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Abstract

Supervised learning algorithms trained on medical images will often fail to generalize across 

changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and 

successfully leverages labeled data in a source domain to perform well on an unlabeled target 

domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt 

from one source domain to n target domains (as long as there is paired data covering all domains). 

Our multi-domain adaptation method utilises a consistency loss combined with adversarial 

learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs 

using the MICCAI 2017 challenge data as the source domain and two target domains. The 

proposed method significantly outperforms other domain adaptation baselines.
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1 Introduction

In medical imaging, fully automated tools using deep learning techniques are increasing in 

popularity for numerous clinical tasks, including image segmentation, image classification 

and instance counting [8]. Among these tools, deep learning frameworks exhibit excellent 
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performance (often described as ‘superhuman’) when applied on images drawn from the 

same distribution (scanner type, parameters, patient pool etc.) as the one used in training the 

model. However, the performance may deteriorate drastically when the algorithm is applied 

in previously unseen domains. This performance gap is a critical barrier to the safe 

implementation and widespread adoption of these techniques in clinical practice.

The process of adapting a model from a ‘source’ domain to a target domain is called 

‘domain adaptation’. Successful methods have included:

1. Training with a small number of labeled examples from the target domain. While 

this solution is theoretically straightforward, its practical use is limited as it 

requires additional labelling on the target domain.

2. Embedding the imaging data in a latent space. This latent space is learnt so as to 

ignore domain-specific features (e.g. contrast), while retaining domaininvariant 

features (pathology). Adversarial approaches have been proposed to address this 

angle in the context of lesion segmentation [5]and heart structure segmentation 

between MR and CT [2]. In both cases, the adversarial training is used to make 

the latent space as uninformative as possible about the domain the images come 

from.

3. Semi-supervised methods use a model trained on a small number of labeled 

examples to provide pseudo-labels for unlabeled data, which is then trained on. 

The model-fitting and updating semi-supervised labels can be seen as a form of 

expectation maximisation and has been used in medical imaging [1].

4. Enforcing output robustness to input perturbation. Recent methods have 

exploited the property that the distribution of predictions should be invariant to 

small perturbations on the input data. This observation can be expressed as 

p(y ∣ x) ≈ p(y ∣ x), where x is an augmented/perturbed version of x. The 

enforcement of this property has the additional advantage of limiting the 

unwanted behaviour of drastic output change for minimal input perturbations, 

which can be seen as improving robustness. For instance Perone et al. [9] 

proposed a teacher-student framework ensuring consistency between the outputs 

when passing to the student an augmented version of the unlabeled input of the 

teacher, that is similarly augmented afterwards.

Methods 2 to 4 fall under the purview of ‘Unsupervised Domain Adaptation’ (UDA), as 

does the presented work. In general, UDA does not rely on labeled training examples from 

the desired target domain. This is especially desirable in medical imaging, where labelling is 

time-consuming and highly variable, and the ‘domain’ depends on scanner manufacturer, 

acquisition protocol and reconstruction strategy. The augmentations required to create the 

perturbed input data can either be generic (geometric or contrast operations) or application-

specific. In the context of medical imaging, the latter includes physics-based image 

augmentation, synthetic bias field addition or registration-based approaches [14]. These 

methods lean on domain-specific knowledge to generate plausible transformations.
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We propose a UDA pipeline applied to the segmentation of white matter hyperintensities 

(WMH) which introduces a paired consistency (PC) loss which guides the adaptation. The 

proposed (PC) method enforces the output consistency between the results obtained on two 

separate acquisitions per subject: an in-plane and a volumetric FLAIR sequence. We aim to 

(1) segment WMH lesions on completely unlabeled examples and (2) to make these 

predictions similar between the in-plane and volumetric cases. In other words, we regularize 

the fitting by explicitly promoting similarity in the labels generated by each FLAIR 

acquisition. This adaptation method was supplemented with an adversarial loss in order to 

prevent the model from getting stuck in bad local minima. After an overview of the proposed 

approach and its variants in Sect. 2, we present the experiments which show that our 

proposed method leverages the unlabeled data to produce more consistent lesion 

segmentations across all domains.

2 Methods

The proposed training strategy for domain adaptation occurs in two phases. In the first phase 

the network is trained only on labeled data until convergence. During the second phase of 

the training, the paired unlabeled data is presented in addition to the labeled data and a 

consistency term is added to the loss function. This consistency term is inspired from the 

loss proposed by Xie et al. [13] that aims at minimizing the Kullback-Leibler divergence 

between the output probability distribution y when conditioned on the unlabeled input x 
from the set U or its augmented countrapart x drawn from q(x ∣ x).

min
θ

ℒPC = Ex ∈ U E
x ∼ q(x ∣ x)

[DKL(pθ(y ∣ x) pθ(y ∣ x))] (1)

We adapt this method to the segmentation task by using the dice loss [7] instead of the KL 

divergence. In the following, we denote as yl the labeled ground truth, ŷl the prediction over 

labeled images, ŷu the prediction over unlabeled input and ŷû the prediction over its 

augmented/paired counterpart. The losses used in our framework are thus expressed as 

follows:

ℒS = dice(yl, y), ℒPC = dice(yu, yu), ℒtot = ℒS + αℒPC (2)

We trained networks using ℒtot as specified in (2) and denote them as PC. These networks 

fθ(h|x) produce a feature representation h from which y is calculated.

Preventing Trivial Solutions

Early in our experiments, we encountered a specific degenerate solution: our network was 

able to produce one solution for source images (a good lesion mask) while producing a 

trivial result on the target domain (in this case, a mask of the foreground). This meant that 

there was good agreement between in-plane and volumetric FLAIRs because they simply 

segmented foreground—ignoring the lesions altogether. This means that the network was 

identifying the domain of the images and using this to inform its solution: undesirable 
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behaviour. We introduced an additional adversarial term to avoid these ‘solutions’. Inspired 

by the domain adversarial literature (methods 2 in Sect. 1) we propose an adversarial loss to 

minimize the amount of information about domain contained in h. We introduce a 

discriminator dΩ which takes h as input and outputs a domain prediction d. The adversarial 

loss, ℒadv is given by the cross-entropy, ℒadv = − ∑i = 1
n ℒce

i (di, di) where n is the number of 

domains, ℒce
i  is the multi-class cross entropy loss, d is a one-hot encoded vector of the 

domain label and d is the model’s domain prediction as in [11]. We use a gradient reversal 

layer as in [5] in order to minimize Ltot whilst maximizing Ladv. Figure 1 presents the 

diagram of the proposed method with the combination of different losses, where β controls 

the strength with which the model is adapting its features whereas α controls the weights the 

consistency effect.

Augmentation

In [13] the authors suggest various properties of augmented samples necessary for 

performing Unsupervised Data Augmentation. Samples should be realistic, valid (meaning 

they should not alter the underlying label), smooth, diverse and make use of targeted 

inductive biases (domain knowledge). In the absence of sufficiently realistic augmentation 

functions we use paired scans which are considered as augmented samples. However, taking 

them as they are makes for a discrete augmentation function with discontinuous jumps. In 

order to encourage continuity we used a large range of augmentations on the paired data, 

including generic geometric transformations and MR specific non-geometric 

transformations. Geometric augmentations were sampled independently and combined as 

one affine transform, using random rotations (all axis ranging from –10 to 10°), random 

shears ([0.5, 0.5]) and random scaling ([0.75,1.5]). For the non-geometric augmentations we 

applied k-space motion artefact augmentation as described in [12] and bias field 

augmentation as implemented in [3]. We measure how useful these additional augmentations 

are in our experiments.

3 Experiments and Results

Data

In this work we focus on white matter hyperintensity segmentation. The data comes from 

two separate studies. As a source domain we use the White Matter Hyperintensity challenge 

data presented in MICCAI 2017 [6]. The other dataset was used as target domain and comes 

from a sub-study within the Pharmacokinetic and Clinical Observations in PeoPle over fiftY 

(POPPY) [4]. In this study two different FLAIR sequences were acquired during the same 

MR session for all 72 subjects on a Philips 3T scanner. The in-plane FLAIR was an axial 

acquisition with 3 mm slice thickness and 1 mm2 planar resolution (Repetition time (TR) 

8000 ms, Inversion time (TI) 2400 ms and echo time (TE) 125 ms) while the volumetric 

FLAIR was of resolution 1.04 × 1.04 × 0.56 mm3 (TR = 8000ms TI = 1650 ms TE = 282 

ms). Both images were rigidly coregistered to the 1 mm3 T1 sequence acquired during the 

session. All individuals were male with mean age of 59.1 ± 6.9 yrs, including HIV-positive 

subjects and population-matched controls.
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Implementation Details and Training

The MICCAI Challenge dataset was split with a train:validation:test assignment of 40:10:10 

subjects. For the POPPY dataset, the split was 38:15:20.

Training was done using 2d axial slices of size 256 × 256 with inference carried out by 

concatenating the predictions across all slices to form a 3d volume. The segmentation 

network uses the U-Net architecture [10] with depth of 4 and a maximum number of filters 

of 256 at the deepest layer, with ReLU as the activation function. Initial training on the 

MICCAI dataset only was performed using the Adam optimizer with an initial learning rate 

10-3 and a learning rate decay schedule decaying with γ = 0.1 (γ is a multiplicative factor of 

learning rate decay) at epoch 300 and 350. The validation set is used for early stopping, thus 

the baseline model takes the network configuration at the epoch where it showed the highest 

accuracy on the validation set. All adaptation models and adversarial models were initialized 

with the weights of this trained baseline model.

The choice of α parameter balancing the segmentation and the consistency loss in the 

domain adaptation runs proved to be important. Generally, high values of a led to degenerate 

solutions, where predictions on the target dataset were no longer capturing lesions. Since 

scheduling a slowly increasing a did not help, a was fixed at 0.2 in all experiments.

In case of an adversarial setting, empirical assessment of the best choice of architecture for 

the discriminator led to the following choice: four 2D convolutional layers with a kernel size 

of 3 × 3 and a stride of 2 followed by batch normalisation and leaky ReLU activation. The 

number of output channels is 4 to begin with and doubles at each layer to a total of 32. 

Finally, there are three fully connected layers with output sizes of 64, 32, and 2 with relu 

activations and dropout applied (p = 0.5).

Points of Comparison

In order to assess the relevance of the proposed paired consistency, we compared the 

proposed PC with adversarial setting and augmentation (PC+Adv+Aug) to the version 

without adversarial setting (PC+Aug) and the simplest version removing also the 

augmentation (PC). In addition, we trained classical UDA methods with a mean-teacher 

framework (MT) as well as the adversarial setting without PC with (Adv+Aug) and without 

augmentation (Adv). Finally we compared to the baseline U-Net model trained only on the 

MICCAI dataset with (Baseline+Aug) and without (Baseline) augmentation.

For the final results table checkpoints were chosen for each of the experiments by looking at 

the performance across the validation set.

Reported Metrics

As a first metric of consistency, we compute the Dice score overlap between the two 

volumes. However, high dice agreement may arise without predicting lesions, for instance 

with the segmentation of foreground or of another anatomical structure. Such degenerate 

solutions can indeed occur as the consistency term in the loss can be minimized for any 

consistent prediction between volumes.
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As there are no lesion segmentations for the POPPY dataset, we use the known association 

between age and white matter hyperintensity load reported for this dataset [4] as surrogate 

evaluation that the segmented elements are lesions. The effect size is a useful metric for 

determining whether the lesion loads predicted by the various models agree with the 

reported literature. For the eight compared models, the effect size ranged from 1.2-fold to 

1.5-fold increase in lesion load normalized by total intracranial volume per decade. This 

compares well with the reported effect size on the POPPY dataset of 1.4-fold with a 95th 

confidence interval of [1.0; 2.0]. Predictions from in-plane POPPY and volumetric POPPY 

were compared using the dice overlap, the 95th percentile Hausdorff distance measured in 

mm (HD95), the recall (or sensitivity), the ratio of difference in volume between the two 

predictions (VD) as was used in [6].

The results, gathered in Table 1, reporting median and interquartile range are ordered 

according to the average significance ranking, follows the guidelines of the MICCAI 

Decathlon challenge 20181.

4 Discussion

In this work, we presented a novel method of performing unsupervised multidomain 

adaptation. A pretrained model from one domain is retrained on paired unlabeled data from 

two target domains, encouraging consistent predictions. The proposed approach was 

evaluated against existing UDA strategies including representation learning approaches 

using domain adversarial training [5], and the ‘Mean Teacher’ algorithm for unsupervised 

domain adaptation [13] as well as an unsupervised baseline for WMH segmentation. 

Overall, our method was able to produce more consistent predictions across two target 

domains while retaining similar performance on its original training domain. More 

specifically, adaptation techniques optimizing pairwise consistency not only outperformed 

baseline models not benefitting from any adaptation but also adversarial strategies. 

Furthermore, it appeared that the PC method while closest to the mean teacher algorithm, 

outperformed this approach potentially thanks to differences in the optimisation strategies. 

Understanding the reasons for these differences also reported by [13] could be an interesting 

avenue of future investigation. Regarding the adversarial results, the observed inferior 

performance suggests that depending on the adaptation problem, the learning of a latent 

space invariant to domain (as enforced in the adversarial approach) may cause an 

information loss detrimental to the segmentation task. Additionally, the effects of data 

augmentation (which normally impacts performance positively) did not provide any benefit 

in the pure adversarial setting. Specific investigation of the effect of each type of 

augmentation would be needed to better understand this behaviour. While a pure adversarial 

setting proved ineffective, best performance across all models was obtained when combining 

it with our proposed PC strategy as it promoted a good label distribution in our target 

images. Future work will focus on removing the need for paired data by finding sufficiently 

realistic augmentation functions.

1 http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf.
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In conclusion, PC is a promising method to adapt automated image segmentation tools to 

different scanner manufacturers, MR sequences and other confounds. This adaptation is 

critical to the clinical translation of these tools notably in the context of scanner upgrades 

and multicentre trials.
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Fig. 1. 
Diagram of proposed method. At training time, xu, xl and yl are supplied to the network. xu 

is an image from the unlabeled target domain and x̂u is the result of applying some 

augmentation function to xu. A labeled image, xl, is passed through the network, fθ before 

combining with a label yl to form the segmentation loss, ℒs. The image representations are 

fed to a domain discriminator d Ω which attempts to maximise the cross-entropy between 

predicted domain and actual domain, ℒadv. Finally, similarity is promoted between the 

network predictions on xu and xu using ℒPC.
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Fig. 2. 
Qualitative results on a single slice from a single subject in the POPPY dataset. The top row 

shows a slice from the in-plane FLAIR acquisition whilst the bottom row shows a slice from 

the volumetric FLAIR acquisition. Each column shows a model’s predictions on that row’s 

image. This slice is used to highlight an example of an artefact (shown in the red circle) 

introduced by the in-plane acquisition. The baseline method introduces a false positive in 

this region whilst the domain adaptation methods perform better at ignoring it. Our approach 

shows the best in-plane to volumetric agreement.

Orbes-Arteaga et al. Page 9

Domain Adapt Represent Transf Med Image Learn Less Labels Imperfect Data (2019). Author manuscript; available in PMC 2021 June 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Orbes-Arteaga et al. Page 10

Table 1

Performance of different methods on the target (POPPY) and the source domain (MICCAI 2017 WMH 

Challenge). We report the dice between our models’ predictions and the ground truth annotations in the source 

domain as well as the HD95. The evaluation on target domains is done with the Dice, the HD95, the volume 

difference (VD) and the recall. A significative rank measure is calculated across all metrics. Results are 

reported with the format median (IQR) in percentages for all metrics except the HD95 in mm. Best results are 

in bold andunderlined when significantly better than all others (p < 0.05 paired Wilcoxon tests).

POPPY MICCAI

Dice HD VD Recall Dice HD Rank

PC+Adv+Aug 54.5 (10.6) 32.7 (9.8) 15.2 (22.8) 52.4 (14.4) 81.4 (9.6) 28.5 (8.6) 2.5

PC+Aug 53.2 (15.1) 39.2 (15.5) 25.4 (15.6) 43.5 (12.5) 81.6 (15.5) 18.6 (4.8) 3.3

PC 50.7 (17.0) 35.1 (11.9) 16.6 (21.4) 43.6 (11.0) 81.4 (22.6) 17.2 (3.6) 3.4

MT 48.6 (12.3) 33.6 (14.8) 33.7 (19.0) 40.9 (5.0) 80.0 (18.2) 20.0 (7.3) 4.3

Baseline+Aug 42.8 (14.6) 34.9 (11.1) 39.3 (22.3) 33.5 (12.6) 80.6 (14.8) 17.8 (4.9) 4.9

Baseline 43.0 (16.2) 33.3 (15.1) 40.3 (24.8) 33.3 (14.8) 81.1 (16.9) 17.5 (3.3) 5.6

Adv 41.8 (15.4) 32.6 (6.1) 25.2 (24.0) 33.5 (12.7) 82.5 (12.0) 17.6 (5.2) 5.7

Adv+Aug 41.4 (16.4) 36.6 (9.0) 38.0 (16.0) 33.6 (13.9) 81.9 (11.1) 19.7 (11.0) 6.3
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