for computationally 

intensive differentiation of PET forward and backward projections. In addition, our proposed 

network operates in PET-only and PET-MR modes.

Following the proposal and implementation of the FBSEM net, which can potentially 

improve upon prior networks owning to the above advantages, our next goal was to compare 

its performance with the best of post-reconstruction DL-based denoising. In this work, U-
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Net was chosen as a widely used encoder-decoder CNN. Lu et al. [30] recently showed that 

an optimized 3-D U-Net could outperform a convolutional autoencoder network and a 

generative adversarial net for lung nodule quantification in reduced dose scans. our results in 

Fig. 4 showed that Unet-p(m) net has a relatively comparable performance to FBSEM-p(m) 

net, even in its PET-MR mode, Unet-pm outperformed FBSEM-pm in preserving PET 

lesions in our simulations, despite their NRMSE over whole brain was comparable. This can 

be attributed to the fact that U-Net extracts and captures features at a multiresolution level, 

and that the employed Unet-pm in our simulations has ~200 times more trainable parameters 

that the FBSEM-pm net. For in-vivo datasets, we increased the number of convolution 

kernels and decreased the number of reconstruction states and learning rate of FBSEM-p(m) 

net. At the same time, we increased the number of kernels for Unet-p(m) nets to potentially 

improve its performance even further, which resulted in ~600 times more trainable 

parameters compared to FBSEM nets. The in-vivo results showed that FBSEM-p and Unet-p 

perform comparatively for the PET mode, however for the PET-MR mode, FBSEM-pm 

outperforms Unet-pm on average.

The results in Fig. 4 have been averaged across ten test datasets; since the reference HD 

images have fairly low noise (see Figs. 2 and 3), the variability of CNR for HD images 

represents the fact that our phantoms were generated from MR images of patients suspected 

of epilepsy and dementia, for which there may be cortical atrophy and partial volume effects 

of differing degrees. The results in Fig. 4 show that the networks that used MR images (i.e., 

FBSEM-pm and Unet-pm) are able to capture that variability to some extent despite their 

mean CNRs being notably lower.

Similar to the EM net, a residual U-Net could be used as the regularization module in the 

FBSEM net. However, since U-Net usually employs a large number of trainable parameters 

the training of the resulting FBSEM network would be tremendously memory demanding. 

Note that the inference of FBSEM net or generally any network is notably less memory 

demanding, as automatic differentiation (autograd) will be inactive and hence tensors’ 

gradient will not be tracked and stored in memory. Our initial 2-D simulation results 

presented in [25] showed that FBSEM net with the smaller RLU architecture achieves a 

comparable performance to when a residual U-Net is used inside FBSEM net. Hence, in this 

study, we opted for the less memory demanding RLU network, on the understanding that the 

FBSEM net results would be representative also of the case of when a U-Net is used instead 

of an RLU. Furthermore, our previous 2-D results showed that post-reconstruction denoising 

using a U-Net outperforms an RLU. Therefore, given these initial results, and furthermore 

also those reported in the literature (e.g., [30]), we chose a U-Net to best represent the 

performance of post-reconstruction denoising networks, just as using an RLU in FBSEM net 

best represents its performance as well.

The number of parameters in our U-Net trained for in-vivo datasets is nearly 48M 

parameters, which is in the range used in modern CNNs; from ~40M in Inception-v4 to 

~140M in the VGG net. However, for a fixed amount of training data, the large number of 

parameters can increase the chance of overfitting and generalization error. In Fig. 8, we used 

the models trained on only 2-min data for testing on even shorter scans, to assess 

performance on a domain different to that of the training data. Given that the Unet-p model 
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achieves a comparable performance to FBSEM-p for a 2-min test dataset and that these 

models have not been trained for 1-min and 30-s scans, the slightly poorer performance of 

the Unet-p for 30-s scan should not be interpreted as overfitting but better domain adaptation 

capabilities of the FBSEM net. This can be attributed to the fact that noise is iteratively 

amplified during OSEM reconstruction, whereas the FBSEM net can suppress the noise 

from the early stages.

In this work, we considered DL image enhancement and reconstruction of reduced-duration 

and full-dose scans instead of reduced-dose and full-duration ones. Because we believe the 

immediate clinical test of DL methods will be for reduced duration studies as they can be 

done retrospectively and will have less complications for ethics approval compared to 

reduced dose studies which are prospective and require modification to clinical acquisition 

protocols. Hence, in this study, the 30-min list-mode FDG data were resampled to emulate 

2-min scans and DL networks were trained to reduce noise in the 2-min PET images and 

improve their image quality toward their reference 30-min images. However, since a 15 × 

scan-time reduction was considered in order to make noise vividly dominant, there is a 

chance for physiological mismatches between the two scans over brain regions with rapid/

delayed glucose metabolism in some patients. For these cases, the DL networks will not only 

reduce noise but also predict what the physiology of those regions could be if the scan time 

had been prolonged for another 28 min. Fig. 9 illustrates this for the thalamus in a subject. 

As shown, there is a physiology mismatch between thalamus’ uptake after 2- and 30-min 

scans. MAPEM reconstruction flattens uptake in the thalamus by reducing noise or PSF 

artifacts, but the DL methods not only flatten the uptake but also increase it toward its 

reference 30-min uptake. Another physiology mismatch can be seen in Fig. 6, a sagittal 

view, where the tracer’s uptake has been washed out in the caudate during the 30-min course 

of scan compared the 2-min scan. As seen in the transverse view, this patient has 

hypometabolism in their right hemisphere. It should be noted that for whole-body scans with 

3-4 min acquisition per bed, scan-time reductions up to 4 will make noise vividly dominant, 

hence the chance of physiology changes will be relatively lower.

In our FBSEM networks, the number of kernels of all D layers is the same. As summarized 

in Table I, for in-vivo datasets, we chose a taller and shallower network (37 kernels and 3 

layers) whereas for simulated datasets, we chose a shorter and deeper one (16 kernels and 9 

layers). The reason is that our simulations in Fig. 4 showed that the FBSEM-p(m) nets are 

not quantitatively as good as the Unet-p(m) networks. Given that these networks operate on 

3-D images, our intuition was that the 16 kernels in the first layer of an FBSEM net might 

not be sufficient to capture 3-D edges, hence we opted for a taller network at the 

compromise of making the network shallower due to GPU memory limitations. Since our 

simulations were made as realistic as possible, the improved quantitative performance of the 

FBSEM nets for in-vivo datasets compared to simulations implies that our intuition might be 

correct. In general, for a specific DL task, a network’s hyperparameters can be chosen based 

on the network’s performance on validation datasets. As mentioned earlier, we could not 

afford the computational load of the validation process, nonetheless, our results for unseen 

test datasets were acceptable. Had we included the validation; the FBSEM net’s 

performance could have been potentially even better.
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The in-vivo brain PET and MR images are often well aligned, nonetheless, there is a chance 

of head drift between the different PET and MR acquisition time windows, therefore in this 

study, we assured their alignment using SPM co-registration. In regard to misalignments, our 

simulation results with lesion mismatches between PET and MR showed that Unet-pm and 

FBSEM-pm nets outperformed the conventional Bowsher MAPEM algorithm in lesion 

quantification, which indicates the potential ability of DL methods in dealing with 

mismatches. This can be investigated in a future work. Future work would also include 

evaluation of the number of reconstruction states and depth of the FBSEM net on its 

performance and investigation of memory-efficient reconstruction algorithms and strategies 

to train a fully unrolled FBSEM net for 3-D whole-body PET-MR image reconstruction.

V Conclusion

A model-based DL reconstruction network was designed by unrolling an optimization 

algorithm that we proposed in this study for MAPEM image reconstruction. The proposed 

FBSEM net was evaluated in PET-only and PET-MR modes in comparison with the state-of-

the-art U-Net denoising and conventional MR-guided MAPEM and standard OSEM 

methods. our simulation and in-vivo results showed that both DL-based techniques 

outperform the conventional methods. It was found that for the chosen network parameters 

and training schedules the Unet-p and FBSEM-p net achieve a fairly comparable 

performance for both simulation and in-vivo datasets. For simulations, Unet-pm net showed 

lower quantification errors for PET unique lesions while achieving a similar NRMSE to 

FBSEM-pm net, whereas for in-vivo datasets, the FBSEM-pm outperformed Unet-pm and 

achieved the lowest quantification error amongst all reconstruction methods. It can be 

concluded that DL-based post-reconstruction denoising methods can potentially perform as 

good as DL-based reconstruction methods.
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Fig. 1. 
Architecture of the proposed network using an RLU with D layers of convolution (Conv) 

filters, BN, and ReLU. All trainable parameters, including the regularization parameter, 

which is the only trainable parameter in the fusion block, are shared across all reconstruction 

states (t). In this network, a co-registered MR image can be optionally used as a second input 

channel to each state.
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Fig. 2. 
Top: Reference high-definition HD images and reconstructed low-definition LD images of a 

sample simulation dataset. Bottom: Full-dose (30-min) images of an in-vivo dataset 

reconstructed using 72 EM updates (vendor’s default) and 140 updates. Increasing the 

number of updates improved the convergence but led to PSF Gibbs artifacts (see arrows). 

Thus, MR-guided MAPEM (210 updates) was used as a reference.
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Fig. 3. 
Reconstruction results of a test simulation dataset with two adjacent hot lesions for different 

reconstruction methods. The arrow shows MAPEM notably suppresses the lesion.
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Fig. 4. Quantitative performance of different reconstruction methods averaged on test simulation 
datasets.
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Fig. 5. Reconstruction results of different methods for a 2-min in-vivo dataset in comparison with 
their reference 30-min scan.
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Fig. 6. Similar to Fig. 5, but for PET data of another subject.
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Fig. 7. Quantitative evaluation of different reconstruction methods in terms of mean activity in 
different regions of the brain averaged across ten test in-vivo datasets.
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Fig. 8. 
Real-data performance of the studied methods for reconstruction of reduced scan times (2 

min, 1 min, and 30 s) of a subject with respect to their reference 30-min scan. Note the Unet-

p(m) and FBSEM-p(m) networks are trained only with scan datasets of 2-min duration.

Mehranian and Reader Page 23

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2021 May 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 9. 
Physiology mismatches in thalamus between a reference 30-min scan and a 2-min scan 

(obtained by the replay of 30-min list-mode data). DL methods (second row) have increased 

the thalamus’ 2-min uptake toward its 30-min reference uptake.
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Table I
Training/Test Datasets, Model Architectures, and Training Parameters Used in This 
Study

EXPERIMENT MODEL
NO. 

TRAINING 
DATASETS

NO. TEST 
DATASETS

No. 
KERNELS 

IN 1st 

LAYER

KERNEL 
SIZE DEPTH*

NO. 
TRAINABLE 

PARAMETERS

NO. 
BATCHES

LEARNING 
RATE

NO. 
EPOCHS OPTIMISER LOSS 

FUNCTION

UNET-
P(M) 200 10 32 3×3×3 4 10,043,073 

(10,043,937) 1 0.05 100 ADAM MSE

SIMULATION FBSEM-
P(M) " " 16 " 9 49,636 (50068) " 0.1 100 " "

UNET-
P(M) 35 10 70 " 4 48,039,881 

(48,041,771) " 0.005 200 " "

IN-VIVO FBSEM-
P(M) " " 37 " 3 76,261 (77,260) " 0.005 200 " "

*
Number of oown/up sampling levels for the U-net, and number of conolutional layers for FBSEM net.
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Table II
Error Percentage of Mean Activity in Different Regions of in-vivo Datasets Together With 
the Mean, SD, and RSS of All Regional Errors

OSEM MAPEM UNET–P UNET–PM FBSEM–P FBSEM–pm

WHITE MATTER 3.6 2.2 1.6 –3.4 3.1 2.9

GREY MATTER –6.6 –3.5 –5.0 –5.3 4.0 –2.1

THALAMUS –5.9 4.0 –3.7 –6.5 –3.3 0.0

CAUDATE –14.8 –11.6 –7.6 –7.8 –9.4 –4.4

PUTAMEN –7.5 –6.2 –6.2 –8.7 –4.9 –5.3

PALLIDUM 5.9 4.1 0.4 –9.1 0.3 0.0

HIPPOCAMPUS –4.1 –4.6 –4.0 –4.6 –2.9 –1.4

MEAN –4.3 –3.4 –3.5 –6.5 –3.0 –1.5

SD 6.5 4.8 3.1 2.0 3.6 2.6

RSS 7.8 5.9 4.7 6.8 4.7 3.0
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