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a b s t r a c t

Personalised medicine is based on the principle that each body is unique and will respond to
therapies differently. In cardiology, characterising patient specific cardiovascular properties would help
in personalising care. One promising approach for characterising these properties relies on performing
computational analysis of multimodal imaging data. An interactive cardiac imaging environment, which
can seamlessly render, manipulate, derive calculations, and otherwise prototype research activities, is
therefore sought-after.

We developed the Cardiac Electro-Mechanics Research Group Application (CemrgApp) as a platform
with custom image processing and computer vision toolkits for applying statistical, machine learning
and simulation approaches to study physiology, pathology, diagnosis and treatment of the cardiovas-
cular system. CemrgApp provides an integrated environment, where cardiac data visualisation and
workflow prototyping are presented through a common graphical user interface.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Precision cardiology requires an accurate characterisation of
the disease phenotype for each patient [1]. Computational anal-
ysis on multi-modal imaging data is a promising approach for
the characterisation of patient specific properties, which aids in
the understanding of biological behaviour. Cardiovascular clin-
ical researchers therefore require an environment, which can
seamlessly render multiple time dependent images, enable ma-
nipulation of data in a flexible user defined workflow, display
the results of derived calculations, and otherwise prototype their
desired research activities.

Several research software packages have been developed to
provide distinct functionalities with multimodal imaging data:
3D Slicer [2], Analyze (AnalyzeDirect, Overland Park, KS), Ei-
dolon [3], and the Medical Imaging Interaction Toolkit (MITK) [4]
are all amongst the examples. We developed Cardiac Electro-
Mechanics Research Group Application (CemrgApp) as an MITK
based platform extended with custom image processing and com-
puter vision toolkits for applying statistical, machine learning and
simulation approaches to study physiology, pathology, diagnosis
and treatment of the cardiovascular system. CemrgApp provides
an integrated environment, where cardiac data visualisation and
workflow prototyping are presented through a common graphical
user interface for high throughput clinical studies.

CemrgApp is specifically tailored to enable lean iterative de-
velopments, accelerate clinical translation, and reduce barriers to
collaborative and interdisciplinary work. It increases the reusabil-
ity of code by enabling clinical researchers to make use of earlier
developments by computer vision scientists and perform ad-
vanced image analysis with limited training. CemrgApp has in
fact provided a common platform for them to cooperate in var-
ious cardiac applications and preprocedural planning in clinical
trials [5–10].

CemrgApp is easy to acquire, install, setup and use. It has been
made publicly available as source code on Github1 and in binaries
for Linux and macOS in version 1.0, as well as Microsoft Windows
in version 2.0 of the application. To enhance modularity, Cem-
rgApp features a dynamic Docker2 interface for facilitating the
use of third party applications and integration with software from
other centres. Building CemrgApp upon the more generic MITK
software system prevents it from being a one person project and
enables its users to engage with a bigger community for support.

2. Software description

The open-source MITK software system offers an infrastruc-
ture for construction of specifically tailored applications by com-
bining Kitware platforms3 (the Insight Toolkit (ITK), the Visu-
alisation Toolkit (VTK)) and other interactive medical imaging
features. CemrgApp is built upon MITK and provides cardiovas-
cular data analysis functionalities in the form of bespoke plugins,
which are sub-programs with dedicated user interface environ-
ments. The current two major versions of CemrgApp v1.0 and
v2.0 are compatible with MITK 2016.3.0 and MITK 2018.04.2,
respectively.

In CemrgApp, all plugins follow a similar and intuitive user
interface that breaks complicated data manipulation pipelines
into a series of sequential steps; each handled by a numbered
button. A render window consisting of 2D and 3D views visualises
data and dropdown menus modify the behaviour of the pipeline.
An example of this interface can be seen in Fig. 1.

1 https://github.com/
2 https://www.docker.com
3 https://www.kitware.com

2.1. Software architecture

CermgApp is an object-oriented, cross-platform application
implemented in C++. Similar to MITK, CemrgApp has been de-
signed with the aim of providing a modular and reusable code
base to enable rapid development of new features. Following
this design philosophy, most CemrgApp classes are derived from
top-level classes of MITK, which in turn are derived from ITK.

CemrgApp uses a data centred approach, similar to the model-
view-controller design pattern. The model represents the applica-
tion logic and controls the backend functions. Data objects and
data trees are the central elements representing the model. The
view displays the model data to the user, usually handled by the
MITK core visualisation codes. Finally, the controller handles user
input and forwards it to the model by calling the corresponding
functions.

CemrgApp includes MITK default modules in addition to a dy-
namic Docker interface, facilitating the use of applications written
in different programming languages with various dependencies.
The Docker interface of CemrgApp relies on the Docker commu-
nity edition and is licenced under the Apache license (version 2.0).
CemrgApp at its current state uses the following packages in the
form of Docker containers:

• The Computational Geometry Algorithms Library (CGAL4),
which provides reliable geometric and meshing algorithms.

• The Medical Image Registration ToolKit (MIRTK5), which
provides a collection of libraries and command line tools to
assist in processing imaging data.

• Tensorflow [11], which is an end-to-end open source ma-
chine learning platform used for the computer vision algo-
rithms.

2.2. Software functionalities

Software functionalities of the CemrgApp are organised as the
following plugins:

2.2.1. Motion quantification
Recent radiation dose reduction techniques have made com-

puted tomography (CT) scans more applicable and extracting
heart function from cardiac images feasible. This plugin estimates
cardiac motion by applying an image registration warping field
to a triangulated mesh of the heart’s chambers. Fig. 2 displays
an example use of this plugin for quantifying motion of the left
ventricle chamber.

Tracking cardiac motion can be defined as the non-rigid reg-
istration of cardiac image sequences. In free-form deformation
(FFD) registration [12], a non-rigid deformation hhh = [X Y Z]

T is
represented using a B-spline model in which the deformation is
parametrised using a set of control points ΦΦΦ = [U V W ]

T . To be
able to deal with large global deformations and to improve ro-
bustness, the classic FFD registration normally uses a multi-level
representation [13].

The ‘‘Motion Quantification’’ plugin utilises an optimised tem-
poral sparse free-form deformation (TSFFD) technique [14], which
extends the classic FFD approach and recovers smoother dis-
placement fields in the temporal domain by using a four-level
representation and sum of squared differences as the similarity
measure. The registration energy function is minimised using a
gradient descent approach [15].

The cardiac motion can then be characterised by the circum-
ferential and longitudinal strains as well as local area change

4 https://www.cgal.org
5 https://mirtk.github.io

https://github.com/
https://www.docker.com
https://www.kitware.com
https://www.cgal.org
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Fig. 1. An example of CemrgApp user interface. The panel in the left corner displays a series of push buttons, sequentially numbered to present steps in a workflow.
he panel in the bottom left corner is the data manager that allows the user to manipulate or visualise data. The 2D anatomical views and the 3D renderer window
re presented under the display panel.

Fig. 2. Analysing motion from cardiac CT is facilitated by: (a) an interactive renderer for visualising 3D images and surface meshes of the heart, (b) a plot over time
frame illustrating deformation curves from 16 individual wall segments, and (c) a bullseye plot displaying a 16-segment map for visualisation of deformation at a
specific time frame in the cardiac cycle, where larger deformations are illustrated in blue. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

throughout the cardiac cycle. The Green–Lagrange strain tensor
E is calculated by E =

1
2 (F

TF − I), where I is the identity tensor
and F the deformation gradient tensor.

The ‘‘Anatomical Measurements’’ plugin can similarly perform
a more generic motion estimation and track anatomical land-
marks manually placed on the scans. It can then compute a
number of measurements such as Euclidean distance between
two landmarks as well as area and perimeter of a region of
interest enclosed by the landmarks.

2.2.2. Scar quantification
Atrial fibrillation (AF) is a heart condition that causes an ir-

regular and often abnormally fast heart rate. Fibrosis is a major
contributor to sustained AF. Late gadolinium enhancement (LGE)
cardiac magnetic resonance imaging (CMR) is currently the only
available tool for its non-invasive assessment. This plugin was de-
veloped to facilitate, visualise and validate the multiple analysis
steps required for the assessment of fibrosis and quantification of
scarred tissue.

The plugin contains data processing toolkits, which perform
resampling, automatic segmentation, rigid registration and trans-
formation of images, bespoke smoothing of segmentations, LGE
image interrogation, and assessment of fibrosis. All these steps

The workflow contains a multi-label convolutional neural net-
work (CNN), designed to accurately delineate atrial structures
including the blood pool, pulmonary veins and mitral valve. The
output from the network removes the user dependent steps and
allows for reproducible quantification of fibrosis from scans. The
architecture of the network can be seen in Fig. 4.

The network was trained and tested on a dataset of 207
manually labelled scans and a 0.91±0.02 Dice score was achieved
for atrial blood pool segmentation. The network was also checked
against the ‘‘2018 Atrial Segmentation Challenge’’ dataset to eval-
uate its potential limitations on analysing different scans from
a different centre. The network without any retraining on the
challenge dataset achieved a Dice score of 0.80±0.05. Retraining
the network on this dataset achieved a Dice score of 0.89. Testing
the network against the ‘‘2013 Left Atrial Segmentation Chal-
lenge’’ yielded a Dice score of 0.90 ± 0.09. Although our results
show the robustness of the network when tested against these
multi-centre datasets, there will be cases, where the network
fails. In such cases, the user has the option to use the MITK
manual segmentation tools and carry on with the rest of fibrosis
quantification process.

The network was trained on 2D slices extracted from the 3D
scans using a dedicated GPU machine. At the run time, the plugin
initially slices the scan into 2D images, performs the predic-
tion using the pretrained network, and finally puts the results
are automated in an end-to-end workflow, as illustrated in Fig. 3.
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Fig. 3. A fully automatic workflow for assessment of fibrosis and quantification of scarred tissue. A convolutional neural network (CNN) makes segmentation possible
ithout user intervention. Deep learning components are in yellow. Blue represents conventional image processing techniques and red illustrates assessment of

ibrosis using LGE-CMR. Quality control assessment is performed after every step in the workflow. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

Fig. 4. General network architecture with 5 concatenations between contracting and expanding paths. Network’s layers are illustrated with coloured arrows. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

back together. This method has been used in previous medical
segmentation methods and helps with keeping the method com-
putationally tractable without losing significant performance [16,
17].

Additionally, the ‘‘Advanced Calculations’’ toolkit of this plugin
can quantify extra features in the scar tissue, with an emphasis
on the tissue’s status before and after pulmonary vein isolation
(PVI). PVI is a common ablation procedure that prevents abnor-
mal electrical signals from activating the atrium by electrically
isolating the pulmonary veins. A successful ablation produces a
lesion encircling the veins that stops the activation [18]. Fig. 5
shows the toolkit’s main functions: (a) measure the surface area
of the scar tissue, (b) measure the number of gaps around a vein
and (c) compare the pre- and post-ablation scars.

2.2.3. Morphological measurements
Remodelling of heart chambers is a common feature of many

cardiovascular conditions and is a sensitive marker of adverse
cardiovascular outcomes. The aim of this plugin is to analyse
remodelling of heart’s chambers from cardiac scans by assess-
ing volume, surface area, wall thickness, and associated vessels
morphological characteristics.

The plugin provides a semi-automatic method of segmenting
the blood pool and the cardiac wall using an iterative growing
algorithm, which detects pixels within a signal intensity range
corresponding to muscular tissue of the heart. A high-resolution
tetrahedral mesh is then constructed from the wall segmenta-
tion using CGAL. The mesh is subsequently processed to tag the
endocardial (inner) and epicardial (outer) surface layers.

To calculate tissue thickness, the Laplace equation (∇2u =

0) is solved with Dirichlet boundary conditions assigned at the
endocardial u = 0 and epicardial u = 1 surfaces to gener-
ate a series of nested iso-potential surfaces. Wall thickness is
evaluated as the length of the path between the endocardium

and epicardium when moving orthogonally between adjacent iso-
potential surfaces. Tissue thickness measurements are associated
with each mesh node.

In order to truncate vessels and calculate their morphological
characteristics, a Voronoi diagram [19] is utilised by the plugin.
This diagram is extracted from a surface mesh made from the
blood pool segmentation, as seen in Fig. 6(a). Each of the vessels
is initially identified by the user placing landmarks on the distal
ends of the mesh in a 3D VTK renderer, which was specifically
designed for dealing with user interactions more effectively than
the default MITK 3D visualisation window. Centrelines (Fig. 6(b))
are then automatically drawn from these points to the centre of
the body using the VMTK library. As the centrelines enter the
body, the maximum area of the surrounding structure increases
significantly. This inflection is used to identify the opening of
the chamber [20]. Then, a fully automatic clipper computes the
geometric properties of the vessels’ inner walls and truncates the
blood pool precisely at the opening point.

In addition to the fully automatic clipper (yellow disk in
Fig. 6(c)), the plugin also provides two other types of truncation
methods with different levels of manual interventions to provide
flexibility. An example of the fully manual method is shown as
a red disk, where the user picks a number of seeds on the mesh
to define a contour. These seeds generate a custom shaped plane,
which is then used for truncation of the vessels. The green disk
is the semi-automatic method, in which the user set the size of
clipping plane.

3. Illustrative examples

The process of assessing fibrosis manually is described in this
section. By selecting the ‘‘Scar Quantification’’ plugin, the user is
presented with the following steps:
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Fig. 5. Advanced Scar Calculations Diagram. (a) The scar tissue is identified from triangular elements of the surface mesh, which have a fibrotic score above a given
hreshold. (b) A semi-automatic method allows the creation of an exploration corridor around the veins to measure ablation lesion gaps, which are areas in the
orridor where scar values are below the threshold. (c) The ablation overlap comparison is performed by comparing the scar tissue in both pre- and post-procedure
aps.

Fig. 6. (a) A Voronoi diagram displaying partitioning of the geometry into polygons with area of surrounding structure encoded. (b) Computed centrelines are
illustrated in red. The localisation of the opening points is achieved by analysing the change in the area of the surrounding structure. (c) The colourful disks
represent different clipping techniques. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1. The first step loads and visualises CMR images. Then, the
step of processing images converts the scans from the
DICOM6 format into anonymised NIfTI7 format.

2. The segmentation step can be done either automatically by
the convolutional neural network or semi-automatically by
utilising a region growing tool to delineate the atrium.

3. Alignment of the segmentation with the LGE scan is per-
formed using the MIRTK rigid registration option [21].

4. To isolate the LA cavity from the segmentation, Cemr-
gApp uses the automatic localisation and vessel truncation
tool. A manual slider is also available to reposition the
truncation disks more proximal or distal, if needed.

5. In the next step, a surface mesh is created from the trun-
cated segmentation. The mitral valve can also be clipped
from the mesh by manipulating the visualisation renderer.

6. Normals are taken, 3 mm externally and 1 mm internally,
to the nodes of the mesh and a maximum intensity pro-
jection technique is used to interrogate the LGE scan and
identify fibrotic regions.

7. Finally, global scar burdens are calculated using predefined
thresholds.

An explanatory video of this example is available as a supple-
ment.

4. Impact

By tailoring CemrgApp to the clinical researchers’ needs and
technical abilities, we aimed to accelerate clinical translation

6 http://medical.nema.org
7 http://nifti.nimh.nih.gov

and allow users to produce automated and reproducible results,
which reduce intra and interobserver variability in the studies. By
reducing variability, the number of patients required to answer
a specific clinical question is reduced. This allows smaller, less
expensive and faster clinical trials to be performed. Likewise,
the ability to process large datasets with standardised imaging
structures permits users to create virtual cohorts of digital twins
at new significant scales.

To date, CemrgApp has been used by clinical researchers for:
improved co-registration of ex-vivo and in-vivo CMR images [5],
reproducibility assessment of atrial fibrosis quantification [6],
evaluation of left atrial scar formation using an ablation index-
guided point-by-point workflow [7], optimisation of LGE-CMR
imaging of post ablation atrial scar in a cross-over study [8],
quantification of mitral valve geometry on multi-slice CT [9], and
guidance of lead placement in CRT [10].

All these successful studies provided cross user providence for
the analysis of each case and gave confidence that the produced
results were not user dependent. CemrgApp has also provided
commercial services as part of the Medtronic’s Fire and Ice II trial
(Clinical Trials Gov Identifier: NCT03706677), which is the pilot
phase of a prospective, randomised, single-blinded, multi-centre,
interventional clinical trial for comparing efficacy and safety of
isolation of the PVI using catheters in subjects with persistent AF.

Distribution of research software developed in academia is
challenging. The process of delivering a newly discovered algo-
rithm, a novel computational model, or even a simple batch script
to its potential end users is not straightforward. Distribution by
source is an option but expecting the end user to deploy the right
compiler, the correct version of third party libraries, and the com-
patible system architecture is too optimistic, if not unreasonable.

Our selected method of deployment addressed these challenges

http://medical.nema.org
http://nifti.nimh.nih.gov
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by making self-contained standalone executables available for
each operating system. Furthermore, utilising Docker allowed the
application to be lightweight enough to run on clinicians’ laptops,
instead of dedicated onsite machines.

5. Conclusions

Developing novel but complicated medical imaging work-
flows, which are not user friendly, verifiable, and reproducible
across multiple centres, can hinder the process of translation
into clinic. Interactive features of CemrgApp allow visualisation
and manipulation of cardiovascular data in an easy reproducible
environment for end users to explore innovative ideas and pave
the way for future clinical research.
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