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Abstract

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early 

immune responses and contribute to protection. We hypothesized MAIT cells may have inherent 

adjuvant activity in vaccine platforms that employ replication-incompetent adenovirus vectors. In 

mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated 

MAIT cells. Activation required plasmacytoid dendritic cell (pDC)–derived IFN-α and monocyte-

derived IL-18. IFN-α-induced, monocyte-derived TNF was also identified as a key secondary 

signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively 

correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient 

mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, 
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MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine 

design.

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize 

microbe-derived metabolites of vitamin B2 biosynthesis like 5-(2-oxopropylideneamino)-6-

ribitylaminouracil (5-OP-RU) (1). However, MAIT cells can also be activated by cytokines, 

and thereby respond to viruses, which do not synthesize vitamin B2. In vivo, MAIT cells 

respond to influenza virus to amplify early local immune responses and protect against lethal 

infection (2–4). We hypothesized that the ability of MAIT cells to augment early immune 

responses may play a key role in viral vector vaccine immunogenicity. Replication-

incompetent adenovirus (Ad) vectors are highly potent vaccine platforms for many human 

diseases (5). They have been recently licensed for use against Ebola virus (6) and show 

promise for SARS-CoV-2 infection (7, 8). We sought to determine if such vectors activate 

MAIT cells and if this impacts vaccine immunogenicity.

To determine if MAIT cells respond to Ad vectors, we stimulated human peripheral blood 

mononuclear cells (PBMCs) with Ad5 and chimpanzee adenovirus Ox1 (ChAdOx1), which 

are leading SARS-CoV-2 candidate vaccines (7, 8). ChAdOx1 induced dose-dependent 

upregulation of CD69, granzyme B, and interferon (IFN)-γ by MAIT cells (Fig. 1, A to C 

and fig. S1, A to D), whereas Ad5 only weakly activated MAIT cells. This activation was 

confirmed using the MR1/5-OP-RU tetramer to identify MAIT cells (fig. S1E).

Species C-derived Ad vectors have been shown to poorly stimulate innate immune responses 

as compared to non-species C vectors (9–11). We tested the relative ability of three species 

C vectors (Ad5, Ad6, and ChAdN13) and five non-species C vectors (Ad24, Ad35, ChAd63, 

ChAd68, and ChAdOx1) (fig. S1F) to activate MAIT cells. Following stimulation, we 

observed greater average activation by non-species C compared to species C vectors (Fig. 1, 

D and E).

We next tested the ability of Ad vectors to activate MAIT cells in vivo. Intramuscular (i.m.) 

ChAdOx1 immunization of C57BL/6J mice strongly induced upregulation of CD69 and 

granzyme B by MAIT cells, whereas Ad5 induced significantly weaker activation (Fig. 1, F 

and G and fig. S2, A to C). We also observed significant upregulation of CD69 on MAIT 

cells 1 day following immunization of human volunteers with a candidate ChAdOx1 vaccine 

(Fig. 1H and fig. S3, A to C). Plasma IFN-γ levels markedly increased post-vaccination (fig. 

S3D), as seen in non-human primates (10). This increase correlated with levels of MAIT cell 

activation (Fig. 1I).

To investigate the pathways involved, RNA sequencing (RNA-Seq) of MAIT cells was 

performed. Eighty-four genes were significantly upregulated in human MAIT cells 

following vaccination (Fig. 2A and data S1). GSEA (12) identified the strong induction of 

type I IFN, interleukin (IL)-1 family, IL-12 family, and IL-2 family signaling pathways (Fig. 

2B). Changes in post-vaccination plasma IFN-α or CCL2, an IFN-regulated chemokine (13), 

strongly correlated with MAIT cell activation (Fig. 2C and fig S3, D and E). Comparison of 

genes upregulated in MAIT cells following human vaccination, vaccination of mice, or in 

vitro stimulation showed a high degree of overlap. Ninety-eight percent of vaccine-
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upregulated genes in humans were upregulated in at least one of the other two conditions 

and 63% were upregulated in both (Fig. 2D and fig. S4, A and B and data S2 to S4). GSEA 

on murine MAIT cells and in vitro-stimulated human MAIT cells identified similar 

enrichment of these cytokine signaling pathways (fig. S4, C and D).

In vitro, inhibition of type I IFN signaling reduced MAIT cell IFN-γ production by >50% 

(Fig. 2E). Blockade of IL-18 (an IL-1 family member) or IL-12 also reduced MAIT cell 

activation. By contrast, blockade of IL-15 (an IL-2 family member) had no effect (Fig. 2F 

and fig. S5A). MAIT cell activation by Ad vectors was independent of TCR signaling (fig. 

S5B) (2, 3).

To understand the cellular origins of these critical cytokines, we examined the cell 

populations transduced by Ad5 and ChAdOx1. Monocytes or conventional dendritic cells 

(cDCs) were the major transduced population by both vectors (>80% of GFP+ cells) (fig. S5, 

C to F). ChAdOx1 also efficiently transduced CD123+ plasmacytoid dendritic cells (pDCs), 

whereas Ad5 did not (fig. S5F) (11). Importantly, depletion of CD123+ pDCs resulted in a 

significant (67%) reduction in IFN-γ production by MAIT cells (Fig. 2G) and reduced IFN-

α levels by >99% following ChAdOx1 stimulation (Fig. 2H).

Depletion of CD14+ monocytes significantly reduced MAIT cell activation after ChAdOx1 

stimulation (Fig. 2I and fig. S5G) and abrogated the secretion of IL-18 (Fig. 2J). The 

Cathepsin B–NLRP3 inflammasome pathway (14) was the source of IL-18 in response to 

ChAdOx1 (fig. S6). Thus, pDC-derived IFN-α and monocyte-derived IL-18 play critical 

roles in activating MAIT cells in response to Ad vectors. Ad5 induced negligible amounts of 

IFN-α (fig. S7, A and B) (10, 11). Despite transducing monocytes, Ad5 did not induce IL-18 

or IL-12p70 (fig. S7, C and D). By sharp contrast, ChAdOx1 induced robust production of 

IFN-α and IL-18.

Notably, although IFN-α/β + IL-18 induced production of IFN-γ by MAIT cells in PBMC 

culture, this was not seen using isolated CD8+ T cells (~75% of human MAIT cells express 

CD8 (15)) (Fig. 3A), despite the induction of CD69 (fig. S8A). Depletion of monocytes 

reduced MAIT cell IFN-γ production following IFN-α + IL-18 stimulation (fig. S8B). The 

addition of monocytes rescued the response (Fig. 3B). Since conditioned supernatant, or 

provision of PBMCs across a transwell significantly rescued MAIT cell IFN-γ production 

(Fig. 3C and fig. S8C), this suggested the presence of a soluble, monocyte-derived, IFN-α-

dependent signal. Unexpectedly, IFN-α-treated monocytes secreted TNF (Fig. 3D and fig. 

S8D). Additionally, TNFR2 signaling pathways were strongly induced in stimulated MAIT 

cells (fig. S8, E to G). Thus, we investigated if TNF was the IFN-α-dependent intermediary 

signal. Addition of TNF or an anti-TNFR2 agonist to isolated CD8+ T cells stimulated with 

IFN-α + IL-18 enhanced MAIT cell IFN-γ production by >300% (Fig. 3E and fig. S8H). 

Addition of an anti-TNF antibody (adalimumab) inhibited MAIT cell IFN-γ production in 

response to IFN-α + IL-18 stimulation, or conditioned supernatant (fig. S8, I and J). TNF 

blockade using either adalimumab or recombinant TNFR2–Fc fusion protein (etanercept), 

but not a control antibody (vedolizumab), inhibited IFN-γ production by MAIT cells in 

response to ChAdOx1 (Fig. 3F). Depletion of monocytes reduced ChAdOx1-induced TNF 
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production by 94% (Fig. 3G). Ad5 induced minimal TNF (fig. S8K), consistent with the 

poor ability to stimulate IFN-α (fig. S7A).

These data suggest a model in which pDC-derived IFN-α acts directly and indirectly via 

induction of TNF by monocytes (with IL-18) to activate MAIT cells in response to 

ChAdOx1 (fig. S9). To test this model in vivo, wild-type (WT) C57BL/6J, Il18rap−/−, Ifnar
−/−, and Tnfrsf1a−/−Tnfrsf1b−/− mice were immunized with ChAdOx1. MAIT cells from 

these animals were then analyzed by RNA-seq (fig. S10, A and B and data S5 to 8). 

Principal component analysis identified a strong gradient of activation, where MAIT cells 

from Ifnar−/− mice were most similar to those from naïve animals and MAIT cells from 

Tnfrsf1a−/−Tnfrsf1b−/− and Il18rap−/− mice had intermediate transcriptional profiles (Fig. 3, 

H and I). The effector genes Cd69 (and at the protein level), Cxcl10, Cxcl11, Ccl5, and 

Gzmb were all regulated along this gradient (fig. S10, C and D). Other genes (like Cxcl9) 

were only regulated by TNF signaling (fig. S10D). In total, 51% of the genes induced by 

vaccination were regulated by ≥1 of these cytokine pathways, and 11% were co-regulated by 

≥2 of these pathways (Fig. 3J and data S9). Thus, TNF, IL-18, and especially type I IFN play 

a critical role in vivo in Ad vector-induced MAIT cell activation.

Human volunteers showed a significant increase in IFN-γ-producing T cells following 

ChAdOx1 boosting immunization (Fig. 4A). The degree of expansion positively correlated 

with MAIT cell activation (Fig. 4B). To determine if this was a causal relationship, WT and 

Mr1−/− mice, which lack MAIT cells (16), were used (fig. S11, A to C). Following 

vaccination with ChAdOx1 expressing an optimized HCV antigen (17), Mr1−/− mice had 

significantly reduced frequencies of HCV-specific CD8+ T cells compared with WT mice 

(Fig. 4C; fig. S11D). No significant defect in HCV-specific CD4+ T cells was observed (fig. 

S11E). We also observed defects in the CD8+ T cell responses of Mr1−/− mice vaccinated 

with the candidate SARS-CoV-2 vaccine, ChAdOx1-nCoV-19 (Fig. 4D and fig. S11F) (7). 

WT and Mr1−/− mice were then given a homologous ChAd63-OVA prime-boost 

immunization (fig. S11G) (18). Mr1−/− mice displayed reduced OVA-specific CD8+ T cell 

responses after both priming and boosting (Fig. 4, E and F). Differences in the microbiome 

(19) or general immunodeficiency of Mr1−/− mice did not explain these differences in 

immunogenicity (fig. S12).

In summary, MAIT cells can sense the diversity of the Ad vector-induced innate immune 

activation landscape (e.g. IFN-α, TNF, IL-18), integrating these signals to augment vaccine-

induced CD8+ T cell immunity. The blend of signals required to maximally trigger MAIT 

cells described here includes a critical pathway via type I IFN-dependent TNF release and 

relies on cross-talk between two distinct populations of transduced cells, and varies between 

adenovirus serotypes. Our data, coupled with studies in the lung (4, 20, 21), support a model 

that places MAIT cells in a critical bridging position between innate and adaptive immunity. 

The mechanism by which MAIT cell activation promotes antigen-specific CD8+ T cell 

responses remains to be defined. However, local production of chemokine CXC10 represents 

a promising candidate as it can promote CD8+ T cell priming (22).

It is striking that the activation of MAIT cells is tightly linked to the immunogenicity of 

adenovirus vectors. This technology has emerged as a potent platform for T cell 
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immunogenicity in clinical trials for HIV (23), and as vaccines for emerging viruses such as 

Ebola (6) and SARS-CoV-2 (7, 8). This knowledge can be harnessed to improve the design 

of these vaccines against major pathogens and cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One-sentence summary

Maximal immunogenicity of candidate adenovirus vaccine vectors requires the activation 

of MAIT cells.
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Figure 1. Activation of human and murine MAIT cells by adenovirus vectors.
(A to C) Human PBMCs (n=9; four experiments) were stimulated with Ad5-GFP or 

ChAdOx1-GFP (multiplicity of infection (MOI)=0 to 104 vp (viral particles)). MAIT cell 

CD69 (A), granzyme B (GzmB) (B), and IFN-γ (C) expression was measured after 24 

hours. (D and E) Human PBMCs (n=5; two experiments) were stimulated with the indicated 

vectors (species in parentheses). MAIT cell GzmB (D) or IFN-γ (E) expression were 

measured after 24 hours. (F and G) C57BL/6J mice (n=6 per group; representative of two 

experiments) were immunized intramuscularly (i.m.) with 108 IU (infectious units) of Ad5-
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GFP or ChAdOx1-GFP. Inguinal LN MAIT cell CD69 (F) and GzmB (G) expression was 

measured after 24 hours. (H and I) Healthy human volunteers (n=14) were immunized with 

a 5×1010 vp dose of ChAdOx1 MenB.1. (H) MAIT cell CD69 expression 1 day pre- and 1 

day post-immunization. (I) Pearson correlation of change in plasma IFN-γ levels following 

vaccination with the change in MAIT cell CD69 expression. *, P<0.05; **, P<0.01; ***, 

P<0.001. Unpaired t test (A to C), two-way ANOVA (D and E), one-way ANOVA with 

Sidak correction for multiple comparisons (F and G), or Wilcoxon rank-sum test (H). 
Symbols indicate average response (A to C) or individual mice/volunteers (D to I). Mean ± 

SEM are shown.
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Figure 2. Activation of MAIT cells by adenovirus vectors requires pDC-derived IFN-α and 
monocyte-derived IL-18.
(A and B) Gene expression analysis of MAIT cells isolated from the PBMCs of human 

volunteers 1 day pre- and 1 day post-vaccination with ChAdOx1 MenB.1 (n=14). (A) 
Volcano plot of differentially expressed genes (log2 FC>1, adjusted P<0.05). The top 10 

upregulated genes are annotated. (B) Selected cytokine signaling pathways from the 

Reactome database enriched by Gene Set Enrichment Analysis. (C) Pearson correlation of 

change in plasma IFN-α level following vaccination with the change in MAIT cell CD69 

expression. (D) Overlap of genes upregulated in MAIT cells from ChAdOx1-vaccinated 

volunteers, from human PBMCs stimulated with ChAdOx1, and from the draining inguinal 

LNs of ChAdOx1-vaccinated mice. (E and F) Human PBMCs were stimulated with 

ChAdOx1-GFP and the following inhibitors were used: vaccinia virus-derived type I 

interferon antagonist B18R (1 or 10 μg/ml; n=7; three experiments) or anti-IFNAR2 

antibody (10 or 25 μg/ml; n=5 or 3; two or one experiments, respectively) (E) or anti-IL-12, 

anti-IL-15, or anti-IL-18 antibodies (10 μg/ml; n=5; two experiments) (F). MAIT cell IFN-γ 
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expression was measured after 24 hours. (G and H) PBMCs were depleted of CD123+ 

pDCs or left untreated and stimulated with ChAOx1-GFP. MAIT cell IFN-γ expression 

(n=8; three experiments) (G) or levels of IFN-α in the cell culture supernatant (n=4; one 

experiment) (H) were measured after 24 hours. (I and J) PBMCs were depleted of CD14+ 

monocytes or left untreated and stimulated with ChAdOx1-GFP. MAIT cell IFN-γ 
expression (n=4; two experiments) (I) or IL-18 levels in the supernatant (n=4; three 

experiments) (J) were measured after 24 hours. *, P<0.05; **, P<0.01; ***, P<0.001. 

Repeated-measures one-way ANOVA with Dunnett Correction (E and F), or unpaired t test 

(G to J). Symbols indicate individual donors. Mean ± SEM are shown.
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Figure 3. IFN-α acts directly and indirectly through the induction of TNF to activate MAIT cells.
(A) Human PBMCs or purified CD8+ T cells (n=3; one experiment) were stimulated with 

the indicated cytokines (50 ng/ml). MAIT cell IFN-γ expression was measured after 24 

hours. (B) Purified CD8+ T cells ± CD14+ monocytes (n=4; one experiment) were 

stimulated with IFN-α + IL-18 (50 ng/ml). MAIT cell IFN-γ expression was measured after 

24 hours. (C) Purified monocytes (n=3; one experiment) were stimulated with IFN-α (50 ng/

ml), or left untreated. After 24 hours, supernatants were transferred ± IL-18 (50 ng/ml) to 

autologous purified CD8+ T cells. MAIT cell IFN-γ expression was measured after 24 

hours. (D) TNF production by IFN-α-treated CD14-purified monocytes was measured after 

24 hours (n=3; one experiment). (E) Purified CD8+ T cells (n=10; four experiments) were 

stimulated with IFN-α and IL-18 ± TNF (50 ng/ml) or anti-TNFR2 agonist antibody (2.5 

μg/ml). MAIT cell IFN-γ expression was measured after 24 hours. (F) PBMCs were 

stimulated with ChAdOx1 and the following inhibitors were added: vedolizumab (anti-α4β7 
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integrin antibody, n=8; two experiments), adalimumab (anti-TNF antibody, n=11; three 

experiments), or etanercept (TNFR2-Fc fusion protein, n=8; two experiments) (10 μg/ml). 

MAIT cell IFN-γ expression was measured after 24 hours. (G) PBMCs ± CD14-depletion 

were stimulated with ChAdOx1. Concentration of TNF in the supernatant was measured 

after 24 hours (n=4; one experiment). (H to J) C57BL/6J (n=4), Il18rap−/− (n=3), Tnfrsf1a
−/−Tnfrsf1b−/− (n=4), or Ifnar−/− (n=4) mice were immunized intramuscularly with 108 IU of 

ChAdOx1-GFP. Naive C57BL/6J mice (n=4) were used as a control. After 24 hours, MAIT 

cells were isolated from the inguinal LNs and sorted for RNA sequencing (one experiment). 

(H) Principal component analysis. (I) Heatmap of the upregulated differentially expressed 

genes (log2 FC>1, adjusted P<0.05) between MAIT cells from ChAdOx1-immunized and 

naive C57BL/6J mice, with all other groups shown for comparison. (J) Overlap of the genes 

upregulated (log2 FC>1, adjusted P<0.05) in MAIT cells from ChAdOx1-immunized and 

naïve C57BL/6J mice, and the genes upregulated in MAIT cells from ChAdOx1-immunized 

C57BL/6J mice as compared to each of the ChAdOx1-immunized knockout strains. *, 

P<0.05; **, P<0.01. Unpaired t test (B, C and G), repeated-measures one-way ANOVA with 

Dunnett Correction (E and F). Symbols indicate individual donors. Mean ± SEM are shown.
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Figure 4. MAIT cell deficiency impacts on T cell responses following ChAdOx1 or ChAd63 
immunization.
(A) Frequency of IFN-γ-producing PBMCs measured by peptide ELISPOT in ChAdOx1 

MenB.1 vaccinated volunteers pre-boost (n=14) or day 14 post-boost (n=13). (B) Spearman 

rank correlation analysis of the change in MAIT cell CD69 expression from pre-boost to day 

1 post-boost versus the increase in IFN-γ-producing PBMCs from pre-boost to day 14 post-

boost. (C) C57BL/6J (n=12) or Mr1−/− (n=9) mice were immunized intramuscularly (i.m.) 

with 108 IU of ChAdOx1-HCV-GT1-6_D_TM-Ii+L (two experiments). On day 16, HCV-

Provine et al. Page 15

Science. Author manuscript; available in PMC 2021 July 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



specific CD107a+, IFN-γ +, TNF+, or IFN-γ +TNF+ CD8+ T cell responses were measured. 

(D) C57BL/6J (n=12) or Mr1−/− (n=11) mice were immunized i.m. with 108 IU of 

ChAdOx1-nCoV-19 (two experiments). On day 13, SARS-CoV-2 spike-specific CD107a+, 

IFN-γ +, TNF+, or IFN-γ +TNF+ CD8+ T cell responses were measured. (E and F) 
C57BL/6J (n=12) or Mr1−/− (n=12, n=11 post-boost) were primed i.m. with 107 IU of 

ChAd63-OVA and boosted intravenously on day 28 with 108 IU (squares) or 109 IU (circles) 

of ChAd63-OVA. SIINFEKL-specific CD107a+, IFN-γ +, TNF+, or IFN-γ +TNF+ CD8+ T 

cell responses were measured either 3 weeks post-prime (E) or 3 weeks post-boost (F). *, 

P<0.05; **, P<0.01; ***, P<0.001. Wilcoxon rank-sum test (A), or two-way ANOVA (C to 
F). Symbols indicate individual volunteers/mice. Mean ± SEM are shown.
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